
1

Evaluation of Stream Virtual Machine on 
Raw Processor 

Jinwoo Suh, Stephen P. Crago, Janice O. McMahon, Dong-In Kang
University of Southern California

Information Sciences Institute

Richard Lethin
Reservoir Labs

March 26, 2007



2

Overview

Stream Virtual Machine
High Level Compiler and Low Level Compiler

Raw Processor

Signal Processing Applications and Implementation Results
Matrix Multiplication
FIR bank
Ground Moving Target Indicator

Conclusion



3

Stream Virtual Machine

Stream processing processes input stream data and generates output stream data
Exploits the properties of the stream applications such as parallelism and throughput-oriented

A uniform approach for stream processing for multiple input languages and multiple 
processor architectures

Developed by Morphware forum (morphware.org)

Centered around Stable Architecture Abstraction Layer

Part of the layer is Stream Virtual Machine (SVM)

Consists of three major components
High Level Compiler
Low Level Compiler
Machine model



4

Advantages of SVM Framework

Efficiency
Compilers can generate efficient code by exposing communication and 
computation to compiler.

Portability 
Support for multiple languages and architectures in a single framework

Low development cost
Adding new language

Only the high level compiler needs to be written.
Adding new architecture

Only the low level compiler needs to be written.
Programming applications

Ex. High level compiler provides parallelization



5

Raw Handheld 

Raw processor was developed by MIT

Raw handheld board was developed by MIT and ISI-East

A Raw chip contains 16 tiles (cores) with 2D mesh networks

Each tile is MIPS-based RISC processor with floating point 
unit

Network port is mapped to a register that saves 
communication time



6

High Level Compiler

R-Stream being developed by Reservoir Labs 
(reservoir.com)

Compile C code to SVM APIs

Easy to program
Input code is normal C code
No explicit parallelization is needed

Portability
The same code works on several architectures.

Generally good parallelization capability
Able to parallelize up to all tiles for some cases.

Good performance for some codes
TDE stage in GMTI performance is about 1/3 of hand-assembled code.



7

Low Level Compiler

Low Level Compiler was developed as a form of library and 
C compiler

C compiler for Raw developed by MIT
Library for SVM developed by ISI-East

Easy and quick solution

Provides a reasonably good performance

Very useful in quick assessment of SVM framework



8

Benchmark Implementations on Raw

Ground Moving Target 
Indicator (GMTI)

(Compact radar signal 
processing application,

by Reservoir Labs)

Raw

Raw C
Compiler

SVM
Library

R-Stream 2.1 
(Reservoir Labs)
R-Stream 2.1 

(Reservoir Labs)

LLC

HLC

SVM API Code

Matrix multiplication
and FIR bank

Hand-
optimization

Hand-
optimization

* Results show 
current status of 
the whole tool 
chain in SVM 
framework

* Results show
potential 
performance†

†Currently achieved using hand coding



9

Matrix Multiplication Implementation

Hand coded using the SVM API (not HLC-generated code)

Cost analysis and optimizations
Full implementation

Full SVM stream communication through a dynamic network
One stream per network

Each stream is allocated to a network.
Broadcast

With broadcasting by switch processor
Communication is off-loaded from compute processor.

Network ports as operands
Raw can use network ports as operands
Reduces cycles since load/store operations eliminated



10

Matrix Multiplication Results

Number of cycles 
per 
multiplication-
addition pair

Lower bound = 2
Multiplication
Addition

0

50

100

150

200

250

1 2 4 8 16 32 64 128
Number of words per communication

Dynamic client-server

One stream per network

Broadcast

Network ports as
operand
Lower bound

0

5

10

15

20

25

1 2 4 8 16 32 64 128

Lower bound=2

Best obtained results = 2.23 

N
um

be
r o

f c
yc

le
s



11

FIR Banks

Multiple FIR filters specified by Lincoln Lab

Implemented by using radix-4 FFT, multiplication, and radix-4 
IFFT

Optimizations using hand-assembly in core operations
Minimize pipeline bubbles

Manual instruction scheduling
Prevent register spilling

Prone to this problem since radix-4 FFT requires more registers
Minimizing register requirement
Code expansion

Minimize address calculation
Using offset
Duplicated and rearranged twiddle factors 

Minimize data copy operation
Reverse the order of processing: back to front



12

FIR Bank Results

Definitions
LB (UB): lower (upper) bound based on the number of floating point 
operations
ILB (IUB): lower (upper) bound based on the number of floating point 
operations and load/store instructions
Hand Optimization: hand-assembly work results
Compiler Optimization: only compiler optimization was done

One FFT-multiplication-IFFT
For 64 sample data

0

2

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
UB

IUB

Hand-optimization

Compiler-optimization

Number of 
operations per 

cycle



13

GMTI

Detects targets from radar signal

Consists of 7 stages

Used both high level compiler and low level compiler

A.I. Reuther, “Preliminary Design Review: GMTI Narrowband for the Basic PCA Integrated Radar-Tracker 
Application,” Project Report PCA-IRT-3, Lincoln Labs, 2004.



14
* SM: secondary master
SP: stream processor
Bars represent kernel executions or primary master executions

GMTI Execution Schedule 

High parallelization in many stages
On other stages, lower parallelization 

due to R-Stream parallelization policy, software task pipeline use, and hard-to parallelize code
Reservoir is working on a new parallelization policy in new R-Stream version

10 20 30
Execution cycles (Million cycles)

PM

SM/SP 0

SM/SP 1

SM/SP 2

SM/SP 3

SM/SP 4

SM/SP 5

SM/SP 6

SM/SP 7

SM/SP 8

SM/SP 9

SM/SP 10

SM/SP 11

Tile 0

Tile 1

Tile 2

Tile 3

Tile 4

Tile 5

Tile 6

Tile 7

Tile 8

Tile 9

Tile 10

Tile 11



15

Conclusion

Assessed SVM on Raw processor by implementing 
benchmarks

GMTI: shows full path from high level comiler to hardware execution
Some stages show good performance
Other stages show room for improvement

Matrix multiplication and FIR bank: show high fraction of peak 
performance with optimizations

Current performance is reasonably good
Identified optimizations to be included in compilers

Two level approach of the stream virtual machine has a 
potential for performance, portability, and low development 
cost


