

Evaluation of Stream Virtual Machine on Raw Processor

Jinwoo Suh, Stephen P. Crago, Janice O. McMahon, Dong-In Kang University of Southern California Information Sciences Institute

Richard Lethin

Reservoir Labs

March 26, 2007

1

- Stream Virtual Machine
 High Level Compiler and Low Level Compiler
- Raw Processor
- Signal Processing Applications and Implementation Results
 - □ Matrix Multiplication
 - **FIR** bank
 - **Ground Moving Target Indicator**
- Conclusion

- Stream processing processes input stream data and generates output stream data
 Exploits the properties of the stream applications such as parallelism and throughput-oriented
- A uniform approach for stream processing for multiple input languages and multiple processor architectures
 - **Developed by Morphware forum (morphware.org)**
- Centered around Stable Architecture Abstraction Layer
- Part of the layer is Stream Virtual Machine (SVM)
- Consists of three major components
 - □ High Level Compiler
 - □ Low Level Compiler
 - □ Machine model

Efficiency

□ Compilers can generate efficient code by exposing communication and computation to compiler.

Portability

□ Support for multiple languages and architectures in a single framework

Low development cost

□ Adding new language

- Only the high level compiler needs to be written.
- □ Adding new architecture
 - Only the low level compiler needs to be written.
- Programming applications
 - Ex. High level compiler provides parallelization

- **Raw processor was developed by MIT**
- Raw handheld board was developed by MIT and ISI-East
- A Raw chip contains 16 tiles (cores) with 2D mesh networks
- Each tile is MIPS-based RISC processor with floating point unit
- Network port is mapped to a register that saves communication time

R-Stream being developed by Reservoir Labs (reservoir.com) Compile C code to SVM APIs

Easy to program

Input code is normal C code
No explicit parallelization is needed

Portability

□ The same code works on several architectures.

Generally good parallelization capability

□ Able to parallelize up to all tiles for some cases.

Good performance for some codes TDE stage in GMTI performance is about 1/3 of hand-assembled code.

- Low Level Compiler was developed as a form of library and C compiler
 - **C** compiler for Raw developed by MIT
 - **Library for SVM developed by ISI-East**
- Easy and quick solution
- Provides a reasonably good performance
- Very useful in quick assessment of SVM framework

Hand coded using the SVM API (not HLC-generated code)

Cost analysis and optimizations

- □ Full implementation
 - Full SVM stream communication through a dynamic network
- □ One stream per network
 - Each stream is allocated to a network.
- □ Broadcast
 - With broadcasting by switch processor
 - Communication is off-loaded from compute processor.
- □ Network ports as operands
 - Raw can use network ports as operands
 - Reduces cycles since load/store operations eliminated

Matrix Multiplication Results

- Multiple FIR filters specified by Lincoln Lab
- Implemented by using radix-4 FFT, multiplication, and radix-4 IFFT
- Optimizations using hand-assembly in core operations
 - □ Minimize pipeline bubbles
 - Manual instruction scheduling
 - □ Prevent register spilling
 - Prone to this problem since radix-4 FFT requires more registers
 - Minimizing register requirement
 - Code expansion
 - □ Minimize address calculation
 - Using offset
 - Duplicated and rearranged twiddle factors
 - □ Minimize data copy operation
 - Reverse the order of processing: back to front

resér

FIR Bank Results

Definitions

- **LB** (UB): lower (upper) bound based on the number of floating point operations
- □ ILB (IUB): lower (upper) bound based on the number of floating point operations and load/store instructions
- □ Hand Optimization: hand-assembly work results
- **Compiler Optimization: only compiler optimization was done**

One FFT-multiplication-IFFT

- Detects targets from radar signal
- Consists of 7 stages
- Used both high level compiler and low level compiler

A.I. Reuther, "Preliminary Design Review: GMTI Narrowband for the Basic PCA Integrated Radar-Tracker Application," Project Report PCA-IRT-3, Lincoln Labs, 2004.

GMTI Execution Schedule

High parallelization in many stages

On other stages, lower parallelization

- □ due to R-Stream parallelization policy, software task pipeline use, and hard-to parallelize code
- □ Reservoir is working on a new parallelization policy in new R-Stream version

Assessed SVM on Raw processor by implementing benchmarks

GMTI: shows full path from high level comiler to hardware execution

- Some stages show good performance
- Other stages show room for improvement
- □ Matrix multiplication and FIR bank: show high fraction of peak performance with optimizations
 - Current performance is reasonably good
 - Identified optimizations to be included in compilers

Two level approach of the stream virtual machine has a potential for performance, portability, and low development cost

