
Memory Access Analysis and Optimization Approaches
On Splay Trees

Wei Jiang Chen Ding Roland Cheng
Computer Science Department

University of Rochester
Rochester, New York� wjiang,cding,rcheng � @cs.rochester.edu

ABSTRACT
Splay trees, a type of self-adjusting search tree, are introduced and
analyzed. Since they have been widely used in search problems,
any performance improvements will yield great benefits. First, the
paper introduces some background about splay trees and memory
hierarchies. Then, it presents two heuristic algorithms, based on re-
search in reference affinity and data regrouping. These algorithms
have good locality, reduce memory transfers, and decrease cache
miss rates on different architectures. Finally, the paper evaluates
the performance gain of these algorithms on random inputs and
Spec2K benchmark programs.

Keywords
splay tree, memory hierarchy, structure splitting, reference affinity,
cache-oblivious algorithm, Van Emde Boas layout

1. INTRODUCTION
Splay trees are a self-adjusting form of binary search trees. In an

amortized sense (i.e. the time per operation averaged over a worst-
case sequence of operations), splay trees are not much worse than
dynamic balanced trees [3] and static optimal trees [14]. They use
a heuristic restructuring called splaying to move a specified node
to the root of the tree via a sequence of rotations along the path
from that node to the root. Thus, future calls to this node will be
accessed faster. Splay trees even enjoy a constant operation time

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2004 NPC X-XXXXX-XX-X/XX/XX

when the access pattern is uniform and has good locality [2].
The key to a splay tree is, of course, the restructuring splay

heuristic. Specifically, when a node � is searched, it repeats the
following splay step until � is the root of the tree [2]:

� Case 1 (zig): if �����	� , the parent of � , is the root, rotate the
edge joining � with �����
� .

� Case 2 (zig-zig): If �����	� is not the root, and � and �����	� are
both left or both right children, rotate the edge joining �����	�
with its grandparent �	���
� and then rotate the edge joining �
with �����	� .

� Case 3(zig-zag): If �����	� is not the root and � is a left child
and �����	� a right child, or vice versa, rotate the edge joining
� with �����
� and then rotate the edge joining � with the new
�����	� [2].

Figure 1 demonstrates the splay step through examples. Observe
the move-to-root heuristic, which moves the target item to the root
of the tree for each search operation. Although the cost is high for
an individual operation, a benefit is the rough halving of the depth
along the access path.

Aside from being easy to program and efficient in practice, splay
trees also use less space because no balance information is stored.
However, its disadvantages are its requiring adjustments at every
tree search, resulting in potentially expensive individual operations.
Despite the possible ������ time required in the worst case of an in-
dividual operation, splay trees have ������������ amortized time cost,
proved by Sleator & Tarjan [2].

A splay tree has two variants. The algorithm introduced above
applies to a bottom-up splay tree. The second kind of splay tree is
a top-down splay tree. It searches down from the root, looking for
� two nodes at a time, breaking links along the access path, and
adding each detached subtree to the bottom right of the left tree or
the bottom left of the right tree. Figure 2 illustrates this process.
Finally, an assembling step is needed to finish the work. It moves
the accessed node � to the root and sets the left and right children
of � to the L and R in figure 2.

The goal of our work is to reduce memory transfer using refer-
ence affinity analysis and data regrouping techniques, and to ana-
lyze the memory access pattern of a splay tree. In our experiments,
the two kinds of splay tress are compared. Also, two heuristic al-
gorithms are designed to improve the locality of the splay tree al-
gorithm. They are evaluated with randomly generated input and
Spec2K benchmarks.

2. MEMORY OPTIMIZATION TECHNIQUES

Figure 1: Bottom-up splaying steps. The node accessed is � . (a) Zig: single rotation. (b) Zig-zig: two single rotation.(c) Zig-zag:
double rotation.

Figure 2: Top-down splaying step. The node accessed is � , Initial left tree is L, right tree is R. (a) Zig: node � contains the accessed
item. (b)Zig-zig.(c) Zig-zag.

struct N {

int val;
struct N* left;
struct N* right;

} ;

(a) before splitting

struct N fragm0 {

int val;
unsigned int left;

} ;
struct N fragm1 {

unsigned int right;
} ;
struct N fragm0 f0 store[RESERVED];
struct N fragm1 f1 store[RESERVED];

(b) after splitting

Figure 3: structure splitting example

Because CPU speeds grow faster than memory speeds, modern
computers use a memory hierarchy that includes registers, cache,
disks and even networks. Even for a program with a theoretically
good time bound, we may not get the ideal result if we ignore the
impact of memory transfers. Consider the simple case of matrix
multiplication: simply interchanging the loop levels will dramati-
cally improve the performance without affecting time complexity.

Spatial locality is one of the most important factors to be con-
sidered when programming. Data locality is easier to maintain in
problems having regular or static data. But for dynamic data, such
as occurring in splay trees, maintaining locality requires more ef-
fort. In dynamic problems, the design of data structure is more
crucial to moving data efficiently.

Recent research has revealed a possibility that some algorithms
may work well at all levels of the memory hierarchy. We intro-
duce these so called cache-oblivious algorithms in the following
sections.

2.1 Structure Splitting
Current computers usually use cache blocks of at least 64 bytes,

making data grouping very important. Before grouping data, we
must first define a relation. Zhong, et al [10] defined a relation
called reference affinity, which measures how close a group of data
is accessed together within an execution. They measure togeth-
erness with a stack distance, which is defined as the amount of
distinct data accessed between two memory references in an ex-
ecution trace. Note that stack distance is bounded even for long
running programs.

Also, previous work by Ding & Zhong [11] has analyzed reuse
signatures, histograms of the reuse distance of all program accesses.
The reuse signature has a consistent pattern across data in complex
programs. This suggests that we can analyze the affinity of data by
looking at its reuse signatures from training executions. K-distance
analysis is a simplified method of measuring reference affinity. The
parameter � means elements in the same group are almost always
used within a distance of � data elements. So by using � -analysis,
we can get hierarchical affinity relations among data arrays and
structures fields.

After getting the reference affinity of structure fields, we can ap-
ply structure splitting to increase locality. Structure splitting is il-
lustrated in figure 3 above.

This splitting can increase cache utilization, such as after access-
ing a node � , when one of ������� ���	� or �
	������ ���	� is accessed. Pre-
viously, in the original structure, if we accessed node � , then the
whole structure would be loaded, even though ��	������ ���	� may not
be needed in subsequent steps. However, after structure splitting,
more nodes can be loaded in one cache-memory transfer; thus de-

Figure 4: Van Emde Boas Layout

creasing memory-cache transfer. If ��	������ ���	� is accessed, an ad-
ditional load appears to be necessary to load it into cache. But in
fact, we see later that we more frequently access the right children
of other nodes, which may be preloaded in this transfer. So this
load is often useful.

2.2 Cache-oblivious algorithms
Cache-oblivious means almost cache independent, i.e. the algo-

rithm has good efficiency and compatibility on all kinds of memory
hierarchies. The theory of cache-oblivious algorithms is based on
the ideal-cache model. In this model, there are two levels in the
memory hierarchy, called cache and disk. The disk is partitioned
into memory blocks each consisting of a fixed number of consec-
utive cells. The cache has room for � memory blocks. Although
this model seems unrealistic, Frigo and Leiserson showed that it
can simulate any memory hierarchy with a small constant-factor
overhead. Many cache-oblivious algorithms including search trees
have been developed to run well on all memory hierarchies without
knowing the exact value of and � . [4]

Current cache-oblivious tree algorithms include the Van Emde
Boas layout and Packed-Memory Model [4]. Intuitively, placing a
node into consecutive memory positions with its children increases
spatial locality because, frequently, accessing a node’s children oc-
curs after accessing the node itself. This is precisely the idea behind
the Van Emde Boas layout, illustrated in figure 4. By splitting a tree
at mid-height, the tree breaks into top recursive and bottom recur-
sive subtrees. This layout incorporates the recursive nature of each
subtree. It achieves the optimal ���� � ����� memory transfers for a
static optimal search tree.

For a dynamic search tree, we must further consider the destruc-
tion of the tree layout. Itai, Konheim and Rodeh have developed
a technique called packed memory structure, which requires only
����������	��� memory transfers on B-trees [4]. The idea is to use a
sparse method for storing useful elements. Each time an insertion
or deletion occurs in the tree, we do it directly because the sparse

Algorithm M1 Algorithm M2
Regrouping Van Emde Boas Sort by
methods layout frequency of access
Structure No Yes
splitting
Regrouping noise � threshold Search operations
time � threshold

Table 1: Algorithms M1 & M2

array provides space to do it. There is also an associated threshold
to determine when an array is too full or too sparse. When that
threshold is reached, we redistribute the entire tree in a Van Emde
Boas layout.

A splay tree is trickier because after each insertion or deletion, it
transforms the entire path from the node to the root. We discuss a
simplified algorithm next.

2.3 Memory Optimization algorithms
Based on the memory optimization techniques above, an ideal

algorithm should have the following components: a dynamic ana-
lyzer that provides accurate information about the reference affinity
of tree nodes; a regrouping routine that adjusts the memory layout
efficiently, which can speed up the tree search at the expense of
overhead; and a decision-maker which decides when to adjust the
memory layout to get the minimal overhead and maximal speedup.

However, in practice, the algorithm has excessive overhead, es-
pecially in the analyzer. Getting accurate affinity information re-
quires run-time monitoring, which costs an unacceptable amount
of computing resource, even with the most efficient known tech-
niques. Instead, we use heuristics to approximate the optimal al-
gorithm. These heuristic rules are straightforward, e.g. a tree node
should be placed close to its children. Two algorithms are devel-
oped using different heuristics summarized in table 1.

The regrouping routine in ��� will first get the Van Emde Boas
layout of the entire tree and sequentially place all the nodes in one
small memory block. This strategy provides some benefit on spa-
tial locality by grouping the children and their parents in nearby
locations. But as discussed, splaying can destroy these localities.
So we use a noise flag to measure how far the data has been shuf-
fled. To simplify the implementation, we can consider the noise as
the level along the access path because rotation operations are pro-
portional to the levels and are the main reasons of disturbances. If
the noise reaches the threshold, then the redistribute function will
completely rearrange the tree. The amortized time bound of ��� is
������ � ��� because it has only the overhead of redistribution. But
with careful selection of a threshold, the frequency of redistribution
can be reduced. Still, there is a trade-off in selecting a threshold.
In next sections different threshold values are evaluated to find the
best.

Algorithm ��� has three major differences from ��� . First, it
uses structure splitting. Secondly, its regrouping routine places the
nodes according to the times it has been accessed recently. Do-
ing this requires adding a new node member to record access time.
Thirdly, it does not use noise to determine when to regroup. The
rationale is that, if a node is accessed very often, it should be placed
near the root, so that the cost of finding this element is less.

3. EVALUATION

3.1 Bottom-up Vs. Top-down

Length of Search Sequence Top-down (sec) Bottom-up (sec)
10000000 �	� ��
 �	�
�
10000000 �	� �� �	� ���
10000000 �	� ��� �	�
�
20000000
	�
� �	� �	�
20000000
	� ��
 �	�����
20000000
	� ��
 �	�����

Table 2: bottom-up Vs. top-down

To compare the performance of bottom-up and top-down splay-
ing, a bottom-up splay tree is implemented using exactly the same
data structure as the original except that a pointer is added to its
parent at each tree node. Test environment:

Machine: PC
CPU: P4 2.0 GHz
Memory: 512M
OS: Linux kernel 2.4.20-19.9
Inputs: random generated keys in [1, 10000]

Comparing the two programs, we found that the bottom-up ver-
sion averaged 22% percent faster than the top-down version. Both
methods used a top-down procedure to find the searched node. The
bottom-up algorithm has good locality because it acts like a stack,
which first visits the last accessed node. So the reuse distance of
bottom-up is about ����� while top-down is � . The algorithm was
run against a random memory access generator and compiled on a
Linux system with gcc. Results appear in table 2.

3.2 Heuristic algorithm ��� with random in-
puts

As discussed above, the ��� algorithm regroups the tree nodes
by sequentially placing all the nodes in a Van Emde Boas layout
when noise � threshold. Since the regrouping routine has over-
head, the efficiency of ��� depends on two factors: the subtree size
in the Van Emde Boas layout and the threshold to regroup. Figure
5 shows the test results under the following environment:

Machine: PC
CPU: P4 2.0 GHz
Memory: 512M
OS: Linux kernel 2.4.20-19.9
Inputs: random generated keys in [1, 10000]

length of input sequence is 50,000,000.
We can see from the result that the overhead of regrouping can-

not be ignored, because with a very low threshold, the running
time increases dramatically. Another observation is that regroup-
ing speeds up the execution, e.g. (100, 4) is faster than (1000, 4),
although it did more redistribution than the latter one. By carefully
choosing the proper values for a threshold and subtree depth, we
can increase the performance of the splay tree by 10% for randomly
generated inputs.

3.3 Heuristic algorithms M1 and M2 on Spec2K
benchmarks

Platforms. The experiments use ��� ����� � � ��� machines with
OSF1 V4.0 cc compiler.
Tools. A source-level instrumentation and a run-time monitor pro-
file accesses to individual data. The instrumentation program is
called atom, which is only available on ��� ����� � � ��� machines.
The profiling tool was developed by Ding and Zhong to measure
the reuse signatures of programs. [11]

The test result is displayed in Figure 6. Compared to random
inputs, ��� does not get the same performance improvement: only

subtree depth

ti
m

e

1

10

100

1000

org

1 356.76 322.19 273.06 243.79 209.99 171.77 148.7

10 98 93.85 89.23 87.75 82.11 82.65 80.55

100 72.75 71.95 69.21 72.8 71.47 72.39 71.38

1000 69.63 70.77 72.85 71.49 72.71 70.98 70.68

org 83.24 83.24 83.24 83.24 83.24 83.24 83.24

2 3 4 5 6 8 10

Figure 5: ��� with random search operations. � -axis is the depth of the Van Emde Boas recursive subtree, � -axis is the execution
time. Different lines correspond to different threshold, ��� means if (noise¿10*number of nodes in this tree) then regroup; �
� � is the
original splay tree program.

0.8

0.85

0.9

0.95

1

1.05

Applu Art Equake Fma3d Gcc Lucas Twolf

Oringal

M1

M2

Figure 6: The test results of ��� and � � algorithm on Spec2K benchmarks. The test is on ��� � � � � � ��� machines by using the
system program atom, which is a source-level instrumentation and run-time monitor. The � axis is scaled value of execution time;
the original is normalized to 1.

1 � 3%. The reason is that the affinity assumption works well for
random tree searches but gains little improvement for program traces,
where the possibility of accessing left and right children may differ
significantly. Also the layout of the splay tree changes too fre-
quently, which reduces the benefits of regrouping.

It is unexpected that ��� works almost as well as ��� although
its heuristic is very naive; namely, sort by access frequency. This
shows that only a small part of the total tree is visited often. Moving
them to the root will improve the performance, albeit not by much.

4. CONCLUSIONS
In practice, splay trees show very complex memory access pat-

terns, which make simple grouping strategies not applicable in many
cases. However, if we assume that the possibility of accessing left
and right children are nearly equal, then the ��� algorithm may re-
duce the execution time up to 10%. Of course, in real application
programs, due to the existence of inherited access patterns, usually
it is not possible to gain such dramatic improvements. To the best
of our knowledge, this is the first study to compare top-down splay
trees with the bottom-up splay trees.

5. ACKNOWLEDGMENTS
The original splay-tree implementation was provided by Daniel

Sleator. Our experiments were mainly based on local machines pur-
chased by several NSF Infrastructure grants and equipment grants
from Compaq/HP and Intel. We also used the reuse distance ana-
lyzer developed by Ding and Zhong.

6. REFERENCES
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern

Architectures: A Dependence-based Approach. Morgan
Kaufmann Publishers, 2001.

[2] Daniel Dominic Sleator, Robert Endre Tarjan. Self-Adjusting
Binary Search Trees. In Journal of the Association for
Computing Machinery,Vol.32, No.3, July 1985, pp.652-686.

[3] Adelson-Velskii G.M., and Landis E.M An algorithm for the
organization of information. In Sov. Math. Dokl. 3 (1962),
1259-1262..

[4] Michael A.Bender, Erik D.Demaine, and Marine
Farach-Cloton. Cache Oblivious B-Trees. In Proc. 13th
ACM-SIAM Symp. On Discrete Algorithms (SODA), 2002.

[5] A.Itai, A.G.Konheim, and M.Rodeh. A sparse table
implementation of priority queues. In Proc. 8th Colloquium
on Automata, Languages and Programming, LNCS 115,
pp.417-431, July 1981.

[6] P.van Emde Boas. Preserving order in a forest in less than
logarithmic time. In Proc.16th IEEE Symposium Found.
Comp. Sci., pp. 75-84, Berkeley, California, 1975.

[7] T. M. Chilimbi. Efficient representations and abstractions for
quantifying and exploiting data reference locality. In
Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, Snowbird, Utah,
2001.

[8] C. Ding. Improving Effective Bandwidth through Compiler
Enhancement of Global and Dynamic Cache Reuse. PhD
thesis, Dept. of Computer Science, Rice University, January
2000.

[9] C. Ding and K. Kennedy. Improving cache performance in
dynamic applications through data and computation
reorganization at run time. In Proceedings of the SIGPLAN
’99 Conference on Programming Language Design and
Implementation, Atlanta, GA, May 1999.

[10] Yutao Zhong, Maksim Orlovich, Xipeng Shen, and Chen
Ding. Array Regrouping and Structure Splitting Using
Whole-Program Reference Affinity. To be appear on ACM
SIGPLAN Conference on Programming Language Design
and Implementation, Washinton DC, June 2004.

[11] Chen Ding and Yutao Zhong. Predicting Whole-Program
Locality through Reuse-Distance Analysis. In Proceedings of
ACM SIGPLAN Conference on Programming Language
Design and Implementation, San Diego, California, June
2003.

[12] Y. Zhong, C. Ding, and K. Kennedy. Reuse distance analysis
for scientific programs. In Proceedings of Workshop on
Languages, Compilers, and Run-time Systems for Scalable
Computers, Washington DC, March 2002.

[13] Gerth Stlting Brodal. External Memory Algorithms In IT-C
Course on Advanced Algorithms,Department of Computer
Science, University of Aarhus.

[14] Hu, T.C., and Tucker, A.C. Optimal computer-search trees
and variable-length alphabetic codes. In SIAM J. Appl. Math.
37,pp. 246-256, 1979.

