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Abstract
The goal of cache management is to maximize data reuse. Collab-
orative caching provides an interface for software to communicate
access information to hardware. In theory, it can obtain optimal
cache performance.

In this paper, we study a collaborative caching system that al-
lows a program to choose different caching methods for its data.
As an interface, it may be used in arbitrary ways, sometimes opti-
mal but probably suboptimal most times and even counter produc-
tive. We develop a theoretical foundation for collaborative caches
to show the inclusion principle and the existence of a distance met-
ric we call LRU-MRU stack distance. The new stack distance is
important for program analysis and transformation to target a hi-
erarchical collaborative cache system rather than a single cache
configuration. We use 10 benchmark programs to show that opti-
mal caching may reduce the average miss ratio by 24%, and a sim-
ple feedback-driven compilation technique can utilize collaborative
cache to realize 50% of the optimal improvement.

Categories and Subject Descriptors D.3.4 [PROGRAMMING
LANGUAGES]: Processors - Compilers, Memory management

General Terms Algorithms, Measurement, Performance

Keywords collaborative caching, bipartite cache, cache replace-
ment algorithm, LRU, MRU, OPT

1. Introduction
Cache management is increasingly important on multicore systems
since the available cache space is shared by an increasing number
of cores. Optimal caching is generally impossible at the system or
hardware level for lack of program information. At the program
level, optimal caching requires solving NP-hard problems and is
not yet practical [14,20,25].

A number of hardware systems have been built or proposed to
provide an interface for software to influence cache management.
Examples include cache hints on Intel Itanium [9], bypassing ac-
cess on IBM Power series [27], and evict-me bit [31]. Our earlier
work showed a theoretical result that two extensions of LRU cache
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may be managed optimally by a program [17]. Wang et al. called a
combined software-hardware solutioncollaborative caching[31].

In this paper, we study the formal properties of collaborative
cache management. We define a model calledbipartite cache. It
supports two types of accesses: the normal LRU access and the
special MRU access. Data loaded by an MRU access is managed
by MRU replacement. At a miss, it selects the most recently used
data for eviction. It is equivalent to tagging the loaded data with
an evict-me flag [31], setting the MRU data for eviction before any
LRU data. With bipartite cache, a program influences the cache
management by selecting which data to be accessed by which type.

In comparison, conventional cache uses a variant of the LRU
strategy. More significantly, a conventional cache uses a single
interface for all data access. The use of software control makes
hybrid management inevitable. The LRU-MRU combination in one
cache warrants a re-examination of the fundamental properties of
caching.

A foremost property of memory (and storage) hierarchy is what
Mattson et al. termed theinclusion principle, which says that the
content of a smaller cache is always contained in larger caches
[23]. The inclusion principle has important benefits. In theory, the
miss ratio is a monotone function of cache size. There is no Belady
anomaly [7]. In practice, the miss ratio of caches of all sizes can be
evaluated using one-pass simulation over a program trace.

More importantly for software, a machine-independent metric
called stack distance can be defined for each access [23]. Software
techniques are developed to minimize the stack distance and im-
prove performance for a cache hierarchy rather than targeting a
particular cache level. A type of stack distance called reuse distance
has been used to improve memory management including garbage
collection techniques [34,36].

The inclusion principle is intuitive for LRU cache. Data is
ranked by the last access time. The most recent data enters from
the top of the cache stack and gradually steps down as it ages over
time. Bipartite cache, however, stores data in two parts and ranks
data in opposite ways. The MRU data is placed at the bottom of the
cache. The placement depends on cache size. As Mattson et al. have
cautioned, it goes against the inclusion principle to base a caching
decision on cache capacity [23].

In this paper, we analyze the general LRU-MRU bipartite cache.
Interestingly, the inclusion property still holds. We give a proof first
and then an efficient one-pass simulation algorithm to compute the
miss ratio for fully associative caches of all sizes. The algorithm
defines and measures theLRU-MRU stack distancefor each access.
An access is a hit in bipartite cache if and only if its LRU-MRU
stack distance is no greater than the cache size.

To demonstrate the potential benefit of bipartite cache, we de-
scribe a simple method calledPACMAN for Program-Assisted



Cache MANagement. PACMAN shows how much a program can
reduce the miss ratio under a number of simplifying assumptions.
It shows the potential of collaborative cache management but it is
not yet a practical solution.

In practice, caches are set associative rather than fully associa-
tive. For theoretical analysis, fully associative cache is more inter-
esting (and difficult) since the associativity changes with the cache
size. Its properties and results have practical significance. First, the
inclusion property holds for each set of set-associative cache and
for most real cache hierarchies. Second, modern cache has high as-
sociativity, i.e. 8-way and up, which means similar performance as
fully associative cache [18]. The empirical results in the paper show
the general effect of bipartite cache of all sizes, regardless of the
specific implementation. Finally, important for software research,
the LRU-MRU stack distance provides a machine-independent tar-
get for program analysis and transformation, as we explain in Sec-
tion 5.

2. Background
LRU The data in cache is sorted by the last use time. Ifx is a miss
and the cache is full, the datum in the LRU (least recently used)
position is evicted. LRU can be costly when the set associativity
is high. Pseudo-LRU is the one usually used in practice [29]. The
performance of fully associative LRU cache can be measured in
one pass for all cache sizes using reuse distance analysis in near
linear time [37].

OPT Theoptimal replacement algorithm (OPT)was invented by
Belady [6]. At a replacement, the victim is the datum that will be
reused in the farthest future. Mattson et al. showed its inclusion
property and gave a two-pass algorithm to measure the OPT stack
distance [23]. Sugumar and Abraham invented an efficient one-pass
algorithm [30]. OPT is not practical purely in hardware as it would
require infinite ahead. However, it has a vital theoretical value since
it shows the limit of caching.

Stack algorithm and stack distance As defined by Mattson et
al., if the content of a smaller cache is always a subset of the
content of a larger cache, the cache management algorithm obeys
the inclusion propertyand is considered astack algorithm[23]. In
stack algorithms each access has astack distance, the minimum
cache size, to make the access become a hit. The miss rate is a
monotone (non-increasing) function of cache size, and there is no
Belady’s anomaly [7]. The paper proved the inclusion property for
LRU, LFU (least frequently used), OPT, and a form of random
replacement. The inclusion property is beneficial in evaluation,
when we can evaluate all cache sizes in one simulation, and in
analysis, when we can target the stack distance and all cache sizes
instead of a single cache size.

Two characteristics of the LRU-OPT gap As an example, we
show the difference between LRU and OPT cache replacement
algorithms using a workload of Jacobi Successive Over-relaxation
(SOR) from SciMark 2.0 [2]. We use currently the fastest one-pass
analysis methods for LRU [37] and OPT [30]. The LRU and OPT
miss rate curves of an execution of SOR are shown in Figure 1 for
cache sizes ranging between 1KB and 8MB (twice the size of the
program data). The cache line size is 8 bytes.

Figure 1 shows two interesting aspects of optimal caching com-
pared with LRU.

• Non-uniform improvement.OPT is not uniformly better than
LRU. The improvement varies greatly between cache sizes.

• Gradual miss-ratio change.The miss ratio of OPT decreases
gradually as the size of cache increases.

We observe that the curves of OPT and LRU diverge first,
converge at size 16KB and then diverge again before both dropping
to near zero at 4MB (with only cold-start misses). The difference
depends on the cache size. In 16KB or 32KB cache, there is little or
no improvement. In 8KB and 2MB cache, the improvement is more
than 60% and 90% respectively. It is important to evaluate across
all cache sizes.

The OPT miss ratio changes gradually, while the LRU miss ratio
either stays the same or drops sharply. The sharp drops mark the
size of working sets—each steep descent happens when the cache
is large enough to hold the next working set. SOR has mainly two
working sets: one at 8KB and one at 2MB. The smooth curvature
of OPT shows that it caches a partial working set if the whole set is
too large.
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Figure 1. The gap between LRU and OPT in SOR

Collaborative caching In collaborative caching, a program desig-
nates some of its references to make MRU accesses. Figure 2 shows
the kernel SOR whose miss rates are just shown in Figure 1. It is
typical of stencil algorithms. Consider the data access in the loop
body. ArrayG is traversed in each iteration of the outermost loop.
If M*N is larger than cache size, arrayG cannot fit entirely in the
cache. The streaming access ofG would lose all data reuse because
LRU evicts the least recently used datum, which is actually the da-
tum that will be reused in the nearest future. OPT, however, would
evict the most recently used datum. To obtain the same effect, we
can tag the last access to each datum as an MRU access. A bipartite
cache of sizeC would keep the firstC bytes ofG in cache and reuse
them across loop iterations.

Require: G is a 2-dimensional double array with the size M*N
1: for p = 1; p< NUM STEPS; p++do
2: for i = 1; i < M-1; i++ do
3: Gi = G[i];
4: Gim1 = G[i-1];
5: Gip1 = G[i+1];
6: for j = 1; j < N-1; j++ do
7: Gi[j] = 0.3125*(Gim1[j]+Gip1[j]+Gi[j-1]+Gi[j+1])-0.25*Gi[j];
8: end for
9: end for

10: end for

Figure 2. The SOR kernel computation

3. Properties of Collaborative Cache
We first define the LRU and MRU memory accesses and then prove
that bipartite cache has the inclusion property and can be evaluated
efficiently using one-pass simulation.
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Figure 3. A LRU memory access
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Figure 4. An MRU memory access

3.1 Bipartite LRU-MRU Cache

The collaborative cache provides two instructions for accessing
memory: the normal LRU access and the special MRU access. LRU
is a standard concept defined in textbooks. For comparison with
MRU, we show a diagram in Figure 3. LRU cache can be thought
of as organized in a stack. The newly accessed data is at the top—
the MRU position—and the rest of LRU data is ordered top-down
based on the recency of access. In an actual implementation, the
order of recency is maintained or approximated efficiently without
moving cache entries.

In comparison, Figure 4 shows the handling of an MRU access.
If it is a miss, the new data is replaced at the LRU position at the
bottom of the stack. If it is a hit, the accessed data is moved to
the bottom of the stack. Multiple MRU elements may gather at the
bottom after a series of MRU access hits.

The LRU-MRU interface can be used to obtain optimal cache
performance [17], yet it is simple to implement. The implementa-
tion of the MRU instruction is not much harder than a normal LRU
instruction. In a real hardware design, the cycles required to exe-
cute an MRU access should be similar to the cost of a normal LRU
cache access.

Bipartite cache differs from conventional cache in three ways:

• Bipartite content.The cache stack is divided into two parts: the
upper part for LRU data and the lower part for MRU data. Either
part may be missing, and the cache is entirely LRU or MRU.

• Capacity dependent placement.The MRU data is placed at the
bottom. The location depends on the size of the cache.

• Hybrid priority. The LRU part is prioritized by the LRU order,
that is, the last accessed is last replaced. The MRU part is by
the MRU order, that is, the last accessed is first replaced.

In comparison, conventional, non-collaborative cache manages
data using a single priority order, e.g. LRU by the last access time
and OPT by the next access time. The placement depends on the
priority order and not on cache size. The single priority naturally
gives rise to the inclusion property and its practical benefits. To
understand collaborative caching, we must understand its bipartite
nature.

3.2 The Inclusion Property

If the collaborative cache is used optimally, the performance is the
same as OPT [17]. In general, however, the cache may not be used
optimally. The selection of MRU accesses may be arbitrary. The
following proof is for all uses of bipartite cache, including the
extreme cases (when all accesses are normal, i.e. LRU caching,
and when all accesses are special, i.e. MRU caching), the optimal
use, and everything in between. In a sense, the proof subsumes the
individual conclusions for LRU, MRU, and OPT [23].

We prove that for any sequence of LRU and MRU accesses, the
bipartite cache obeys the inclusion principle.

LEMMA 1. If the bottom element in the bipartite cache stack is last
accessed by a normal LRU access, then all elements in cache are
last accessed by normal LRU accesses.

The Lemma 1 follows from the fact that MRU data are placed
at the bottom of the stack and only replaced by LRU data (never
pushed up except by other MRU data). There is a formal proof of
Lemma 1 in our workshop paper [17]. Next we prove the inclusion
property.

THEOREM 1. A traceP is being executed on two bipartite caches
of sizes|C1| and |C2| (|C1| < |C2|). At every access, the content
of cacheC1 is always a subset of the content of cacheC2.

Proof Let the access trace beP = (x1, x2, ..., xn). Let C1(xt)
andC2(xt) be the set of elements in cacheC1 andC2 after access
xt. The initial cache contents areC1(0) = C2(0) = ∅. The
inclusion property holds. We now prove the theorem by induction
on t.

AssumeC1(xt) ⊆ C2(xt) (1 ≤ t ≤ n − 1). It is easy to see
that if xt+1 is a hit inC2 (xt+1 ∈ C2(xt)), the inclusion property
holds. We now consider the case thatxt+1 is a miss inC2. Since
C1 is included inC2, xt+1 is also a miss inC1.

Let the evicted elements be last accessed atxp in C1 andxq in
C2. After the cache miss, we haveC1(xt+1) = C1(xt)−xp+xt+1

andC2(xt+1) = C2(xt) − xq + xt+1. SinceC1(xt) ⊆ C2(xt),
the only possibility forC1(xt+1) 6⊆ C2(xt+1) is thatC2 evicts
xq, andC1 hasxq but does not evict it, soxq ∈ C1(xt+1) but
xq /∈ C2(xt+1).

First we assumexp exists (a cache miss does not mean a cache
eviction—see the next case). The eviction inC1 happens at the
LRU position regardless whetherxp is a LRU or MRU access.xp

is at the bottom inC1 before accessxt+1. At the same time,xq is at
the bottom inC2. To violate the inclusion property, we must have
xq ∈ C1(xt) in a position overxp. From the inductive assumption,
xp ∈ C2(xt) and it is in a position overxq. Therefore, bothC1 and
C2 containxp andxq but in an opposite order.

The two accesses,xp andxq, may be LRU or MRU accesses.
There are four cases:

I xp andxq are both LRU accesses. Becausexq is at a higher
position thanxp in C1, we havep < q. Similar reasoning from
C2 requiresq < p, which makes this case impossible.

II xp is normal, andxq is a MRU access. Using Lemma 1 on
C1, we see that this case is impossible—xq has to be normal
because it resides over a normal accessxp in C1.



III xp is a MRU access, andxq is normal. Using Lemma 1 on
C2, we see that this case is impossible—xp has to be normal
because it resides over a normal accessxq in C2.

IV xp andxq are both MRU accesses. Becausexq is at a higher
position thanxp in C1, we havep > q. Similar reasoning from
C2 requiresq > p, which makes the last case impossible.

There is no eviction inC1 if the bottom cache line is unoccupied
whenxt+1 is accessed.xq is at the bottom ofC2. Regardless of
whetherxq is LRU or MRU,C2 is filled. Since|C2| > |C1|, there
must have been enough data access to fillC1, making it impossible
for its bottom spot to remain unoccupied. Hence, by induction, the
inclusion property holds for every access in the trace.

The inclusion property holds for any access trace with mixed LRU
and MRU accesses, regardless how these two types of accesses are
interleaved.

3.3 The LRU-MRU Stack Distance

The inclusion property implies the existence of the LRU-MRU
stack distance. An access has a distancek if it is a cache hit in
caches of sizesk and up and a miss in caches of sizek − 1 and
down. Given a program trace with mixed LRU-MRU accesses, Al-
gorithm 1 computes the stack distance for each access. Effectively
the algorithm simulates LRU-MRU caches ofall sizes—topC el-
ements in the priority list are always the content of a cache with
size C. We call the algorithmbi-sim in short for bipartite cache
simulation.

Algorithm 1 Bi-sim: computing the stack distance of bipartite
cache
Require: x is accessed at timet with flag f = {LRU, MRU}. The

cache is organized as a priority list, with datadi and priority pi,
i = 1, . . . , M . No two priorities are the same, i.e.∀i andj, pi 6= pj if
i 6= j. The list may not have been sorted.

Ensure: It returns the LRU-MRU stack distance and updates the priority
px of x (first adding it to the priority list if it was not included). The
priority px is unique.

1: if f = LRU then
2: px = t
3: else
4: px = −t
5: end if
6: /* processx */
7: if x /∈ {di : i = 1, . . . , M} then
8: /* x is a miss */
9: for i = 1; i < M ; i++ do

10: if pi < pi+1 then
11: swapdi anddi+1

12: end if
13: end for
14: /* dm is the bottom of the cache */
15: if pM < 0 then
16: removedM from the list
17: end if
18: insertx at the front of the list
19: return ∞
20: else
21: /* x is a hit */
22: find outdk = x
23: for i = 1; i < k; i++ do
24: if pi < pi+1 then
25: swapdi anddi+1

26: end if
27: end for
28: movex to the front of the list
29: return k
30: end if

For accessx at timet, Algorithm 1 computes the stack distance
and updates the priority list. The algorithm has three parts:

• The first part, lines 1 to 5, sets the priority forx to be t or
−t depending on whetherx is LRU or MRU. The purpose is
to handle mixed priority. By negatingt, the priority of MRU
data is reverse to the access order. The MRU in the access order
becomes LRU in the priority order. In addition, the negative
priority means that all MRU data has a lower priority than every
LRU data. Finally, all priority numbers remain distinct. As a
result, all data in the cache are prioritized with no ties.

• The second part, lines 9 to 19, handles cache replacement at
a miss whenx is not in the priority list. The element with the
lowest priority is shifted down to the bottom. It is removed if its
priority is negative (an MRU datum).x is inserted to become
the new head of the list.

• The third part, lines 22 to 29, handles a hit at locationk, that
is, dk = x. The element of the lowest priority ind1, . . . , dk is
shifted down to replacedk. x is added to the front of the list as
in the second part.

The update process, swapping and then insertion, is similar to
Mattson et el. [23] but with two notable qualities. First, the priority
list of bi-sim is not completely sorted, and the victim may or may
not bedM or dk. In comparison, the priority list in LRU simulation
is always totally sorted, and the victim can always be found atdM

or dk. Second, bi-sim may remove an element from the priority
list (line 16), even if it is simulating cache of an infinite size. The
stack simulation of previous caching methods such as LRU and
OPT never removes elements (when simulating for all cache sizes).

An example An example depicting bi-sim in action is given in
Table 1. The access trace and the access types are listed in the
second and third columns. The priority list (after each access) is
shown in the next column. The last column is the stack distance
returned by Algorithm 1:∞ always means a miss, andk means a
cache hit if cache sizeC ≥ k and a miss otherwise. The priority
lists in the table show only the priority numberspx. A reader can
find the datum from thepxth row of the table (thepxth access in
the trace).

The example shows two notable characteristics of the bi-sim
algorithm. The priority list is not completely sorted because of the
negative priority numbers of MRU accesses. An MRU element may
be removed from cache even when there is space, as happened at
access 2. These are necessary to measure the miss ratios of all cache
sizes in a single pass.

The cost and its reduction The asymptotic cost of Algorithm 1
is O(M) in time and space for each access, whereM is the
number of distinct data elements in the input trace. The main
time overhead comes from the two swap loops at lines 9-13 and
23-27. To improve performance, we divide the priority list into
partially sorted groups. For example, there are 4 windows at the
25th access in the example in Table 1: [25], [21, -22], [19, -22,-
23], and [16,13,10, 0]1. The swap loops are changed to iterate
over the groups. The minimal element of a group is simply the last
element. Grouping in priority lists was first invented by Sugumar
and Abraham for simulating OPT [30]. A difference between OPT
and bi-sim is that the accessed datum can be in the middle of a
group in bi-sim. For OPT, the accessed datum always stays at the
front of a group.

3.4 The Equivalence Proof

So far we have presented the bipartite cache and its simulation.
We now show that the simulation algorithm is correct, that is, the

1 For convenience, the top element is always put into a separatewindow.



access the access LRU? the priority list stack
no. trace (top→ bottom) distance

0 h y 0 ∞
1 f n -1 0 ∞
2 i y 2 0 ∞
3 i n -3 0 1
4 c y 4 0 ∞
5 b y 5 4 0 ∞
6 b n -6 4 0 1
7 e n -7 4 0 ∞
8 d n -8 4 0 ∞
9 b y 9 4 0 ∞
10 g y 10 9 4 0 ∞
11 b y 11 10 4 0 2
12 e y 12 11 10 4 0 ∞
13 d y 13 12 11 10 4 0 ∞
14 a y 14 13 12 11 10 4 0 ∞
15 c y 15 14 13 12 11 10 0 6
16 e y 16 15 14 13 11 10 0 4
17 a y 17 16 15 13 11 10 0 3
18 c y 18 17 16 13 11 10 0 3
19 i y 19 18 17 16 13 11 10 0 ∞
20 f y 20 19 18 17 16 13 11 10 0 ∞
21 b y 21 20 19 18 17 16 13 10 0 7
22 a n -22 21 20 19 18 16 13 10 0 5
23 f n -23 21 -22 19 18 16 13 10 0 3
24 c n -24 21 -22 19 -23 16 13 10 0 5
25 c y 25 21 -22 19 -23 16 13 10 0 1
26 e n -26 25 21 19 -22 -23 13 10 0 6
27 i n -27 25 21 -26 -22 -23 13 10 0 4
28 c y 28 -27 21 -26 -22 -23 13 10 0 2
29 f y 29 28 21 -26 -22 -27 13 10 0 6

Table 1. Example one-pass simulation of bipartite cache

elements of the priority listd1, d2, . . . , dC in the algorithm are
indeed the content of the LRU-MRU cache of sizeC. We show the
equivalence in two steps. First, we show that the algorithm observes
the inclusion property. Then we show that the two are equivalent at
each cache size.

Proving the inclusion property is easier for the algorithm than
for bipartite cache because we can use its algorithmic design di-
rectly. We first define a property in cache replacement. Let two
caches of sizes, s + 1 be Cs, Cs+1. Assume thatCs, Cs+1 are
filled with data, andz is the element inCs+1 but not inCs. At a
cache miss,Cs evicts elementys, andCs+1 evictsys+1. Theevic-
tion invarianceis a property that requires

ys+1 = ys ∨ ys+1 = z

Mattson et al. [23] showed the following result:

LEMMA 2. Eviction invariance is a necessary and sufficient con-
dition for maintaining the inclusion property.

Proof First, we show the necessity. Ifys+1 6= ys∧ys+1 6= z, ys+1

must be inCs. Its eviction would mean thatCs /∈ Cs+1 and would
break the inclusion property. The property is also sufficient. At each
eviction, if ys+1 = ys, we haveCs+1 = Cs + z; otherwise, we
haveys+1 = z andCs+1 = Cs + ys. In both cases,Cs ⊆ Cs+1.

The simulation algorithm observes the eviction invariance. The
“stack” is embodied in a priority list. Each element has a numerical
priority distinct from others. Therefore, the caches it simulates have
the inclusion property.

LEMMA 3. Algorithm 1 observes the eviction invariance and is
therefore a stack algorithm.

Proof Algorithm 1 identifies a victim for replacement using one of
the two swap loops at lines 9-13 and 23-27. Consider two caches
Cs, Cs+1 of sizess, s + 1. Let z be the element inCs+1 but not in
Cs. Let y be the element inCs that has the lowest priority. When a
cache replacement is needed inCs+1, the swap loops would choose
as the victimy if py < pz andz otherwise. The eviction invariance
is therefore observed.

Intuitively, the simulation is a stack algorithm because the simu-
lated caches of all sizes share a single priority list. It is obvious that
sharing a priority list implies eviction invariance. Next we show
that Algorithm 1 computes the right stack distance. First we have
the following lemma. We omit the proof, which is straightforward
based on the handling of LRU and MRU accesses.

LEMMA 4. At a miss in bipartite cache, the victim is always the
data with the lowest priority.

THEOREM 2. Given an execution on bipartite cache of sizeC, an
access is a cache hit if and only if the stack distance returned by
Algorithm 1 is no greater thanC.

Proof The case for infinite distances is easy to verify, we only
prove the case when the distance is of a finite value. Specifically,
Algorithm 1 always stores the data in the priority list such that a
cache of sizeC would contain and only contain the firstC elements
in the list,d1, d2, · · · , dC . This is equivalent to showing that for
each datadi, we havedi ∈ Ci anddi /∈ Ci−1, wherei > 0 and
Ci, Ci−1 are the sets of data in caches of sizesi, i− 1 respectively.

Let the memory trace be(x1, x2, · · · , xn). We prove by induc-
tion onxj .



I After accessingx1, x1 becomesd1 in the priority list. The base
case holds sinced1 ∈ C1 andd1 /∈ C0.

II Assume the theorem holds after accessingxj (1 ≤ j ≤ n−1).
Let the element at positiondi bedj

i and the content of caches
of size i − 1, i be Cj

i−1, C
j
i . From the inductive hypothesis,

we havedj
i ∈ Cj

i anddj
i /∈ Cj

i−1. There are two cases after
accessingxj+1:
(a) xj+1 is a (compulsory) miss. Each element of the priority

list is updated fromdj
i to dj+1

i (1 ≤ i ≤ M or 1 ≤ i ≤
M + 1).
i. dj+1

1 = xj+1 and satisfiesdj+1

1 ∈ Cj+1

1 anddj+1

1 /∈
Cj+1

0 .
ii. For dj+1

i (2 ≤ i ≤ M), the swap loop (lines 9 to
13) moves the datumdj

h (1 ≤ h ≤ i) with the lowest
priority in Cj

i out of the priority list. According to
Lemma 4, after evictingdh from Cj

i , the topi elements
in the priority list are still inCj+1

i , sodj+1

i ∈ Cj+1

i .
In the same way, we can show thatdj+1

i is eitherdj
i or

the victim (ofCj
i−1), sodj+1

i /∈ Cj+1

i−1 .

iii. If dj
M has a positive priority,dj+1

M+1
is at the new bottom

and must be the victim ofCj
i , so dj+1

M+1
/∈ Cj+1

M .
dj+1

M+1
∈ Cj+1

M+1
follows from Lemma 1.

iv. If dj
M has a negative priority, the stack distance would

be infinite. It is a miss in all finite-size bipartite cache.
(b) xj+1 is a hit. Let the hit location bedj

k = xj+1. Each
element of the priority list is updated fromdj

i to dj+1

i

(1 ≤ i ≤ M ).
i. Considerdj+1

i (1 ≤ i ≤ k − 1). The access is a
miss in cachesCj

1 , · · · , Cj
k−1

, so the inference of the
(previous) miss case can be reused here. The swap loop
in lines 23 to 27 is identical to the swap loop in lines 9
to 13.

ii. Considerdj+1

k . SinceCj
k = Cj+1

k , we havedj+1

k ∈
Cj+1

k . From the inference of the miss case,dj+1

k /∈
Cj+1

k−1
.

iii. Finally considerdj+1

i (k + 1 ≤ i ≤ M ), dj+1

i = dj
i

since there is no change made by the algorithm. From
xj+1 = dj

k ∈ Cj
k, we havexj+1 is a cache hit inCj

i

(i ≥ k + 1) andCj
i = Cj+1

i (k + 1 ≤ i ≤ M ). From
the induction assumption, we havedj+1

i ∈ Cj+1

i and
dj+1

i /∈ Cj+1

i−1 (k + 1 ≤ i ≤ M ).

For all accesses, the cache of sizeC would contain and only contain
the firstC elements in the priority list,d1, d2, · · · , dC . Hence the
relation is established between the stack distance and the cache
hit/miss as stated in the theorem.

4. Potential of Collaborative Caching
PACMAN uses OPT training analysis to select MRU memory ref-
erences in a program. We first show a simple design and then use it
to evaluate the potential benefit of collaborative caching.

4.1 PACMAN Design

PACMAN is a feedback-based compiler technique. As a study
of the performance potential rather than a practical solution, we
analyze one execution of a target program on bipartite cache of one
size. The first step is OPT training, which uses an efficient OPT
implementation to identify MRU accesses at the trace level and the
program instructions that make these accesses. When an eviction
happens in the OPT simulation, the most recent access to the victim
is MRU [17]. After training, each reference in program code has a

unique indicator values—theMRU ratio. An MRU ratio ofy means
thaty fraction of its accesses were selected as MRU in the optimal
solution. We use a simple heuristic to select MRU references: a
reference is MRU if at least half of its accesses were MRU in the
training run.

Once a reference is selected, all its accesses in execution will
be MRU. This is most likely suboptimal. For example, if the MRU
ratio of a reference is 50%, the reference will be selected and half
of the accesses will be issued as MRU while they should be normal
(LRU) accesses. Other heuristics may be used. Regardless of the
selection method, bipartite cache will always observe the inclusion
property as we have shown.

4.2 Experimental Setup

The PACMAN tool is implemented as follows. We use the gold
plugin of LLVM 2.8 [1] with -O4 option to generate executables. To
collect memory accesses, a profiling pass is added at the end of the
link-time optimization (LTO) passes. The OPT cache simulation
uses the OPT* algorithm presented in [17]. The same profiling pass
is used to measure the performance of LRU and OPT caches using
the fastest analyzers available [30,37].

We examined the floating-point code in three benchmark suites—
SciMark 2.0, SPEC 2000, and SPEC 2006 [2–4]—and selected
those for which we can reduce the input size so the numbers of
accesses are in tens of millions. We increased the number of time
steps in SOR to reduce the effect of its initialization code. As men-
tioned earlier, as a feasibility study, we use the same input size
and cache size in training and in testing. We will relax these two
restrictions later.

The ten test programs are listed in Table 2. As the table shows,
the programs have between 51 to 37,313 lines of C/Fortran code.
There are between 12 to 10,746 static references in the programs.
The length of their executions is between 100 and 800 million
accesses.

We simulate fully associative bipartite cache with 8-byte cache
blocks. An actual cache is always set associative, but the set asso-
ciativity on modern systems is high: 4-way L1D, 10-way L2, and
12-way L3 on IBM Power 5; 8-way L1D and L2 and 16-way L3
on Intel Nehalem; and 4-way L1D and 16-way L2 on Niagara II.
Hill and Smith showed that for sequential code, 8-way associative
cache incurs about 5% more misses than fully-associative cache,
consistently across cache sizes and cache block sizes [18]. We use
fully-associative cache, so the results represent the effect of set-
associative cache without being specific to particular cache param-
eters. As a limit study, we use 8-byte cache-line size to exclude the
effect of cache spatial reuse, which depends on data layout in ad-
ditional to cache management. The OPT result is the best possible
(but possibly not realizable) for all data layouts.

4.3 The LRU-OPT Gap

Let missLRU (C), missOPT (C) be the number of cache misses
incurred by LRU and OPT cache of sizeC. We define the LRU-
OPT gap as:

gap(C) =
missLRU (C) − missOPT (C)

missLRU (C)

The gap is between 0 and 100%. We have simulated the LRU-
OPT gap for the ten test programs for cache sizes from 1KB up
to program data size (before all misses are cold-start misses). The
results are summarized in Table 3.

The 2nd column of the table shows the average LRU-OPT
gap for all measured cache sizes. The highest average gaps are
34% in lucas and 31% inmgrid and milc. The first two have
hierarchical computations. The least gaps are 12% inzeusmpand
17% in applu. Both are computational fluid dynamics simulation



workload benchmark programming #lines of #memory #run-time
name suite language source code references accesses

SOR SciMark 2.0 C 51 12 1.07E+7
171.swim CPU2000 Fortran 435 307 1.02E+7
172.mgrid CPU2000 Fortran 489 451 4.13E+7
173.applu CPU2000 Fortran 3980 2515 1.50E+7

183.equake CPU2000 C 1513 853 8.12E+7
189.lucas CPU2000 Fortran 2999 1419 4.26E+7

410.bwaves CPU2006 Fortran 918 755 5.30E+7
433.milc CPU2006 C 15042 4163 8.43E+7

434.zeusmp CPU2006 Fortran 37313 10746 3.75E+7
437.leslie3d CPU2006 Fortran 3807 4403 3.80E+7

Table 2. The ten test programs

the OPT imprv. the PACMAN
over LRU imprv. over LRU

average largest average largest

SOR 25% 91% 15% 91%
171.swim 19% 64% 12% 59%
172.mgrid 31% 60% 13% 46%
173.applu 17% 50% 8.2% 19%
183.equake 22% 54% 17% 54%
189.lucas 34% 67% 26% 64%
410.bwaves 25% 80% 12% 60%
433.milc 31% 62% 8.8% 22%
434.zeusmp 12% 79% 1.4% 3.9%
437.leslie3d 27% 50% 10% 29%

average 24% 66% 12% 45%

Table 3. The LRU-OPT gap and the PACMAN improvement. The
average improvement is the arithmetic mean of the improvement
for all cache sizes between 1KB and data size.

programs. Across all ten programs, OPT incurs on average 24%
fewer misses than LRU does on every cache size.

The improvement from LRU to OPT is not uniform. The gap
can be much larger at some cache sizes. The 3rd column of the
table shows that the best improvement is between 50% and 91% in
all programs. In other words, for every program there is a cache size
for which at least half of the misses in LRU cache can be eliminated
by optimal caching. These results show a significant potential for
improving cache utilization.

4.4 The Improvement by PACMAN

Let missPACMAN (C) be the number of cache misses incurred
by a program after the PACMAN transformation. We define the
PACMAN improvement as:

missLRU (C) − missPACMAN (C)

missLRU (C)

The improvement may be negative if the number of misses is
increased by PACMAN. We have measured the improvement for
the ten test programs for all cache sizes from 1KB to the program
data size. The results are in Table 3.

The 4th column of the table shows the average improvement for
each program by PACMAN. Seven programs,SOR, lucas, equake,
mgrid, swim, bwaves, andleslie3d, show 10% or more average im-
provements across all cache sizes. Two programs,milc andapplu,
show near 8% average improvements. The remaining one,zeusmp,
does not show a significant improvement (1.4%).

The effect of PACMAN can be plotted for all cache sizes using
a miss ratio curve. In this section, we show the plots first forlucas
andzeusmp, which have the most and the least improvement in our
test set by PACMAN; and then forSOR, swim, andapplu to show
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Figure 5. The miss curves of 189.lucas on fully-associative caches
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Figure 6. The miss curves of 434.zeusmp on fully-associative
caches

the effects of data size, MRU ratio threshold, and cache line size.
The same type graphs for the other 5 programs are included in the
appendix.

Three miss ratio curves are shown in Figure 5 forlucaswhen ex-
ecuted with LRU caching, OPT caching, and collaborative caching.
The differences between LRU and OPT curves show a large poten-
tial for improvement, on average 34% and up to 67%. The collab-
orative caching by PACMAN realizes over two-thirds of the poten-
tial, reducing the miss ratio by 26% on average and up to 64% in
32KB size cache.

The miss ratio curves ofzeusmpare shown in Figure 6. There
is a significant room for improvement over LRU, 12% on average



and up to 79%. While PACMAN reduces the miss ratio for almost
all cache sizes, the reduction is very small (1.4% on average).

The PACMAN performance for other programs is somewhere
betweenlucasandzeusmp, as shown by the summary in Table 3.
On average, PACMAN reduces the miss ratio by 12% for each
program and each cache size. Optimal caching reduces the miss
ratio by 24% on average. Hence, under idealized conditions used in
this study, PACMAN realizes one half of the improvement potential
of optimal caching.

4.5 The Effect of Program Input

So far we train and test PACMAN on the same input. A comprehen-
sive study on the effect of input is outside the scope of this paper
(our concern here is mainly the theoretical properties and the poten-
tial). But we show that for at least one program, PACMAN shows
similar improvment with different input sizes. Inswim, the matrix
size determines the program data size. We compare the results of
the matrix sizes128 × 128 and256 × 256.

The miss ratio curves of the two executions ofswimare shown
in Figure 7. The PACMAN curve has an identical shape in both
graphs, showing identical improvements over LRU. But because of
the difference in input size, the improvements happen for different
cache sizes—4KB, 8KB, 512KB, and 1MB for the smaller input
and 8KB, 16KB, 2MB, and 4MB for the larger input. An LRU
curve shows the size of working sets in an execution. Comparing
the two LRU curves, we can see two working sets in this program.
The first working set doubles in size in the larger input, and the
second working set quadruples in size. PACMAN improves the two
working sets by the same degree regardless of the input size.

4.6 The Impact of the MRU Ratio Threshold

Currently PACMAN sets the MRU ratio threshold to 50%. A pro-
gram reference is designated as MRU if 50% of its run-time ac-
cesses are MRU in the optimal solution. The benefit of PACMAN
depends on the choice of the threshold. Figure 9 shows one ex-
ample,173.appluon a 512KB cache, for which different threshold
values have a significant effect on performance. When the threshold
is 0, all memory references become MRU. The miss ratio jumps to
99%. When the threshold is 100%, only memory references with-
out LRU accesses are selected as MRU. The effect on this program
is very close to LRU. When the threshold is 50%, the improvement
over LRU is 4.6% (shown for all cache sizes in Figure 8). By choos-
ing the threshold 30% or 35%, the miss ratio is further reduced to
20%. This suggests a higher potential if PACMAN can properly use
different threshold values for different programs.

4.7 A Closer Look at SOR

All the previous evaluations are based on 8-byte cache line size for
limit study. However, real cache systems usually use much larger
cache line size such as 64-byte. We change to use 64-byte cache
line size to make a more realistic test with SOR.

Figure 10 shows the SSA-form [13] of the SOR loop kernel (for
original code see Figure 2). The loop indexes into arrayG to create
three virtual arraysGi, Gim1, Gip1 for use in the innermost loop.

The innermost loop has 4 array references. The MRU ratio
changes with cache sizes, as shown by Figure 11 as a curve for each
reference. The ratio forGim1[j] is clearly higher than the other
three. For cache size between 8KB and 512KB, the MRU ratio is
from over 12.5% to 63% forGim1[j] but near 0 for the other three.
PACMAN chooses this reference as an MRU reference.

The MRU ratio is a factor of 8 lower because of spatial reuse. To
separate the last touch of a cache block, we transform line 9 to an if-
else block (line 9.1 to 9.5) in Figure 10. In actual implementation,
we use loop unrolling instead of branching. In LLVM, we adapt the
available loop unrolling pass and put it at the end of the LTO passes
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(a) matrix size is 128*128
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(b) matrix size is 256*256

Figure 7. The miss curves of 171.swim on two different inputs.
The curves have an identical shape but cover different cache-size
ranges: between 1KB and 4MB in the upper graph and between
1KB and 16MB in the lower graph.
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Figure 8. The miss curves of 173.applu on fully-associative caches
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Figure 9. The impact of the MRU ratio threshold for 173.applu at
512KB

Require: G is a 2-dimensional double array with the size M*N
1: for p = 1; p< NUM STEPS; p++do
2: for i = 1; i < M-1; i++ do
3: Gi = G[i];
4: Gim1 = G[i-1];
5: Gip1 = G[i+1];
6: Gijm1 = Gi[0];
7: Gij = Gi[1];
8: for j = 1; j < N-1; j++ do
9: Gim1j = Gim1[j]; =⇒ 9.1: if j%8 == 7then

10: Gip1j = Gip1[j]; 9.2: Gim1j =
11: Gijp1 = Gi[j+1]; MRU load(Gim1[j]);
12: tmp1 = Gim1j + Gip1j; 9.3:else
13: tmp1 += Gijm1; 9.4: Gim1j = Gim1[j];
14: tmp1 += Gijp1; 9.5:end if
15: tmp1 *= 0.3125;
16: tmp2 = -0.25 * Gij;
17: tmp1 += tmp2;
18: Gi[j] = tmp1;
19: Gijm1 = tmp1;
20: Gij = Gijp1;
21: end for
22: end for
23: end for

Figure 10. The SOR kernel loop in SSA form with PACMAN
transformation.M = N = 512 andNUM STEPS = 10.
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Figure 11. The MRU ratio curves of SOR on fully-associative
caches with cache line size 64B

but before the profiling pass. We also change to usememalign()
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Figure 12. The miss curves of SOR on fully-associative caches
with cache line size 64B

instead ofmalloc() to make arrayG 64-byte aligned. After loop
unrolling, the load in line 9.2 has an MRU ratio of 75% at 512KB.

The miss ratio curves of Figure 12 show that PACMAN pro-
duces almost identical results as OPT for cache sizes over 64KB (up
to 2MB). The improvements are significant—2.3%, 5.2%, 10.8%,
22.2%, 44.9%, and 90.7% respectively between 64KB to 2MB. The
average improvement is 15%, as reported in Table 3. It is worth
mentioning that at cache size 2MB, OPT training found 704 MRU
accesses out of more than ten million accesses. These MRU ac-
cesses reduced the miss ratio by an order of magnitude from 3.3%
to 0.3%.

5. Related Work
Cache hints The ISA of Intel Itanium extends the interface of
the memory instruction to provide source and target hints [5]. The
source hint suggests where data is expected, and the target hint
suggests which level cache the data should be kept. The target
hint changes the cache replacement decisions in hardware. IBM
Power processors support bypass memory access that do not keep
the accessed data in cache [27]. Wang et al. proposed an interface
to tag cache data with evict-me bits [31]. Recently, Ding et al.
developed ULCC which uses page coloring to partition cache to
separately store high locality and low locality data [15]. It may be
used to approximate LRU-MRU cache management in software on
existing machines. The bipartite cache interface in this paper can
imitate the effect of the target hints, cache bypasses, and evict-me
bits. Consequently, the theoretical properties such as the inclusion
principle and bipartite stack distance are valid for these existing
designs of collaborative cache.

Collaborative caching Collaborative caching was pioneered by
Wang et al. [31] and Beyls and D’Hollander [8, 9]. The studies
were based on a common idea, which is to evict data whose for-
ward reuse distance is larger than the cache size. Wang et al. used
compiler analysis to identify self and group reuse in loops [24, 31,
32] and select array references to tag with the evict-me bit. They
showed that collaborative caching can be combined with prefetch-
ing to further improve performance.

Beyls and D’Hollander used profiling analysis to measure the
reuse distance distribution for each program reference. They added
cache hint specifiers on Intel Itanium and improved average per-
formance by 10% for scientific code and 4% for integer code [8].
Profiling analysis is input specific. Fang et al. showed a technique
that accurately predicts how the reuse distances of a memory refer-
ence change across inputs [16]. Beyls and D’Hollander later devel-
oped static analysis called reuse-distance equations and obtained
similar improvements without profiling [9]. Compiler analysis of



reuse distance was also studied by Cascaval and Padua for scien-
tific code [10] and Chauhan and Shei for Matlab programs [11].

In this paper, we show the theoretical potential of collaborative
caching. With bipartite cache, these techniques may be extended
to achieve optimal cache performance. OPT analysis is a possible
extension. It is more precise. Recall an example in Section 4.7
where a few hundred MRU accesses can reduce the miss ratio of a
ten-million long trace by an order of magnitude. Such OPT training
can be used to evaluate and improve compiler and profiling-based
techniques.

Virtual machine, operating system and hardware memory man-
agement Garbage collectors may benefit from the knowledge of
application working set size and the affinity between memory ob-
jects. For LRU cache, reuse distance has been used by virtual ma-
chine systems to estimate the working set size [34] and to group
simultaneously used objects [36]. There have been much research
in operating systems to improve beyond LRU. A number of tech-
niques used last reuse distance instead of last access time in virtual
memory management [12,28,38] and file caching [19]. The idea of
evicting dead data early has been extensively studied in hardware
cache design, including deadblock predictor [22], adaptive cache
insertion [26], less reuse filter [33], virtual victim cache [21], and
globalized placement [35].

Hardware based techniques improve memory and cache perfor-
mance without changing software. On the flip side, they do not
allow software to communicate information about its data usage.
This communication is the goal of collaborative cache. We believe
the idea is also interesting for heap and virtual memory manage-
ment. A basic problem in collaborative systems is that the interface
may be misused. We have shown the theoretical properties of this
interface under all uses. Particularly important for software is that
the LRU-MRU stack distance exists and may be used to estimate
the working set size and reference affinity in collaborative cache as
reuse distance has been used for conventional cache.

Optimal caching Optimal caching is difficult purely at the pro-
gram level. Kennedy and McKinley [20] and Ding and Kennedy [14]
showed that optimal loop fusion is NP hard. Petrank and Rawitz
showed that given the order of data access and cache management,
the problem of optimal data layout is intractable unless P=NP [25].
Our earlier workshop paper showed that collaborative caching can
be used to obtain optimal cache performance [17]. It described
two extensions to LRU called bypass LRU and trespass LRU and
gave an counter example showing bypass LRU does not observe
the inclusion principle. The paper gave an efficient algorithm for
simulating OPT cache replacement, which we use in this paper
for PACMAN training analysis. The previous study assumed that
a program could be optimally transformed. In this paper, we study
the properties of collaborative caching in all uses, not just optimal
uses.

6. Summary
In this paper, we have characterized the difference between current
LRU-style cache management and optimal cache management. To
approximate optimal solution on real cache systems, we have for-
malized the interface of bipartite LRU-MRU cache and shown that
it obeys the inclusion principle. We give a one-pass simulation al-
gorithm to measure the LRU-MRU stack distance. We have mea-
sured the potential of collaborative caching using a simple algo-
rithm based on OPT training analysis. The evaluation on 10 Sci-
Mark and SPEC CPU benchmarks show that optimal caching can
reduce the miss ratio by 24% on average per program per cache
size, and collaborative caching has the potential to realize 50% of
the optimal performance improvement.
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A. The Miss Ratio Curves of LRU, OPT, and
PACMAN

Figure 13 to 17 shows the miss-ratio curves of the rest of the test
programs (in addition to programs already shown in Section 4).
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