On the Theory and Potential of LRU-MRU
Collaborative Cache Management

Xiaoming Gu Chen Ding

Department of Computer Science
University of Rochester
Rochester, New York, USA

{xiaoming, cding}@cs.rochester.edu

Abstract may be managed optimally by a program [17]. Wang et al. called a
mbined software-hardware solutioollaborative caching31].

In this paper, we study the formal properties of collaborative
cache management. We define a model cdlipgdrtite cache It
supports two types of accesses: the normal LRU access and the
special MRU access. Data loaded by an MRU access is managed
by MRU replacement. At a miss, it selects the most recently used
data for eviction. It is equivalent to tagging the loaded data with
an evict-me flag [31], setting the MRU data for eviction before any
LRU data. With bipartite cache, a program influences the cache
management by selecting which data to be accessed by which type.

In comparison, conventional cache uses a variant of the LRU
strategy. More significantly, a conventional cache uses a single
interface for all data access. The use of software control makes

ybrid management inevitable. The LRU-MRU combination in one
cache warrants a re-examination of the fundamental properties of
caching.

A foremost property of memory (and storage) hierarchy is what
Mattson et al. termed thieclusion principle which says that the
Categories and Subject Descriptors D.3.4 [PROGRAMMING content of a smaller cache is always contained in larger caches
LANGUAGES Processors - Compilers, Memory management [23]. The inclusion principle has important benefits. In theory, the
miss ratio is a monotone function of cache size. There is no Belady
anomaly [7]. In practice, the miss ratio of caches of all sizes can be
Keywords collaborative caching, bipartite cache, cache replace- €valuated using one-pass simulation over a program trace.
ment algorithm, LRU, MRU, OPT More |mp0_rtantly for software_z, a machine-independent metric
called stack distance can be defined for each access [23]. Software
. techniques are developed to minimize the stack distance and im-
1. Introduction prove performance for a cache hierarchy rather than targeting a
Cache management is increasingly important on multicore systemsparticular cache level. A type of stack distance called reuse distance
since the available cache space is shared by an increasing numbehas been used to improve memory management including garbage
of cores. Optimal caching is generally impossible at the system or collection techniques [34, 36].

The goal of cache management is to maximize data reuse. Collab-c©
orative caching provides an interface for software to communicate
access information to hardware. In theory, it can obtain optimal
cache performance.

In this paper, we study a collaborative caching system that al-
lows a program to choose different caching methods for its data.
As an interface, it may be used in arbitrary ways, sometimes opti-
mal but probably suboptimal most times and even counter produc-
tive. We develop a theoretical foundation for collaborative caches
to show the inclusion principle and the existence of a distance met-
ric we call LRU-MRU stack distance. The new stack distance is
important for program analysis and transformation to target a hi-
erarchical collaborative cache system rather than a single cach
configuration. We use 10 benchmark programs to show that opti-
mal caching may reduce the average miss ratio by 24%, and a sim-
ple feedback-driven compilation technique can utilize collaborative
cache to realize 50% of the optimal improvement.

General Terms Algorithms, Measurement, Performance

hardware level for lack of program information. At the program The inclusion principle is intuitive for LRU cache. Data is
level, optimal caching requires solving NP-hard problems and is ranked by the last access time. The most recent data enters from
not yet practical [14, 20, 25]. the top of the cache stack and gradually steps down as it ages over

A number of hardware systems have been built or proposed to time. Bipartite cache, however, stores data in two parts and ranks
provide an interface for software to influence cache management.data in opposite ways. The MRU data is placed at the bottom of the
Examples include cache hints on Intel Itanium [9], bypassing ac- cache. The placement depends on cache size. As Mattson et al. have
cess on IBM Power series [27], and evict-me bit [31]. Our earlier cautioned, it goes against the inclusion principle to base a caching
work showed a theoretical result that two extensions of LRU cache decision on cache capacity [23].

In this paper, we analyze the general LRU-MRU bipartite cache.
Interestingly, the inclusion property still holds. We give a proof first
and then an efficient one-pass simulation algorithm to compute the
Permission to make digital or hard copies of all or part of this work for personal ~ Miss ratio for fully associative caches of all sizes. The algorithm
classroom use is granted without fee provided that copies are not made outtstrio defines and measures theU-MRU stack distanc®r each access.
for &rmfiit,o: Commje_mia' adv?r?t?\%? an? t?at C&?iistmar ﬂt‘isn”mircf ?ndrﬂt‘;{:‘;@im An access is a hit in bipartite cache if and only if its LRU-MRU
e st b, T Cony ohen, o e 1o poston serers or it i distance i no greater than the cache size..
To demonstrate the potential benefit of bipartite cache, we de-

ISMM’11, June 4-5, 2011, San Jose, California, USA. . .]
Copyright© 2011 ACM 978-1-4503-0263-0/11/06. .. $10.00 scribe a simple method calleBACMAN for Program-Assisted

Cache MANagement. PACMAN shows how much a program can We observe that the curves of OPT and LRU diverge first,
reduce the miss ratio under a number of simplifying assumptions. converge at size 16KB and then diverge again before both dropping
It shows the potential of collaborative cache management but it is to near zero at 4MB (with only cold-start misses). The difference
not yet a practical solution. depends on the cache size. In 16KB or 32KB cache, there is little or
In practice, caches are set associative rather than fully associa-no improvement. In 8KB and 2MB cache, the improvement is more
tive. For theoretical analysis, fully associative cache is more inter- than 60% and 90% respectively. It is important to evaluate across
esting (and difficult) since the associativity changes with the cache all cache sizes.
size. Its properties and results have practical significance. First, the The OPT miss ratio changes gradually, while the LRU miss ratio
inclusion property holds for each set of set-associative cache andeither stays the same or drops sharply. The sharp drops mark the
for most real cache hierarchies. Second, modern cache hasshigh a size of working sets—each steep descent happens when the cache
sociativity, i.e. 8-way and up, which means similar performance as is large enough to hold the next working set. SOR has mainly two
fully associative cache [18]. The empirical results in the paper show working sets: one at 8KB and one at 2MB. The smooth curvature
the general effect of bipartite cache of all sizes, regardless of the of OPT shows that it caches a partial working set if the whole set is
specific implementation. Finally, important for software research, too large.
the LRU-MRU stack distance provides a machine-independent tar-
get for program analysis and transformation, as we explain in Sec-
tion 5.

[0
o

—e—LRU
——OPT

2. Background

LRU The datain cache is sorted by the last use timeisfa miss

and the cache is full, the datum in the LRU (least recently used)

position is evicted. LRU can be costly when the set associativity

is high. Pseudo-LRU is the one usually used in practice [29]. The

performance of fully associative LRU cache can be measured in
one pass for all cache sizes using reuse distance analysis in nea
linear time [37].

N
o
T

cache miss ratio (%)
N
o

OPT Theoptimal replacement algorithm (OPWas invented by 1K 4K 16K 64K 256K 1M 4M
Belady [6]. At a replacement, the victim is the datum that will be cache sizes (byte)

reused in the farthest future. Mattson et al. showed its inclusion . :
property and gave a two-pass algorithm to measure the OPT stack Figure 1. The gap between LRU and OPT in SOR
distance [23]. Sugumar and Abraham invented an efficient one-pass
algorithm [30]. OPT is not practical purely in hardware as itwould - cojjanorative caching In collaborative caching, a program desig-
require |nf|n|t¢ a}head. quever, it has a vital theoretical value since ates some of its references to make MRU accesses. Figure 2 shows
it shows the limit of caching. the kernel SOR whose miss rates are just shown in Figure 1. It is
typical of stencil algorithms. Consider the data access in the loop
body. ArrayG is traversed in each iteration of the outermost loop.

éf MxN is larger than cache size, arrgycannot fit entirely in the
cache. The streaming accessafiould lose all data reuse because
LRU evicts the least recently used datum, which is actually the da-
éum that will be reused in the nearest future. OPT, however, would
evict the most recently used datum. To obtain the same effect, we
can tag the last access to each datum as an MRU access. A bipartite
cache of siz& would keep the firs€ bytes ofG in cache and reuse
them across loop iterations.

o

Stack algorithm and stack distance As defined by Mattson et
al., if the content of a smaller cache is always a subset of the
content of a larger cache, the cache management algorithm obey:
theinclusion propertyand is considered stack algorithm{23]. In
stack algorithms each access hastack distancethe minimum
cache size, to make the access become a hit. The miss rate is
monotone (non-increasing) function of cache size, and there is no
Belady’s anomaly [7]. The paper proved the inclusion property for
LRU, LFU (least frequently used), OPT, and a form of random
replacement. The inclusion property is beneficial in evaluation,
when we can evaluate all cache sizes in one simulation, and in
analysis, when we can target the stack distance and all cache size
instead of a single cache size.

Require: G is a 2-dimensional double array with the size M*N
S1: for p = 1; p< NUM_STEPS; p++do

2: fori=1;i <M-1;i++do
Two characteristics of the LRU-OPT gap As an example, we 2; g:mle[l]'G[i_l];
show the difference between LRU and OPT cache replacement s: Gipl = G[i+1];
algorithms using a workload of Jacobi Successive Over-relaxation 6: for j=1;j < N-1; j++ do
(SOR) from SciMark 2.0 [2]. We use currently the fastest one-pass 7: Gi[j] = 0.3125%(Gim1[j]+Gip1[j]+Gi[j-1]+Gi[j+1])-0.25*Gi[j];
analysis methods for LRU [37] and OPT [30]. The LRU and OPT & end for
miss rate curves of an execution of SOR are shown in Figure 1 for %3 end for

cache sizes ranging between 1KB and 8MB (twice the size of the 10: end for
program data). The cache line size is 8 bytes.

Figure 1 shows two interesting aspects of optimal caching com-
pared with LRU.

Figure 2. The SOR kernel computation

e Non-uniform improvemenOPT is not uniformly better than 3. Properties of Collaborative Cache

LRU. The improvement varies greatly between cache sizes. v first define the LRU and MRU memory accesses and then prove

e Gradual miss-ratio changelhe miss ratio of OPT decreases that bipartite cache has the inclusion property and can be evaluated
gradually as the size of cache increases. efficiently using one-pass simulation.

S1 Ss(w) S1 w
Sa S1 Sa Si
Sa(w) Sy S3 Sy
— —
Sm-1 Sm-1 Sm-1 Sin-2
S S w S Sm—-1| Sm

(&) ALRU hit: w, assuming at (b) A LRU miss:w is placed at the top
entry Ss, is moved to the top of the stack, evicting,,,
of the stack

Figure3. A LRU memory access

Sy S Sy S
Sa Sa Sa Sy
Ss(w) Sy S3 S
= =
Sm-1 S Sm-1 Sm-1
Sm Ss(w) w Sm w Sm

(&) An MRU hit: w, assuming (b) An MRU miss: w is placed at the
at entry Ss, is moved to the bottom of the stack, evicting,,
bottom of the stack

Figure4. An MRU memory access

3.1 Bipartite LRU-MRU Cache

The collaborative cache provides two instructions for accessing
memory: the normal LRU access and the special MRU access. LRU
is a standard concept defined in textbooks. For comparison with
MRU, we show a diagram in Figure 3. LRU cache can be thought

of as organized in a stack. The newly accessed data is at the top—

the MRU position—and the rest of LRU data is ordered top-down
based on the recency of access. In an actual implementation, th
order of recency is maintained or approximated efficiently without
moving cache entries.

In comparison, Figure 4 shows the handling of an MRU access.
If it is a miss, the new data is replaced at the LRU position at the
bottom of the stack. If it is a hit, the accessed data is moved to
the bottom of the stack. Multiple MRU elements may gather at the
bottom after a series of MRU access hits.

The LRU-MRU interface can be used to obtain optimal cache
performance [17], yet it is simple to implement. The implementa-
tion of the MRU instruction is not much harder than a normal LRU
instruction. In a real hardware design, the cycles required to exe-
cute an MRU access should be similar to the cost of a normal LRU
cache access.

Bipartite cache differs from conventional cache in three ways:

e Bipartite contentThe cache stack is divided into two parts: the
upper part for LRU data and the lower part for MRU data. Either
part may be missing, and the cache is entirely LRU or MRU.

e Capacity dependent placememhe MRU data is placed at the
bottom. The location depends on the size of the cache.

e Hybrid priority. The LRU part is prioritized by the LRU order,
that is, the last accessed is last replaced. The MRU part is by
the MRU order, that is, the last accessed is first replaced.

In comparison, conventional, non-collaborative cache manages
data using a single priority order, e.g. LRU by the last access time
and OPT by the next access time. The placement depends on the
priority order and not on cache size. The single priority naturally
gives rise to the inclusion property and its practical benefits. To
understand collaborative caching, we must understand its bipartite
nature.

3.2 Thelnclusion Property

If the collaborative cache is used optimally, the performance is the
same as OPT [17]. In general, however, the cache may not be used
optimally. The selection of MRU accesses may be arbitrary. The
following proof is for all uses of bipartite cache, including the
extreme cases (when all accesses are normal, i.e. LRU caching,
and when all accesses are special, i.e. MRU caching), the optimal
use, and everything in between. In a sense, the proof subsumes the
individual conclusions for LRU, MRU, and OPT [23].

We prove that for any sequence of LRU and MRU accesses, the
bipartite cache obeys the inclusion principle.

LEMMA 1. If the bottom element in the bipartite cache stack is last
accessed by a normal LRU access, then all elements in cache are
last accessed by normal LRU accesses.

The Lemma 1 follows from the fact that MRU data are placed
at the bottom of the stack and only replaced by LRU data (never
pushed up except by other MRU data). There is a formal proof of
Lemma 1 in our workshop paper [17]. Next we prove the inclusion

property.

THEOREM1. A trace P is being executed on two bipartite caches
of sizegC1| and |C2| (|C1| < |C2|). At every access, the content
of cache(C is always a subset of the content of cache

Proof Let the access trace bé = (z1,x2,...,x,). Let Ci(x¢)

andC(z¢) be the set of elements in cactie andC’, after access

x¢. The initial cache contents a@,(0) = C»(0) = 0. The

inclusion property holds. We now prove the theorem by induction

ont.

AssumeCi(z¢) C Ca(xy) (1 <t < n—1).Itis easy to see

that if z¢11 is a hitinCs (z++1 € C2(x+)), the inclusion property
olds. We now consider the case that, is a miss inCs. Since

C1 isincluded inCs, x+41 is also a miss irC';.

Let the evicted elements be last accesseg,an C1 andz, in
C>. After the cache miss, we hatg (z¢+1) = Ci(xt) —zp+xe41
andC’Q(:rH_l) = CQ(It) — Zq + Tig1. SinceC1(iL‘t) - CQ(.I,‘t),
the only possibility forCy (z:11) Z Ca(x:v1) is thatCs evicts
x4, andCy hasz, but does not evict it, sa, € Ci(x¢4+1) but
zq & Co(Tes1).

First we assume,, exists (a cache miss does not mean a cache
eviction—see the next case). The evictionGh happens at the
LRU position regardless whethey, is a LRU or MRU accessz,,
is at the bottom irC'; before access; . At the same timez, is at
the bottom inC>. To violate the inclusion property, we must have
x4 € C1(x¢) in a position over,. From the inductive assumption,
zp € Ca(x¢) and itis in a position ovet,. Therefore, botlC”; and
C> containz, andx, but in an opposite order.

The two accesses;,, andz,, may be LRU or MRU accesses.
There are four cases:

| z, andz, are both LRU accesses. Becausgis at a higher
position thanz,, in C1, we havep < ¢. Similar reasoning from
C5 requiresg < p, which makes this case impossible.

Il z, is normal, andr, is a MRU access. Using Lemma 1 on
C1, we see that this case is impossiblez-has to be normal
because it resides over a normal acegss C'.

Il z, is a MRU access, and, is normal. Using Lemma 1 on
C>, we see that this case is impossiblez-has to be normal
because it resides over a normal aceess C-.

IV z, andx, are both MRU accesses. Becausgeis at a higher
position thanz,, in C1, we havep > ¢. Similar reasoning from
Cs requiresg > p, which makes the last case impossible.

There is no eviction ir”; if the bottom cache line is unoccupied
whenz; 1 iS accessedr, is at the bottom olC>. Regardless of
whetherz, is LRU or MRU, C is filled. Since|C>| > |C!], there
must have been enough data access t@/fillmaking it impossible
for its bottom spot to remain unoccupied. Hence, by induction, the
inclusion property holds for every access in the trace.

The inclusion property holds for any access trace with mixed LRU

For access at timet, Algorithm 1 computes the stack distance
and updates the priority list. The algorithm has three parts:

e The first part, lines 1 to 5, sets the priority forto be¢ or
—t depending on whether is LRU or MRU. The purpose is
to handle mixed priority. By negating the priority of MRU
data is reverse to the access order. The MRU in the access order
becomes LRU in the priority order. In addition, the negative
priority means that all MRU data has a lower priority than every
LRU data. Finally, all priority numbers remain distinct. As a
result, all data in the cache are prioritized with no ties.

e The second part, lines 9 to 19, handles cache replacement at
a miss whene is not in the priority list. The element with the
lowest priority is shifted down to the bottom. It is removed if its
priority is negative (an MRU datum}: is inserted to become

and MRU accesses, regardless how these two types of accesses are the new head of the list.

interleaved.

3.3 TheLRU-MRU Stack Distance

The inclusion property implies the existence of the LRU-MRU
stack distance. An access has a distalgit is a cache hit in
caches of sizeg and up and a miss in caches of size- 1 and
down. Given a program trace with mixed LRU-MRU accesses, Al-

e The third part, lines 22 to 29, handles a hit at locatigrihat
is, dr. = x. The element of the lowest priority iy, . . ., dx is
shifted down to replacéy. x is added to the front of the list as
in the second part.

The update process, swapping and then insertion, is similar to
Mattson et el. [23] but with two notable qualities. First, the priority
list of bi-sim is not completely sorted, and the victim may or may

gorithm 1 computes the stack distance for each access. Effectivelynot ped,, or d;. In comparison, the priority listin LRU simulation

the algorithm simulates LRU-MRU cachesaif sizes—topC' el-
ements in the priority list are always the content of a cache with
size C. We call the algorithnbi-sim in short for bipartite cache
simulation.

Algorithm 1 Bi-sim: computing the stack distance of bipartite

cache

Require: z is accessed at time with flag f = {LRU, MRU}. The
cache is organized as a priority list, with daia and priority p;,
i=1,..., M. No two priorities are the same, i¥i andj, p; # p; if
1 # j. The list may not have been sorted.

Ensure: It returns the LRU-MRU stack distance and updates the pyiori
pz Of z (first adding it to the priority list if it was not included).he
priority p. is unique.

1: if f = LRU then
2. pa=t
3: else
4 py=—t
5: end if
6: /* processt */
7:ifex ¢ {d;:i=1,...,M} then
8: [*xisamiss*/
9: fori=1;i< M,;i++do
10: if p; < pi41 then
11: swapd; andd;+1
12: end if
13: end for
14. [*d,, is the bottom of the cache */
15: if pps < Othen
16: removed s from the list
17: endif
18: insertr at the front of the list
19: return co
20: else
21: [*xisahit*/
22: findoutd, ==
23: fori=1;i<k;i++do
24: if p; < pi41 then
25: swapd; andd; 1
26: end if
27: end for
28: movex to the front of the list
29: returnk
30: end if

is always totally sorted, and the victim can always be foundhat

or di. Second, bi-sim may remove an element from the priority
list (line 16), even if it is simulating cache of an infinite size. The
stack simulation of previous caching methods such as LRU and
OPT never removes elements (when simulating for all cache sizes).

An example An example depicting bi-sim in action is given in
Table 1. The access trace and the access types are listed in the
second and third columns. The priority list (after each access) is
shown in the next column. The last column is the stack distance
returned by Algorithm 1oo always means a miss, akdmeans a
cache hit if cache siz€ > k and a miss otherwise. The priority
lists in the table show only the priority numbess. A reader can
find the datum from the..th row of the table (the.th access in
the trace).

The example shows two notable characteristics of the bi-sim
algorithm. The priority list is not completely sorted because of the
negative priority numbers of MRU accesses. An MRU element may

be removed from cache even when there is space, as happened at
access 2. These are necessary to measure the miss ratios of all cache

sizes in a single pass.

The cost and its reduction The asymptotic cost of Algorithm 1

is O(M) in time and space for each access, whéfeis the
number of distinct data elements in the input trace. The main
time overhead comes from the two swap loops at lines 9-13 and
23-27. To improve performance, we divide the priority list into
partially sorted groups. For example, there are 4 windows at the
25th access in the example in Table 1: [25], [21, -22], [19, -22,-
23], and [16,13,10, 0}. The swap loops are changed to iterate
over the groups. The minimal element of a group is simply the last
element. Grouping in priority lists was first invented by Sugumar
and Abraham for simulating OPT [30]. A difference between OPT
and bi-sim is that the accessed datum can be in the middle of a
group in bi-sim. For OPT, the accessed datum always stays at the
front of a group.

3.4 TheEquivalence Proof

So far we have presented the bipartite cache and its simulation.
We now show that the simulation algorithm is correct, that is, the

1For convenience, the top element is always put into a separatow.

access|| the access|| LRU? the priority list stack
no. trace (top — bottom) distance
0 h y 0 S
1 f n -1 0 00
2 i y 2 0)
3 i n -3 0 1
4 9 y 4 0 00
5 b y 5 4 0)
6 b n -6 4 0 1
7 e n -7 4 0 00
8 d n -8 4 0 00
9 b y 9 4 0)
10 g y 10 | 9 4 0)
11 b y 11 10 4 0 2
12 e y 12 11 10 4 0 00
13 d y 13121110 4 0 00
14 a y 141312 11| 10| 4 0 00
15 c y 15 14 13 12 11 10 0 6
16 e y 16 15 14 13 11 10 0 4
17 a y 17 16 15 13 11 10 0 3
18 c y 18 17 16 13 11 10 0 3
19 i y 19 18 17 16 13 11 | 10| O 00
20 f y 20 | 19| 18 | 17 | 16 | 13 | 11| 10| O 00
21 b y 21 | 20| 19 | 18 | 17 | 16 | 13| 10 | O 7
22 a n 22121 20| 19| 18 | 16 | 13| 10 | O 5
23 f n 23121 | -22| 19 | 18 | 16 | 13| 10 | O 3
24 [§ n 241021 | -22 | 19 | -23| 16 | 13| 10 | O 5
25 [§ y 25 | 21 | -22| 19 | -23| 16 | 13| 10 | O 1
26 e n 26 | 25 | 21| 19 | 22| -23 | 13| 10| O 6
27 i n 271 25 | 21| -26 | 22| -23 | 13| 10| O 4
28 c y 28 | 27| 21 | -26 | 22| -23| 13|10 | O 2
29 f y 29 28 21 | -26 | -22 | -27 | 13 | 10 | O 6
Table 1. Example one-pass simulation of bipartite cache
elements of the priority listl1,ds,...,dc in the algorithm are Proof Algorithm 1 identifies a victim for replacement using one of

indeed the content of the LRU-MRU cache of sizeWe show the the two swap loops at lines 9-13 and 23-27. Consider two caches

equivalence in two steps. First, we show that the algorithm observesCs, Cs+1 of sizess, s + 1. Let z be the element id’s; but not in

the inclusion property. Then we show that the two are equivalent at Cs. Lety be the element i that has the lowest priority. When a

each cache size. cache replacement is neededlp, 1, the swap loops would choose
Proving the inclusion property is easier for the algorithm than as the victimy if p, < p. andz otherwise. The eviction invariance

for bipartite cache because we can use its algorithmic design di- js therefore observed.

rectly. We first define a property in cache replacement. Let two

caches of size, s + 1 be Cs, Csq1. Assume thatCs, Csyy are Intuitively, the simulation is a stack algorithm because the simu-
filled with data, and: is the element irC’s 1, but not inC. At a lated caches of all sizes share a single priority list. It is obvious that
cache miss(’; evicts elemeny,, andC;, evictsy,.. Theevic- sharing a priority list implies eviction invariance. Next we show

tion invarianceis a property that requires that Algorithm 1 computes the right stack distance. First we have

the following lemma. We omit the proof, which is straightforward

Yst1 = Ys V Yst1 = 2
- - based on the handling of LRU and MRU accesses.

Mattson et al. [23] showed the following result:

LEMMA 2. Eviction invariance is a necessary and sufficient con- LEMMA 4. At a miss in bipartite cache, the victim is always the

dition for maintaining the inclusion property. data with the lowest priority.
Proof First, we show the necessityyf 1 # ys Ayst1 # 2, ys 41 THEOREM 2. Given an execution on bipartite cache of sizean
must be inC. Its eviction would mean that's ¢ Cs., and would access is a cache hit if and only if the stack distance returned by

break the inclusion property. The property is also sufficient. Ateach ajgorithm 1 is no greater thar.
eviction, if ys4+1 = ys, we haveCs11 = C, + z; otherwise, we

haveysy1 = z andCut1 = Cs + ys. In both casesC’s C Clat1. Proof The case for infinite distances is easy to verify, we only

prove the case when the distance is of a finite value. Specifically,

The simulation algorithm observes the eviction invariance. The Algorithm 1 always stores the data in the priority list such that a
cache of siz&' would contain and only contain the fitStelements

“stack” is embodied in a priority list. Each element has a numerical '

riority distinct from others. Therefore, the caches it simulates have I the list, di, dz, - - -, dc. This is equivalent to showing that for
?he in?;/lusion property. each datal;, we haved; € C; andd; ¢ C;—1, wherei > 0 and

C;, C;_1 are the sets of data in caches of siz@s- 1 respectively.
LEmMA 3. Algorithm 1 observes the eviction invariance and is Let the memory trace ber1, 22, - - -, z»). We prove by induc-
therefore a stack algorithm. tion onzx;.

| After accessing:1, 1 becomesl; in the priority list. The base unique indicator values—thdRU ratio. An MRU ratio ofy means
case holds sincé, € C; andd; ¢ Co. thaty fraction of its accesses were selected as MRU in the optimal
Il Assume the theorem holds after accessingl < j < n—1). solution. We use a simple heuristic to select MRU references: a
Let the element at positios; be d’ and the content of caches reference is MRU if at least half of its accesses were MRU in the
of sizei — 1,i be C/_,,C7. From the inductive hypothesis, tral(n)mg run. . s selected. all i , i "
j j j j nce a reference is selected, all its accesses in execution wi
\g:cg:;di .E CZ andd; ¢ C7_,. There are two cases after be MRU. This is most likely suboptimal. For example, if the MRU
AR | iss. Each el f the priori ratio of a reference is 50%, the reference will be selected and half
(@) zj+1 is a (compulsory) miss. Each element of the priority ¢ yhe accesses will be issued as MRU while they should be normal

B j 41
list is updated fromij tod;™" (1 <i < Morl <i < (LRU) accesses. Other heuristics may be used. Regardless of the
M +.1)1' o - L selection method, bipartite cache will always observe the inclusion
i. "' = 241 and satisfiest] ' € C{"" andd{ " ¢ property as we have shown.
cith,

ii. For ¢ (2 < i < M), the swap loop (lines 9 to -2 Experimental Setup
13) moves the datum};'L (1 < h < i) with the lowest The PACMAN tool is implemented as follows. We use the gold
priority in Cf out of the priority list. According to plugin of LLVM 2.8 [1] with -O4 opt_ion to generate executables. To
Lemma 4, after evicting, from G, the topi elements collect memory accesses, a profiling pass is added at the end of the
in the priority list are still inC.”lZ soditt e ¢ItL. link-time optimization (LTO) passes. The OPT cache S|r_n_ulat|0n
In th h ¢ t’ ! ’ ith éj uses the OPT* algorithm presented in [17]. The same profiling pass
n the same way, we can show thlt"" is eitherd; or is used to measure the performance of LRU and OPT caches using

- S p i o
the victim (ofC7_,), sod] ™" ¢ Gy the fastest analyzers available [30, 37].

iii. If d}, has a positive priority;lﬂi1 is at the new bottom We examined the floating-point code in three benchmark suites—
and must be the victim OCg, o) dg\:;il ¢ C]]\/}Fl SciMark 2.0, SPEC 2000, and SPEC 2006 [2—4]—and selected

those for which we can reduce the input size so the numbers of

) J) o) accesses are in tens of millions. We increased the number of time

iv. If d}, has a negative priority, the stack distance would steps in SOR to reduce the effect of its initialization code. As men-
be infinite. Itis a miss in all finite-size bipartite cache. tjoned earlier, as a feasibility study, we use the same input size

dyr i1 € C3fL follows from Lemma 1.

(b) zj+1 is a hit. Let the hit location bel; = z;41. Each and cache size in training and in testing. We will relax these two
element of the priority list is updated fromt! to d/™" restrictions later.
1<i<M). The ten test programs are listed in Table 2. As the table shows,
i. Considerd{“ (1 < i < k—1). The access is a the programs have between 51 to 37,313 lines of C/Fortran code.
miss in cache€,--- ,C7_,, so the inference of the There are between 12 to 10,746 static references in the programs.

(previous) miss case can be reused here. The swap loop e length of their executions is between 100 and 800 million
in lines 23 to 27 is identical to the swap loop in lines 9 8CCESSES.

t0 13. We simulate fully associative bipartite cache with 8-byte cache
i i i+l J o (gtl J+1 blocks. An actual cache is always set associative, but the set asso-
. g?i?ldggfn th:';ﬁgg’;m; gkthé x;:i\gi%“ﬂ Z ciativity on modern systems is high: 4-way L1D, 10-way L2, and
ke ' 12-way L3 on IBM Power 5; 8-way L1D and L2 and 16-way L3
C/ARE _ _ _ on Intel Nehalem; and 4-way L1D and 16-way L2 on Niagara II.

iii. Finally considerd’™ (k +1 < i < M), d&!™" = & Hill and Smith showed that for sequential code, 8-way associative
since there is no change made by the algorithm. From cache incurs about 5% more misses than fully-associative cache,
zj41 = dj. € C, we havez;; is a cache hit irC} consistently across cache sizes and cache block sizes [18]. We use
(i>k+1) andO{ = CZ+1 (k+1<i< M).From fully-associative cache, so the results represent the effect of set-
the induction assumption, we hadéﬂ c Cij+1 and associative paphe without being specific to pgrticglar cache param-
Jitt ¢ CIH (k+1<i< M)) eters. As a limit study, we use 8-byte cache-line size to exclude the

7 i—1 —= Y =

)) effect of cache spatial reuse, which depends on data layout in ad-
For all accesses, the cache of sizevould contain and only contain ditional to cache management. The OPT result is the best possible

the firstC elements in the priority listd:, d2, - - - , dc. Hence the (but possibly not realizable) for all data layouts.
relation is established between the stack distance and the cache
hit/miss as stated in the theorem. | 4.3 TheLRU-OPT Gap
. . . Let missrru (C), missopr(C) be the number of cache misses
4. Potential of Collaborative Caching incurred by LRU and OPT cache of siz& We define the LRU-

PACMAN uses OPT training analysis to select MRU memory ref- OPT gap as:
erences in a program. We first show a simple design and then use it

to evaluate the potential benefit of collaborative caching. gap(C) = misspru(C) — missopr(C)
. miSSLRu(C)
4.1 PACMAN Design The gap is between 0 and 100%. We have simulated the LRU-

PACMAN is a feedback-based compiler technique. As a study OPT gap for the ten test programs for cache sizes from 1KB up
of the performance potential rather than a practical solution, we to program data size (before all misses are cold-start misses). The
analyze one execution of a target program on bipartite cache of oneresults are summarized in Table 3.

size. The first step is OPT training, which uses an efficient OPT The 2nd column of the table shows the average LRU-OPT
implementation to identify MRU accesses at the trace level and the gap for all measured cache sizes. The highest average gaps are
program instructions that make these accesses. When an evictior8B4% in lucas and 31% inmgrid and milc. The first two have
happens in the OPT simulation, the most recent access to the victimhierarchical computations. The least gaps are 12%eiusmp@and

is MRU [17]. After training, each reference in program code has a 17% inapplu Both are computational fluid dynamics simulation

workload benchmark | programming| #lines of #memory | #run-time

name suite language source code| references| accesses
SOR SciMark 2.0 C 51 12 1.07E+7
171.swim CPU2000 Fortran 435 307 1.02E+7
172.mgrid CPU2000 Fortran 489 451 4.13E+7
173.applu CPU2000 Fortran 3980 2515 1.50E+7
183.equake|| CPU2000 C 1513 853 8.12E+7
189.lucas CPU2000 Fortran 2999 1419 4.26E+7
410.bwaves|| CPU2006 Fortran 918 755 5.30E+7
433.milc CPU2006 C 15042 4163 8.43E+7
434.zeusmp|| CPU2006 Fortran 37313 10746 3.75E+7
437.leslie3d|| CPU2006 Fortran 3807 4403 3.80E+7

Table 2. The ten test programs

D
o

——LRU
——OPT ||
—+—PACMAN

a
o
T

N
o

N
o
T

=
o
T

cache miss ratio (%)
w
o

the OPT imprv. the PACMAN
over LRU imprv. over LRU
average| largest || average] largest
SOR 25% 91% 15% 91%
171.swim 19% 64% 12% 59%
172.mgrid 31% 60% 13% 46%
173.applu 17% 50% 8.2% 19%
183.equake 22% 54% 17% 54%
189.lucas 34% 67% 26% 64%
410.bwaves 25% 80% 12% 60%
433.milc 31% 62% 8.8% 22%
434.zeusmp 12% 79% 1.4% 3.9%
437 leslie3d 27% 50% 10% 29%
[average [24% | 66% [12% [45% |

Table 3. The LRU-OPT gap and the PACMAN improvement. The

o

4K 16K
cache sizes (byte)

1K 64K

average improvement is the arithmetic mean of the improvement Figure5. The miss curves of 189.lucas on fully-associative caches

for all cache sizes between 1KB and data size.

programs. Across all ten programs, OPT incurs on average 24%

fewer misses than LRU does on every cache size.
The improvement from LRU to OPT is not uniform. The gap

can be much larger at some cache sizes. The 3rd column of the
table shows that the best improvement is between 50% and 91% in

all programs. In other words, for every program there is a cacke siz
for which at least half of the misses in LRU cache can be eliminated
by optimal caching. These results show a significant potential for
improving cache utilization.

4.4 Thelmprovement by PACMAN

Let misspacman(C) be the number of cache misses incurred
by a program after the PACMAN transformation. We define the
PACMAN improvement as:

misspru(C) — misspacuan(C)
missLru (C)
The improvement may be negative if the number of misses is
increased by PACMAN. We have measured the improvement for
the ten test programs for all cache sizes from 1KB to the program
data size. The results are in Table 3.

The 4th column of the table shows the average improvement for
each program by PACMAN. Seven prografB©R lucas equake
mgrid, swim bwavesandleslie3d show 10% or more average im-
provements across all cache sizes. Two programils,andapply,
show near 8% average improvements. The remainingzsnsmp
does not show a significant improvement (1.4%).

The effect of PACMAN can be plotted for all cache sizes using
a miss ratio curve. In this section, we show the plots firstidoas
andzeusmpwhich have the most and the least improvement in our
test set by PACMAN; and then f@OR swim andappluto show

[0
o

[e2]
o

—e—LRU
——OPT
—— PACMAN
0 I I I 1 1 1 1 1 1
1K 4K 16K 64K 256K 1M 4M 16M 64M
cache sizes (byte)

cache miss ratio (%)
N B
o (=)

Figure 6. The miss curves of 434.zeusmp on fully-associative
caches

the effects of data size, MRU ratio threshold, and cache line size.
The same type graphs for the other 5 programs are included in the
appendix.

Three miss ratio curves are shown in Figure 3dicaswhen ex-
ecuted with LRU caching, OPT caching, and collaborative caching.
The differences between LRU and OPT curves show a large poten-
tial for improvement, on average 34% and up to 67%. The collab-
orative caching by PACMAN realizes over two-thirds of the poten-
tial, reducing the miss ratio by 26% on average and up to 64% in
32KB size cache.

The miss ratio curves afeusmpare shown in Figure 6. There
is a significant room for improvement over LRU, 12% on average

and up to 79%. While PACMAN reduces the miss ratio for almost

all cache sizes, the reduction is very small (1.4% on average).
The PACMAN performance for other programs is somewhere

betweenlucasandzeusmpas shown by the summary in Table 3.

On average, PACMAN reduces the miss ratio by 12% for each ~ 60
program and each cache size. Optimal caching reduces the miss Q\O/ 50
ratio by 24% on average. Hence, under idealized conditions usedin o
this study, PACMAN realizes one half of the improvement potential T 40
of optimal caching. ;
30
45 The Effect of Program Input g
So far we train and test PACMAN on the same input. Acomprehen- @ 20 ——LRU
sive study on the effect of input is outside the scope of this paper G 10H ——oPT
(our concern here is mainly the theoretical properties and the poten- 8 ——PACMAN
tial). But we show that for at least one program, PACMAN shows 0— : ‘ : :
similar improvment with different input sizes. Bwim the matrix 1K 4K 16K 64K 256K 1M 4M
size determines the program data size. We compare the results of cache sizes (byte)
the matrix sized28 x 128 and256 x 256. (a) matrix size is 128*128
The miss ratio curves of the two executionssafimare shown
in Figure 7. The PACMAN curve has an identical shape in both 60
graphs, showing identical improvements over LRU. But because of ~ —
the difference in input size, the improvements happen for different g\/ 50
cache sizes—4KB, 8KB, 512KB, and 1MB for the smaller input o
and 8KB, 16KB, 2MB, and 4MB for the larger input. An LRU T 40
curve shows the size of working sets in an execution. Comparing ;
the two LRU curves, we can see two working sets in this program. ¢ 30
The first working set doubles in size in the larger input, and the e 20
second working set quadruples in size. PACMAN improves the two 0] —eLRU
working sets by the same degree regardless of the input size. :__% 10l ——0PT
46 Thelmpact of the MRU Ratio Threshold o JE==PACMAN]
Currently PACMAN sets the MRU ratio threshold to 50%. A pro- KK ciiGCKhe Eiszlir;eszs(%K tel)M 4M - 1eM
gram reference is designated as MRU if 50% of its run-time ac- y
cesses are MRU in the optimal solution. The benefit of PACMAN (b) matrix size is 256*256

depends on the choice of the threshold. Figure 9 shows one ex-
ample,173.appluon a 512KB cache, for which different threshold ~ Figure 7. The miss curves of 171.swim on two different inputs.
values have a significant effect on performance. When the thresholdThe curves have an identical shape but cover different cache-size
is 0, all memory references become MRU. The miss ratio jumps to ranges: between 1KB and 4MB in the upper graph and between
99%. When the threshold is 100%, only memory references with- 1KB and 16MB in the lower graph.

out LRU accesses are selected as MRU. The effect on this program

is very close to LRU. When the threshold is 50%, the improvement

over LRU is 4.6% (shown for all cache sizes in Figure 8). By choos-

ing the threshold 30% or 35%, the miss ratio is further reduced to

20%. This suggests a higher potential if PACMAN can properly use

different threshold values for different programs.

4.7 A Closer Look at SOR

All the previous evaluations are based on 8-byte cache line size for ’\5 >0 —e—LRU
limit study. However, real cache systems usually use much larger <& 20! —6—O0OPT
cache line size such as 64-byte. We change to use 64-byte cach¢ O —— PACMAN
line size to make a more realistic test with SOR. T

Figure 10 shows the SSA-form [13] of the SOR loop kernel (for ; 301
original code see Figure 2). The loop indexes into afrayp create K]
three virtual arrays+i, Gim1, Gip1 for use in the innermost loop. € 201

The innermost loop has 4 array references. The MRU ratio o
changes with cache sizes, as shown by Figure 11 as a curve for eacl ﬁ 10}
reference. The ratio fo&¥im1[j] is clearly higher than the other 8
three. For cache size between 8KB and 512KB, the MRU ratio is 0 ‘ ‘ ‘ ‘ ‘
from over 12.5% to 63% fof/im1[;] but near O for the other three. 1K 4K 16K 64K 256K 1M
PACMAN chooses this reference as an MRU reference. cache sizes (byte)

The MRU ratio is a factor of 8 lower because of spatial reuse. To —; - —
separate the last touch of a cache block, we transform line 9 to an if- Figures. The miss curves of 173.applu on fully-associative caches
else block (line 9.1 to 9.5) in Figure 10. In actual implementation,
we use loop unrolling instead of branching. In LLVM, we adapt the
available loop unrolling pass and put it at the end of the LTO passes

99

30> S
= —LRU
S ——OPT
o 25/ ——PACMAN |
©
(7]
2 200 \ /]
e
2 45]
[&]
&
[&]
0 10 20 30 40 50 60 70 80 90 100

the threshold value of MRU ratio (%)

Figure 9. The impact of the MRU ratio threshold for 173.applu at

512KB

Require: G is a 2-dimensional double array with the size M*N
1: for p=1; p< NUM_STEPS; p+ido
fori=1;i < M-1;i++do
Gi = Gli];
Gim1l = G[i-1];

2
3
4:
5: Gipl = G[i+1];
6
7
8
9

Gijm1 = Gi[0];
Gij = Gi[1];
for j=1;j < N-1; j++do

Gimlj=Giml[j]; = 9.1:if |%8 == 7then

Giplj = Gip1[j]; 9.2: Gimlj=
11: Gijpl = Gi[j+1]; MRU_load(Gim1[j]);
12: tmpl = Gimlj + Giplj; 9.3else
13: tmpl += Gijm1; 9.4: Gimlj = Gim1[j;
14: tmpl += Gijp1,; 9.5end if
15: tmpl *=0.3125;
16: tmp2 =-0.25 * Gij;
17: tmpl +=tmp2;
18: Gi[j] = tmp1;
19: Gijm1 = tmp1,;
20: Gij = Gijp1;
21: end for
22: end for
23: end for

Figure 10. The SOR kernel loop in SSA form with PACMAN

transformationM = N = 512 andNUM_STEPS = 10.

15 ; ;
—e—Gipl[j]
—_ —o— Gi[j+1]
5 —— Gim1][j]
o' Gl ||
2
©
-
2 5 |
=
0 - 09— 90— 9909909
1K 4K 16K 64K 256K 1M 4M

cache sizes (byte)

Figure 11. The MRU ratio curves of SOR on fully-associative

caches with cache line size 64B

but before the profiling pass. We also change tonsealign ()

10 ‘
< ——LRU
< gl ——OPT ||
_g —+—PACMAN
S el
2]
2
€ 4
0]
5 2
@
o
0 L L L

1K 4K 16K 64K 256K 1M 4M
cache sizes (byte)

Figure 12. The miss curves of SOR on fully-associative caches
with cache line size 64B

instead ofmalloc() to make arrayc 64-byte aligned. After loop
unrolling, the load in line 9.2 has an MRU ratio of 75% at 512KB.

The miss ratio curves of Figure 12 show that PACMAN pro-
duces almost identical results as OPT for cache sizes over 64KB (up
to 2MB). The improvements are significant—2.3%, 5.2%, 10.8%,
22.2%, 44.9%, and 90.7% respectively between 64KB to 2MB. The
average improvement is 15%, as reported in Table 3. It is worth
mentioning that at cache size 2MB, OPT training found 704 MRU
accesses out of more than ten million accesses. These MRU ac-
cesses reduced the miss ratio by an order of magnitude from 3.3%
to 0.3%.

5. Related Work

Cache hints The ISA of Intel Itanium extends the interface of
the memory instruction to provide source and target hints [5]. The
source hint suggests where data is expected, and the target hint
suggests which level cache the data should be kept. The target
hint changes the cache replacement decisions in hardware. IBM
Power processors support bypass memory access that do pot kee
the accessed data in cache [27]. Wang et al. proposed an interface
to tag cache data with evict-me bits [31]. Recently, Ding et al.
developed ULCC which uses page coloring to partition cache to
separately store high locality and low locality data [15]. It may be
used to approximate LRU-MRU cache management in software on
existing machines. The bipartite cache interface in this paper can
imitate the effect of the target hints, cache bypasses, and evict-me
bits. Consequently, the theoretical properties such as the inclusion
principle and bipartite stack distance are valid for these existing
designs of collaborative cache.

Collaborative caching Collaborative caching was pioneered by
Wang et al. [31] and Beyls and D’Hollander [8, 9]. The studies
were based on a common idea, which is to evict data whose for-
ward reuse distance is larger than the cache size. Wang et al. used
compiler analysis to identify self and group reuse in loops [24, 31,
32] and select array references to tag with the evict-me bit. They
showed that collaborative caching can be combined with prefetch-
ing to further improve performance.

Beyls and D’Hollander used profiling analysis to measure the
reuse distance distribution for each program reference. They added
cache hint specifiers on Intel Itanium and improved average per-
formance by 10% for scientific code and 4% for integer code [8].
Profiling analysis is input specific. Fang et al. showed a technique
that accurately predicts how the reuse distances of a memory refer-
ence change across inputs [16]. Beyls and D’Hollander later devel-
oped static analysis called reuse-distance equations and obtained
similar improvements without profiling [9]. Compiler analysis of

reuse distance was also studied by Cascaval and Padua for scienAcknowledgments

tific cod_e [10] and Chauhan and Shei_for Matlab_ programs [11]'. We wish to thank Luke K. Dalessandro for help with LLVM. We
In this paper, we show the theoretical potential of collaborative Iso wish to thank Tongxin Bai, Bin Bao, Arrvindh Shriraman

cachin_g. With _bipartite cache, these techniques may _be extenqe iaoya Xiang, and the anonymous reviewers for their comments
to achieve optimal cache performance. OPT analysis is a poss'bleand/or proofreading

extension. It is more precise. Recall an example in Section 4.7 =g research is supported by the National Science Foundation
where a few hundred MRU accesses can reduce the miss ratio of ¥Contract No. CCF-0963759, CNS- 0834566, CNS-0720796) and
ten-million long trace by an order of magnitude. Such OPT training g1 cAS Faculty Fellowships. Any opinions, findings, and con-
canhbg used to evaluate and improve compiler and profiling-based;sions or recommendations expressed in this material are those
techniques. of the authors and do not necessarily reflect the views of the fund-

Virtual machine, operating system and hardware memory man- ing organizations.

agement Garbage collectors may benefit from the knowledge of

application working set size and the affinity between memory ob- References

jects. For LRU cache, reuse distance has been used by virtual ma- [1] The LLVM Compiler Infrastructurehttp://11vm.org/.

chine systems to estimate the working set size [34] and to group [2] SciMark2.0.http://math.nist.gov/scimark2/.
simultaneously used objects [36]. There have been much research [3] SPEC CPU2000http://www.spec.org/cpu2000.

in operating systems to improve beyond LRU. A number of tech- [4] SPEC CPU2006http: //www.spec.org/cpu2006.

niques used last reuse distance instead of last access time in virtual [5] |A-64 Application Developer’s Architecture Guidklay 1999.
memory management [12,28, 38] and file caching [19]. The idea of [6] L. A. Belady. A study of replacement algorithms for a virtistorage
evicting dead data early has been extensively studied in hardware computer.BM Systems Journal 966.

cache design, including deadblock predictor [22], adaptive cache [7] L. A. Belady, R. A. Nelson, and G. S. Shedler. An anomalypace-
insertion [26], less reuse filter [33], virtual victim cache [21], and time characteristics of certain programs running in a paginghina.
globalized placement [35] Communications of ACML969.

; ; _ [8] K. Beyls and E. D'Hollander. Reuse distance-based chafteselec-
Hardware based techniques improve memory and cache perfor tion. In Proceedings of the 8th International Euro-Par Confergnce

mance without changing software. On the flip side, they do not 2002.

allow software to communicate information about its data usage. (9] k. Beyls and E. D'Hollander. Generating cache hints fmproved
This communication is the goal of collaborative cache. We believe program efficiencyJournal of Systems Architecty2005.

the idea is also interesting for heap and virtual memory manage- [10] C. Cascaval and D. A. Padua. Estimating cache misses aatityo
ment. A basic problem in collaborative systems is that the interface using stack distances. International Conference on Supercomput-
may be misused. We have shown the theoretical properties of this ~ing, 2003.

interface under all uses. Particularly important for software is that [11] A. Chauhan and C.-Y. Shei. Static reuse distances fality-based
the LRU-MRU stack distance exists and may be used to estimate optimizations in MATLAB. InInternational Conference on Super-

the working set size and ref ffinity in collaborative cach computing 2010.
e working set size and reference aflinity in collaborative cache as ;) £ cpen, . Jiang, and X. Zhang. CLOCK-Pro: an effeditivprove-

reuse distance has been used for conventional cache. ment of the CLOCK replacement. Rroceedings of USENIX Annual

))) o Technical Conferenc005.
Optimal caching Optimal caching is difficult purely at the pro- [13] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and Zadeck.
gram level. Kennedy and McKinley [20] and Ding and Kennedy [14] Efficiently computing static single assignment form and theti
showed that optimal loop fusion is NP hard. Petrank and Rawitz dependence grapPA\CM Transactions on Programming Languages
showed that given the order of data access and cache management, _ and Systems.991. _ _ _
the problem of optimal data layout is intractable unless P=NP [25]. [14] C. Ding and K. Kennedy. Improving effective bandwidtrdagh

: . : compiler enhancement of global cache reukrirnal of Parallel and
Our earlier workshop paper showed that collaborative caching can Distr'iabuted ComputingZOOg.

be used to obtain optimal cache performance [17]. It described [15] X. Ding, K. Wang, and X. Zhang. ULCC: a user-level fatilfor

two extensions to LRU called bypass LRU and trespass LRU and optimizing shared cache performance on multicoresProteedings

gave an counter example showing bypass LRU does not observe of the ACM SIGPLAN Symposium on Principles and Practice of

the inclusion principle. The paper gave an efficient algorithm for Parallel Programming2011.

simulating OPT cache replacement, which we use in this paper [16] C. Fang, S. Carr, SOnder, and Z. Wang. Instruction based mem-

for PACMAN training analysis. The previous study assumed that Ory.d'StT‘g‘:e ?”a'ys's angns ﬁ‘ﬁpkcar:!onﬂmceeg'ggs O.f.theT'”tﬁr‘

a program could be optimally transformed. In this paper, we study Q%leoensaZOO%n. erence on Parallel Architecture and CompdatTech-

the properties of collaborative caching in all uses, not just optimal [17] X. Gu, T. Bai, Y. Gao, C. Zhang, R. Archambault, and C. DirRy

uses. OPT: Program-directed optimal cache managemenPraceedings
of the Workshop on Languages and Compilers for Parallel Qdmp
ing, 2008.

6. Summary [18] M. D. Hill and A. J. Smith. Evaluating associativity in CRcaches.

IEEE Transactions on Computerk989.

S. Jiang and X. Zhang. LIRS: an efficient low inter-refece recency
set replacement to improve buffer cache performancBroceedings

In this paper, we have characterized the difference between current
LRU-style cache management and optimal cache management. Tolto]

approximate optimal solution on real cache systems, we have for- of the International Conference on Measurement and Modetih
malized the interface of bipartite LRU-MRU cache and shown that Computer Systemg002.

it obeys the inclusion principle. We give a one-pass simulation al- [20] K. Kennedy and K. S. McKinley. Typed fusion with applians to
gorithm to measure the LRU-MRU stack distance. We have mea- parallel and sequential code generation. Technical R&[88-208,
sured the potential of collaborative caching using a simple algo- Dept. of Computer Science, Rice University, 1993.

rithm based on OPT training analysis. The evaluation on 10 Sci- [21] SI'o ?RSK:;:?Q' vDir'th\éIJ\iirg?rﬁzéaDch EUT?F%CZ%% i?ggi’)'fs?ﬂg fgstw?nggad
Mark and SPEC CP.U benchmarks show that optimal caching can national conference on Parallel architectures and conmjila tech-
reduce the miss ratio by 24% on average per program per cache niques 2010.

size, and collaborative caching has the potential to realize 50% of [22] A -C. Lai, C. Fide, and B. Falsafi. Dead-block predioti& dead-
the optimal performance improvement. block correlating prefetchers. IRroceedings of the International

Symposium on Computer Architectu?®01.

[23] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. [edion
techniques for storage hierarchi¢éBM System Journafl970.

[24] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving dadadlity
with loop transformationsACM Transactions on Programming Lan-
guages and Systemk96.

[25] E. Petrank and D. Rawitz. The hardness of cache corsdata
placement. IrProceedings of the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languag2602.

[26] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr., and ERer. Adap-
tive insertion policies for high performance caching.Piroceedings
of the International Symposium on Computer Architecta@®7.

[27] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyard J. B.
Joyner. Power5 system microarchitectui#M J. Res. Dey.2005.

[28] Y. Smaragdakis, S. Kaplan, and P. Wilson. The EELRU adapt
replacement algorithmPerform. Eval, 2003.

[29] K. So and R. N. Rechtschaffen. Cache operations by MR&hgh.
IEEE Transactions on Computerk988.

[30] R. A. Sugumar and S. G. Abraham. Efficient simulation of esalmn-
der optimal replacement with applications to miss charaatoa. In
Proceedings of the ACM SIGMETRICS Conference on Measutemen
& Modeling Computer System$993.

[31] Z. Wang, K. S. McKinley, A. L.Rosenberg, and C. C. Weemsingd
the compiler to improve cache replacement decisionBraceedings
of the International Conference on Parallel ArchitecturedaCompi-
lation Techniques2002.

[32] M. E. Wolf and M. Lam. A data locality optimizing algorithm.
In Proceedings of the SIGPLAN '91 Conference on Programming
Language Design and Implementatjd®91.

[33] L. Xiang, T. Chen, Q. Shi, and W. Hu. Less reused filter: iaying
L2 cache performance via filtering less reused linesPrisceedings
of the 23rd international conference on Supercompuyt2gpo.

[34] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. Crakirntual
memory support for garbage-collected applicationsPioceedings
of the Symposium on Operating Systems Design and Impletioenta
2006.

[35] M. Zahran and S. A. McKee. Global management of cache hiera
chies. InProceedings of the 7th ACM international conference on
Computing frontiers2010.

[36] C. Zhang and M. Hirzel. Online phase-adaptive data layselec-
tion. In Proceedings of the European Conference on Object-Oriented
Programming 2008.

[37] Y. Zhong, X. Shen, and C. Ding. Program locality anadyssing
reuse distanceACM Transactions on Programming Languages and
Systems2009.

[38] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. ,Ziudi
S. Kumar. Dynamic tracking of page miss ratio curve for memory
management. IrProceedings of the International Conference on
Architectural Support for Programming Languages and Ogia
Systems2004.

A. TheMissRatio Curvesof LRU, OPT, and

PACMAN

Figure 13 to 17 shows the miss-ratio curves of the rest of the test
programs (in addition to programs already shown in Section 4).

N
o

—e—LRU
——-0PT ||
——PACMAN

w
o
T

[y
o
T

o

cache miss ratio (%)
N
o

1K 4K 16K 64K 256K 1M
cache sizes (byte)

~
50 : :
Nl ——LRU
2 40} —6—OPT i
© ——PACMAN
= 30t l
[9)]
2]
'S 20]
2 10t 1
Q
& ol ‘ ‘ ‘ ‘ ‘ i .
© 1K 4K 16K 64K 256K 1M 4M 16M
cache sizes (byte)
Figure 14. 183.equake
—_
S 60
e
=
@ 40]
]
1)
£ 20{{—e-LRU 1
2 —6—OPT
S ——PACMAN !
O 1 1 I I I
© 1K 4K 16K 64K 256K 1M 4M
cache sizes (byte)
Figure 15. 410.bwaves
~—~
50 :
S —e—LRU
2 40f —6—OPT I
© ——PACMAN
= 30t l
(2]
2]
'S 20]
2 10t 1
Q
q ol ‘ ‘ ‘
o
1K 4K 16K 64K 256K 1M
cache sizes (byte)
Figure 16. 433.milc
~
S5
.8 20r I
©
= 15f l
(2]
2]
‘e 10]
2 s]
Q o
S o ‘ ‘ ‘ ‘
© 1K 4K 16K 64K 256K 1M 4M

cache sizes (byte)

Figure13. 172.mgrid

Figure17. 437 .leslie3d

