
Programming
Distributed Memory Sytems
Using OpenMP

Rudolf Eigenmann,
Ayon Basumallik, Seung-Jai Min,

School of Electrical and Computer Engineering,
Purdue University,

http://www.ece.purdue.edu/ParaMount

R. Eigenmann, Purdue HIPS 2007 2

Is OpenMP a useful programming
model for distributed systems?

 OpenMP is a parallel programming model that assumes a shared
address space
 #pragma OMP parallel for
 for (i=1; 1<n; i++) {a[i] = b[i];}

 Why is it difficult to implement OpenMP for distributed processors?
The compiler or runtime system will need to
 partition and place data onto the distributed memories
 send/receive messages to orchestrate remote data accesses
HPF (High Performance Fortran) was a large-scale effort to do so -

without success
 So, why should we try (again)?

OpenMP is an easier programming (higher-productivity?) programming
model. It

 allows programs to be incrementally parallelized starting from the serial
versions,

 relieves the programmer of the task of managing the movement of
logically shared data.

R. Eigenmann, Purdue HIPS 2007 3

Two Translation Approaches

 Use a Software Distributed Shared
Memory System

 Translate OpenMP directly to MPI

R. Eigenmann, Purdue HIPS 2007 4

Approach 1:
Compiling OpenMP for Software

Distributed Shared Memory

R. Eigenmann, Purdue HIPS 2007 5

Inter-procedural Shared Data Analysis

 SUBROUTINE DCDTZ(A, B, C)
 INTEGER A,B,C
C$OMP PARALLEL
C$OMP+PRIVATE (B, C)
 A = …
 CALL CCRANK
 …
C$OMP END PARALLEL
 END

 SUBROUTINE DUDTZ(X, Y, Z)
 INTEGER X,Y,Z
C$OMP PARALLEL
C$OMP+REDUCTION(+:X)
 X = X + …
C$OMP END PARALLEL
 END

SUBROUTINE SUB0
INTEGER DELTAT
CALL DCDTZ(DELTAT,…)
CALL DUDTZ(DELTAT,…)
END

 SUBROUTINE CCRANK()
 …
 beta = 1 – alpha
 …
 END

R. Eigenmann, Purdue HIPS 2007 6

 DO istep = 1, itmax, 1

!$OMP PARALLEL DO
 rsd (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 rsd (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 u (i, j, k) = rsd (i, j, k)
!$OMP END PARALLEL DO

 CALL RHS()

 ENDDO

SUBROUTINE RHS()

!$OMP PARALLEL DO
 u (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = rsd (i, j, k)..
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = rsd (i, j, k)..
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = ...
!$OMP END PARALLEL DO

Access Pattern
Analysis

R. Eigenmann, Purdue HIPS 2007 7

=> Data Distribution-Aware
Optimization

 DO istep = 1, itmax, 1

!$OMP PARALLEL DO
 rsd (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 rsd (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 u (i, j, k) = rsd (i, j, k)
!$OMP END PARALLEL DO

 CALL RHS()

 ENDDO

SUBROUTINE RHS()

!$OMP PARALLEL DO
 u (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = rsd (i, j, k)..
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = rsd (i, j, k)..
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = ...
!$OMP END PARALLEL DO

R. Eigenmann, Purdue HIPS 2007 8

DO k = 1, z
!$OMP PARALLEL DO
 DO j = 1, N, 1
 flux(m, j) = u(3, i, j, k) + …
 ENDDO
!$OMP PARALLEL DO
DO j = 1, N, 1
 DO m = 1, 5, 1
 rsd(m, i, j, k) = … +
 flux(m, j+1)-flux(m, j-1))
 ENDDO
 ENDDO
ENDDO

init00 = (N/proc_num)*(pid-1)…
limit00 = (N/proc_num)*pid …

DO k = 1, z
 DO j = init00, limit00, 1
 flux(m, j) = u(3, i, j, k) + …
 ENDDO
 CALL TMK_BARRIER(0)
 DO j = init00, limit00, 1
 DO m = 1, 5, 1
 rsd(m, i, j, k) = … +
 flux(m, j+1)-flux(m, j-1))
 ENDDO
 ENDDO
ENDDO

Adding Redundant Computation
to Eliminate Communication

OpenMP Program S-DSM Program
Optimized S-DSM Code

init00 = (N/proc_num)*(pid-1)…
limit00 = (N/proc_num)*pid…
new_init = init00 - 1
new_limit = limit00 + 1
DO k = 1, z
 DO j = new_init, new_limit, 1
 flux(m, j) = u(3, i, j, k) + …
 ENDDO
 CALL TMK_BARRIER(0)
 DO j = init00, limit00, 1
 DO m = 1, 5, 1
 rsd(m, i, j, k) = … +
 flux(m, j+1)-flux(m, j-1))
 ENDDO
 ENDDO
ENDDO

R. Eigenmann, Purdue HIPS 2007 9

Access Privatization

Example from equake (SPEC OMPM2001)

If (master) {
shared->ARCHnodes = …..
shared->ARCHduration = …
...
}

/* Parallel Region */

N = shared->ARCHnodes ;

iter = shared->ARCHduration;

…...

// Done by all nodes
{ ARCHnodes = …..
 ARCHduration = …
...
}

/* Parallel Region */
N = ARCHnodes;
iter = ARCHduration;
…...

READ-ONLY
SHARED VARS

PRIVATE
VARIABLES

R. Eigenmann, Purdue HIPS 2007 10

0

1

2

3

4

5

6

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

SPEC OMP2001M Performance

Baseline Performance Optimized Performance

wupwise swim mgrid artequakeapplu

Optimized Performance of
OMPM2001 Benchmarks

R. Eigenmann, Purdue HIPS 2007 11

A Key Question: How Close Are we
to MPI Performance ?

0

1

2

3

4

5

6

7

8

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

SPEC OMP2001 Performance

Baseline Performance

Optimized Performance

MPI Performance

wupwise swim mgrid applu

R. Eigenmann, Purdue HIPS 2007 12

Towards Adaptive Optimization
A combined Compiler-Runtime Scheme

 Compiler identifies repetitive access patterns
 Runtime system learns the actual remote

addresses and sends data early.

Ideal program characteristics:

Outer, serial
 loop

Inner, parallel
 loops

Communication
points at barriers

Data addresses are
invariant or a linear
sequence, w.r.t.
outer loop

R. Eigenmann, Purdue HIPS 2007 13

0

1

2

3

4

5

6

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Baseline(No Opt.) Locality Opt Locality Opt + Comp/Run Opt

wupwise swim applu SpMul CG

Current Best Performance of
OpenMP for S-DSM

R. Eigenmann, Purdue HIPS 2007 14

Approach 2:
Translating OpenMP directly to MPI

 Baseline translation
 Overlapping computation and communication

for irregular accesses

R. Eigenmann, Purdue HIPS 2007 15

Baseline Translation of
OpenMP to MPI

 Execution Model
 SPMD model

 Serial Regions are replicated on all processes
 Iterations of parallel for loops are distributed (using

static block scheduling)
 Shared Data is allocated on all nodes

 There is no concept of “owner” – only producers and
consumers of shared data

 At the end of a parallel loop, producers communicate
shared data to “potential” future consumers

 Array section analysis is used for summarizing array
accesses

R. Eigenmann, Purdue HIPS 2007 16

Baseline Translation

Translation Steps:
1. Identify all shared data
2. Create annotations for accesses to shared data

(use regular section descriptors to summarize
array accesses)

3. Use interprocedural data flow analysis to identify
potential consumers; incorporate OpenMP
relaxed consistency specifications

4. Create message sets to communicate data
between producers and consumers

R. Eigenmann, Purdue HIPS 2007 17

Message Set Generation

<write,A,1,l1(p),u1(p)>

<read,A,1,l2(p),u2(p)> <write,A,1,l3(p),u3(p)>

<read,A,1,l4(p),u4(p)>

…

…

…

Message Set at RSD vertex V1, for array
A from process p to process q
computed as

SApq = Elements of A with subscripts in
the set

{[l1(p),u1(p)]∩[l2(q),u2(q)]} U
{[l1(p),u1(p)]∩[l4(q),u4(q)]}

V1:

<read,A,1,l5(p),u5(p)>

U ([l1(p),u1(p)]∩{[l5(q),u5(q)]-
[l3(p),u3(p)]})

For every write,
determine all future reads

R. Eigenmann, Purdue HIPS 2007 18

Baseline Translation of
Irregular Accesses

 Irregular Access – A[B[i]], A[f(i)]
 Reads: assumed the whole array accessed
 Writes: inspect at runtime, communicate at

the end of parallel loop
 We often can do better than

“conservative”:
 Monotonic array values => sharpen access

regions

R. Eigenmann, Purdue HIPS 2007 19

Optimizations based on
Collective Communication

 Recognition of Reduction Idioms
 Translate to MPI_Reduce / MPI_Allreduce

functions.
 Casting sends/receives in terms of alltoall

calls
 Beneficial where the producer-consumer

relationship is many-to-many and there is
insufficient distance between producers and
consumers.

R. Eigenmann, Purdue HIPS 2007 20

Performance of the Baseline
OpenMP to MPI Translation
Platform II – Sixteen IBM SP-2 WinterHawk-II nodes connected by a high-performance switch.

R. Eigenmann, Purdue HIPS 2007 21

We can do more for
Irregular Applications ?
L1 : #pragma omp parallel for

 for(i=0;i<10;i++)
A[i] = ...

L2 : #pragma omp parallel for
 for(j=0;j<20;j++)

B[j] = A[C[j]] + ...

 Subscripts of accesses to shared
arrays not always analyzable at
compile-time

 Baseline OpenMP to MPI translation:
 Conservatively estimate that each

process accesses the entire array
 Try to deduce properties such as

monotonicity for the irregular
subscript to refine the estimate

 Still, there may be redundant
communication

 Runtime tests (inspection) are
needed to resolve accesses

Array
A

produced by
process 2

produced by
process 1

1, 3, 5, 0, 2 ….. 2, 4, 8, 1, 2 ... Array
C

accesses on
process 1

accesses on
process 2

R. Eigenmann, Purdue HIPS 2007 22

Inspection

 Inspection allows accesses to be differentiated (at runtime) as
local and non-local accesses.

 Inspection can also map iterations to accesses. This mapping
can then be used to re-order iterations so that iterations with
the same data source are clubbed together.
 Communication of remote data can be overlapped with the

computation of iterations that access local data (or data already
received)

Array
A

1, 3, 5, 0, 2 ….. 2, 5, 8, 1, 2 ... C[i]

accesses on
process 1

accesses on
process 2

 0, 1, 2, 3, 4, …….. 10, 11, 12, 13, 14 ... Index i

0, 1, 2, 3, 5 ….. . 5, 8, 1, 2, 2, ...
 3, 0, 4, 1, 2, …….. 11, 12, 13, 10, 14 ...

accesses on
process 1

accesses on
process 2

reorder
iterations

R. Eigenmann, Purdue HIPS 2007 23

Loop Restructuring

 Simple iteration reordering may
not be sufficient to expose the
full set of possibilities for
computation-communication
overlap.

L1 : #pragma omp parallel for
 for(i=0;i<N;i++)

p[i] = x[i] + alpha*r[i] ;

L2 : #pragma omp parallel for
 for(j=0;j<N;j++) {

w[j] = 0 ;
for(k=rowstr[j];k<rowstr[j+1];k++)

S2: w[j] = w[j] +
a[k]*p[col[k]] ;

 }

Reordering loop L2 may still not club
together accesses from different sources

L1 : #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1 : #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 }

L2-2: #pragma omp parallel for
 for(j=0;j<N;j++) {
 for(k=rowstr[j];k<rowstr[j+1];k++)
 S2: w[j] = w[j] + a[k]*p[col[k]] ;
 }

Distribute loop
L2 to form loops
L2-1 and L2-2

R. Eigenmann, Purdue HIPS 2007 24

Loop Restructuring contd.
L1 : #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1 : #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 }

L2-2: #pragma omp parallel for
 for(j=0;j<N;j++) {
 for(k=rowstr[j];k<rowstr[j+1];k++)
 S2: w[j] = w[j] + a[k]*p[col[k]] ;
 }

L1 : #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1 : #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 }

L3: for(i=0;i<num_iter;i++)
w[T[i].j] = w[T[i].j] +
 a[T[i].k]*p[T[i].col] ;

Coalesce nested
loop L2-2 to form
loop L3

Reorder iterations of
loop L3 to achieve
computation-
communication overlap

Final restructured and reordered loopThe T[i] data structure is created
and filled in by the inspector

R. Eigenmann, Purdue HIPS 2007 25

Achieving actual overlap of
computation and communication

 Non-blocking send/recv calls may not actually
progress concurrently with computation.
 Use a multi-threaded runtime system with separate

computation and communication threads – on dual CPU
machines these threads can progress concurrently.

 The compiler extracts the send/recvs along with the
packing/unpacking of message buffers into a
communication thread.

R. Eigenmann, Purdue HIPS 2007 26

Initiate sends to process q,r

Execute iterations that
access local data

Wait for receives from process q
to complete

Execute iterations that access data
received from process q

Pack data and send to
processes q and r.

Receive data from process q

Wait for receives from process r
to complete

Computation Thread on
Process p

Communication Thread
on Process p

Receive data from process r

Execute iterations that access data
received from process r

Program
Timeline

tsend

trecv-q

trecv-r

tcomp-
p

tcomp-
q

tcomp-r

twait-r

twait-q

Wake up communication thread

R. Eigenmann, Purdue HIPS 2007 27

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16

Number of Processors

T
im

e
 (

in
 S

e
c

o
n

d
s

)

Actual Time Spent in Send/Recv Computation available for Overlapping

Actual Wait Time

Performance of
Equake

Computation-
communication
overlap in Equake

0

200

400

600

800

1000

1200

1 2 4 8 16

Nodes

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
o

n
d

s
)

Hand-Coded MPI Baseline (No Inspection)

Inspection (No Reordering) Inspection and Reordering

R. Eigenmann, Purdue HIPS 2007 28

0

2

4

6

8

10

12

1 2 4 8 16

Number of Nodes

T
im

e
 (

s
e

c
o

n
d

s
)

Time spent in Send/Recv Computation Available for Overlapping Actual Wait Time

0

20

40

60

80

100

120

140

1 2 4 8 16

Number of Nodes

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
o

n
d

s
)

Hand-coded MPI Baseline Inspector without Reordering Inspection and Reordering

Performance of
Moldyn

Computation-
communication
overlap in Moldyn

R. Eigenmann, Purdue HIPS 2007 29

0

200

400

600

800

1000

1200

1400

1 2 4 8 16

Number of Nodes

E
x

e
c

u
ti

o
n

 T
im

e
 (

in
 s

e
c

o
n

d
s

)

NPB-2.3-MPI Baseline Translation

Inspector without Reordering Inspector with Iteration Reordering

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

Number of Nodes

T
im

e
 (

s
e

c
o

n
d

s
)

Time spent in Send/Recv Computation available for Overlap Actual Wait Time

169
339

Performance of CG

Computation-
communication
overlap in CG

R. Eigenmann, Purdue HIPS 2007 30

Conclusions

 There is hope for easier programming models on distributed systems

 OpenMP can be translated effectively onto DPS; we have used
benchmarks from
 SPEC OMP
 NAS
 additional irregular codes

 Direct Translation of OpenMP to MPI outperforms translation via S-DSM
 “Fall back” of S-DSM for irregular accesses incurs significant overhead

 Caveats:
 Data scalability is an issue
 Black-belt programmers will always be able to do better
 Advanced compiler technology is involved. There will be performance

surprises.

