
Miss Rate Prediction across All Program Inputs

Yutao Zhong, Steven G. Dropsho, and Chen Ding

Computer Science Department
University of Rochester

{ytzhong,dropsho,cding}@cs.rochester.edu

Abstract

Improving cache performance requires understanding
cache behavior. However, measuring cache performance
for one or two data input sets provides little insight into
how cache behavior varies across all data input sets. This
paper uses our recently published locality analysis to gen-
erate a parameterized model of program cache behavior.
Given a cache size and associativity, this model predicts the
miss rate for arbitrary data input set sizes. This model also
identifies critical data input sizes where cache behavior ex-
hibits marked changes. Experiments show this technique is
within 2% of the hit rate for set associative caches on a set
of integer and floating-point programs.

1 Introduction

The efficiency of a computer system to execute a pro-
gram depends highly on the effectiveness of the memory
hierarchy to supply requested data quickly. However, since
the structure of the processor’s memory hierarchy is al-
most always fixed, the overall efficiency depends on how
well the program reference pattern matches the given cache
structure. The memory reference pattern of the program it-
self depends on the particular data set used for input. Thus,
it is necessary to understand the fundamental memory ref-
erence behavior of a program across all input data sets to
determine how effective the memory hierarchy will be at
efficiently supporting the program in general.

The effectiveness of memory cache hierarchies de-
pends on the locality of data accesses in the programs.
Measurements of locality are made in one of three primary
ways. One method is to have compilers perform sophis-
ticated analyses of loop nests to estimate memory access
patterns statically. A second method employs profilers to
run an application with one or more input data sets and
directly measure the dynamic memory behavior, but often
with significant performance overhead. The third method
uses analysis at run-time to infer behavior by subsampling
activity. Limited sampling keeps the measurement over-
head to a minimum. The latter two methods, profiling and
run-time analysis, reveal behavior relative to a particular in-
put data set. Static compiler analysis can provide behavior

details for a range of input data sets, but accurate analysis
is difficult if data indirection is used or if the control flow
graph is complex. None of these methods adequately pro-
vide the capability to predict the memory reference pattern
for a broad range of programs and data input sizes.

Characterizing cache behavior has generally taken the
form of varying the cache characteristics and measuring be-
havior for a given program with a particular data input set.
The architectural defining features of a cache design are
its size, associativity, and cache line (block) size. Tech-
niques have been developed to simulate a wide range of
cache sizes [18] and associativities [15] simultaneously.
Currently missing is a similar method to efficiently explore
a broad range of cache line sizes, though the limited range
of line sizes traditionally considered means brute force ex-
ploration may be sufficient for the time being.

A fourth dimension little discussed is how cache be-
havior for a given cache configuration (size, associativity,
and line size) varies as the program data set varies. We
show this exploration space graphically in Figure 1. The
three dimensional space varies cache size on one axis, as-
sociativity on another, and program data set size on a third,
for a fixed line size. While prior work on cache charac-
terization techniques address how to quickly explore the
planar space delineated by the size and associativity axes,
this paper describes how to extend the exploration along
the program data set size axis in an efficient manner. The
method utilizes data reuse signature patterns, a fundamen-
tal quality of a program behavior [9].

Cache siz
e

(Line size = L)

Cache associativity

Pr
og

ra
m

 d
at

a
si

ze

Figure 1. Cache behavior exploration space
1

Data reuse signature patterns are defined by measure-
ments of a program’s data reuse distance. In sequential
execution, reuse distance is the number of distinct data ele-
ments accessed between two consecutive references to the
same element. The reuse distance is a measure of the ca-
pacity that a fully associative cache must have for the sub-
sequent access to hit in the cache. Thus, reuse distance
accurately describes access behavior to a fully associative
cache. Ding and Zhong analyzed the reuse pattern of data
elements [9]. We use their analysis to analyze the reuse of
cache blocks as a pre-step for cache miss prediction.

We present a method for predicting program miss rates
across a wide range of program data set and cache sizes.
This technique uses reuse distance information from two
input data sets of different sizes then extracts a parame-
terized model of the program’s fundamental data reuse pat-
tern. We present a method to convert the data reuse distance
information into cache miss rates for any input size and for
any size of fully associative cache. We demonstrate that
this method accurately depicts memory reference behav-
ior and cache performance. The predictions are accurate
across a wide range of data sets that vary in size by many
orders of magnitude. We show the technique provides good
approximations even for caches of limited associativity.

A primary strength of this method is that, unlike static
compiler analysis, the method is general so it easily ac-
commodates programs with data indirection or complex
dynamic control flow. However, not all programs exhibit
predictable access patterns, though a surprising number of
applications do. Also, the cache blocking factor is not cur-
rently part of the model. Thus, all measurements and pre-
dictions are made relative to a specified blocking factor,
which is 32 bytes in our experiments.

This prediction technique has many uses. First, crit-
ical input data set sizes can be identified where the miss
rate changes dramatically for a given cache. These knees
in the miss rate curve have important significance on the
overall performance of the program. Second, these critical
input data sizes can be well beyond the size of some of the
available benchmark reference data sets; thus, the critical
data set sizes are unlikely to be discovered by profiling or
run-time sampling methods. Third, some applications have
inputs which are difficult to generate in various sizes, e.g.,
tomcatv takes a model as input. The predicted miss rate
curves provide insight into program behavior that may not
be practical to generate by any other means. Fourth, al-
though we focus on sequential applications in this paper,
this technique can be applied readily to parallel program-
ming as a guide for partitioning data for efficient caching.

The rest of the paper is organized as follows. In Sec-
tion 2 we demonstrate how to predict program reference
patterns and convert this information to a cache miss rate.
Section 3 contains the methodology and results are pre-
sented in Section 4. Related work is discussed in Section 5
and we make concluding remarks in Section 6.

2 Cache Miss Rate Estimation

We analyze program locality based on the concept of
reuse distance. The essence of reuse distance is a measure-
ment of the volume of the intervening data between two

accesses. This quality is independent to the granularity of
data elements. In this paper, we treat each distinct cache
block as a basic data element.

C Reuse distance (cache blocks)

5%Pe
rc

en
t o

f
re

fe
re

nc
es

10%

15%

20%

Figure 2. Reuse distance histogram example

Figure 2 is a histogram of reuse distances for a pro-
gram. References are grouped by the number of cache
blocks referenced between subsequent accesses (i.e., the
reuse distance) and the distribution is normalized to the to-
tal number of references. The number of intervening cache
blocks between two consecutive accesses to the a cache
block, along with cache size, determines whether the sec-
ond access hits in a fully associative LRU cache. This is the
basis for our prediction model. In the example, the fraction
of references to the left of the mark C will hit in a fully as-
sociative cache having capacity of C blocks or greater. For
set associative caches, reuse distance is still an important
hint to cache behavior[2].

Our approach to predict the cache miss ratio for a given
program across different data inputs consists of two main
steps. The first step is to model the program locality as
predictable reuse distance patterns; the second step is to
estimate the miss rate according to the obtained patterns.

2.1 Locality Pattern Recognition

This section summarizes our prior results from [9]
upon which our cache model is based. The reuse histogram
depicts locality behavior of a program showing the percent-
age of memory accesses with a given reuse distance. In pro-
filing, we use Atom[21] to instrument the program and link
to the analyzer as described in [9] to collect reuse distance
information. Pattern recognition is used to discover the pa-
rameterized general model for program locality behavior
from the reuse histograms generated during profiling.

Forming reference groups. The reuse distance his-
togram is composed of references to cache blocks that of-
ten exhibit a pattern. The pattern might be a constant reuse
distance, e.g., sequential accesses to a block while stepping
through an array. The histogram can include patterns that
are proportional to the data set size, where the data set size
is the number of unique cache lines accessed by the pro-
gram. For example, reuses of the first access to a block may
be related to the square root of the size of a two dimensional
array. The histogram is an aggregation of all accesses and,

2

C Reuse distance (cache blocks)

5%Pe
rc

en
t o

f
re

fe
re

nc
es

10%

15%

20%

(a) Partitioning histogram into groups

g1
jg1

i g1
k

g2
i g2

kg1
j g2

j g1
k

1/2

Reuse distance

Reuse distance

Groupings for data set 2

Groupings for data set 1

0.1%

Pe
rc

en
t r

ef
er

en
ce

s
Pe

rc
en

t r
ef

er
en

ce
s

0.1%

constant O(s) O(s)

(b) Pairing groups

Figure 3. Estimating reuse distance functions for
each group

thus, includes many types of patterns. The modeling tech-
nique classifies portions of the histogram into groups and
models each group by a function type.

The difficulty is how to tease apart which references
are represented by the different function types. The follow-
ing technique is a heuristic that works well experimentally.
In this technique, we compare the reuse histograms from
two runs of the program having two different sizes of data
sets. For each histogram, we form G = 1000 groups by
assigning 0.1% of the histogram to a group, starting from
the shortest reuse distance and moving towards the largest.
The dotted lines in Figure 3(a) (qualitatively) show a par-
titioning. An implicit assumption is that references of like
reuse distance can be modeled by a similar function type.

To estimate a function for how a group’s reuse distance
varies with data set size requires at least two sample points

for each group. Thus, we pair the ith groups from the two
runs, (g1

i , g2
i). First, note that the number of references in

each run of the program is quite different, but each group
represents 1

G of the total references of the respective run.
Thus, each group has the same fraction of references. This
presumes that the proportion of each class of reference re-
mains the same for different inputs, which is true for all
programs we tested. We justify this pairing of groups with
the observation that reuse patterns are a function of data
size, s, and this component dominates in determining the
reuse distance. The result is that the groups become sorted
from left to right by functions of increasing power of s, e.g.,
reuse distance increases more rapidly for groups based on
s than for those based on

√
s.

In Figure 3(b) we show three groups and the reuse dis-
tance histogram for two runs. In the second run, the move-
ment of the groups is shown relative to the first run. The
estimated function types are also shown. The first group
gi does not move between the runs, so its reuse distance is
independent of the data set size (constant). On the other
hand, gj has a square root relationship to the data size,
O(

√
s), and gk has a linear relationship, O(s). Dividing

the histogram into 1000 groups limits the error from any
single estimated model. The final model is a parameter-
ized set of 1000 functions. The method of determining the
functions is presented next.

Recognizing individual patterns. Given two histograms
with different data sizes, the pattern recognition step con-
structs a formula for each group of references. Let d1

i be
the distance of the ith group in the first histogram, d2

i be
the distance of the ith group in the second histogram, s1 be
the data size of the first run, and s2 the data size of the sec-
ond run. The pattern for this group is a linear fitting based
on the data size. Specifically, we want to find the two coef-
ficients, ci and ei, that satisfy the following two equations.

d1
i = ci + ei ∗ fi(s1) (1)

d2
i = ci + ei ∗ fi(s2) (2)

Assuming the function fi is known, the two coefficients
uniquely determine the distance for any other data size. The
pattern is more accurate if more profiles are collected for
the linear fitting. The minimal number of inputs is two.

The formula is based on an important fact about reuse
distance: in any program, the largest reuse distance can-
not exceed the size of program data. Therefore, the func-
tion fi can be linear at most, and the pattern is a linear or
sub-linear function of data size, not a general polynomial
function. We consider the following choices for fi. The
first is pconst(s) = 0. We call such formula a constant pat-
tern because reuse distance does not change with data size.
The second is plinear (s) = s, a linear pattern. Constant
and linear are the lower and upper bounds of the distance
patterns. Between them are sub-linear patterns, for which
we consider three: p1/2 (s) = s1/2 , p1/3 (s) = s1/3 , and
p2/3 (s) = s2/3 . The first occurs in two dimensional prob-
lems such as matrix computation. The other two occur in
three dimensional problems such as physics simulation. We

3

could consider higher dimension problems in the same way
but we did not find a need in the programs we tested.

For each group pair (g1
i , g2

i), we calculate the ratio of
their average distance, d2

i /d1
i , and pick fi to be the pattern

function, pt, such that pt(s2)/pt(s1) is closest to d2
i /d1

i .
Here t is one of the patterns described in the last paragraph.

Recording the overall model. We select large enough
sizes of profiling inputs so that it is unlikely that references
having different patterns (i.e., functions based on input size
s) become mixed in the same group. The overall model of
the program is the aggregation of the individual fitted func-
tions for each group. The details for the set of functions
making up the model are recorded in the data structures
defined in Figure 4.

model for program p
Model = structure{

patternNo: number of patterns;
patterns: Pattern[patternNo];
groupNo: total number of groups;

}
Pattern = structure{

type: enum{ pconst, p1/3,
p1/2, p2/3, plinear }

groupNo: number of groups;
groups: Formula[groupNo];

}
Formula = structure{

c: constant coefficient;
e: non-constant coefficient;

}
Figure 4. Locality Model Definition

2.2 Cache Miss Rate Estimation

After generating the locality model of a program, we
can use the model to predict the locality behavior for any
data input size sd. We predict the reuse distance for each
group gi via their particular formula given sd:

di = ci + ei ∗ fi(sd) (3)

The overall reuse distance distribution is the aggregation
of the reuse distance of each group. For any given size
of a fully associative LRU cache, we estimate the capac-
ity miss rate directly from the reuse distance distribution.
The groups with a reuse distance larger than or equal to
the given cache size will be capacity misses. The number
of these groups gives an estimation of the miss rate. The
detailed algorithms for reuse distance prediction and cache
miss rate estimation are described in Figure 5.

From the locality model, we can also derive the max-
imum possible miss rate of a program for a given cache
size. Here we consider two important properties of the
reuse distance model. First, only references with a reuse
distance larger than or equal to the cache size are cache
misses. References with shorter reuse distance will hit in
cache because of temporal locality. The second property

algorithm PredictRD(model, sized)
input: model: the locality model

sized: the data input size
output: rd[model.groupNo]:

the reuse distance distribution
begin

index = 0;
foreach pattern in model.patterns do

f = pattern.type;
foreach formula in pattern.groups do

distance = formula.c + f(sized) * formula.e;
rd[index]=distance; index++;

end foreach
end foreach

end
end algorithm

algorithm EstimateMR(model, sized, sizec)
input: model: the locality model

sized: the data input size
sizec: the cache size

output: missRate
begin

missed =0;
rd = PredictRD(model,sized);
for (index = 0 ; index<model.groupNo;index++)

if (rd[index] ≥ sizec)
missed ++;

end for
missRate = missed / model.groupNo;

end
end algorithm

Figure 5. Cache miss rate estimation

is that reuse distance having linear or sub-linear patterns
monotonically increase with the input size. The distances
of references having a constant pattern, on the other hand,
are independent of the input size. From these two facts,
we can infer that for a certain cache size, if we increase the
program data input size, the cache miss rate may remain the
same or increase, but it will never decrease. Furthermore,
the maximum miss rate will be reached when the input size
is large enough so that all references with a non-constant
pattern have a reuse distance larger than the cache size.

Figure 6 shows the main algorithm to predict the maxi-
mum cache miss rate and the corresponding threshold input
size for a given cache of size C blocks. Suppose among the
total G groups (G = 1000 for all our results), the number
of reference groups with a pattern dependent on data size
s is Gs and the number of groups having a pattern inde-
pendent of data size (constant) with a fixed reuse distance
greater than the capacity of the cache is Gc, the maximum
miss rate is calculated as Miss Ratemax = (Gs + Gc)/G.

The threshold input size (Ts) is the smallest input size
in which cache miss rate reaches the maximum value for
the program and given cache configuration. To estimate its
value, we only need to consider the single non-constant ref-
erence group having the shortest reuse distance. The max-
imum miss rate occurs when this group, gj , has a reuse
distance greater than or equal to the cache size C, dj ≥ C.

4

algorithm MaxMR(model, sizec)
input: model: the locality model

sizec: the cache size
output: maxMR: maximum miss rate

sized: threshold data input size
begin

constPattern = model.patterns[0];
nonConstGroup =

model.groupNo - constPattern.groupNo;
constGroup = ConstMR(model,sizec);
maxMR = (constGroup + nonConstGroup) /

model.groupNo;
if (model.patternNo > 1)

sized =
GetCriticalInputSize(model.patterns[1],sizec);

else
sized = null;

end if
end

end algorithm

subroutine ConstMR(model, sizec)
input: model: the locality model

sizec: the cache size
output: constGroup: the number of constant groups

with a reuse distance longer than sizec

begin
index =0;
constPattern = model.patterns[0];
constRD = constPattern.groups[0].c;
while (sizec ≤ constRD) do

index++;
constRD = constPattern.groups[index].c;

end while
constGroup = constPattern.groupNo - index - 1;

end
end subroutine ConstMR

subroutine GetCriticalInputSize(pattern, distance)
input: pattern: the given pattern of model

distance: the reuse distance
output: sized: threshold data input size
begin

f = pattern.type;
formula = pattern.groups[0];
sized =

f−1((distance − formula.c)/formula.e);
end

end subroutine GetCriticalInputSize

Figure 6. Max miss rate & threshold input predic-
tion

By manipulating Equation 3 we can directly calculate the
required input data size from this condition:

Ts = f−1
j ((C − cj)/ej) (4)

If the model only contains the constant pattern, the cache
miss rate is the same for all inputs. In this case, ej is
zero and generates a meaningless null threshold input. The
threshold input size Ts is useful since it is the smallest input

that generates the worst case hit ratio for a fully associative
cache (we address limited associativity in Section 4).

Model accuracy verification. Only two input sets are
necessary to generate a miss rate model for a program.
However, if more input sets are measured, multiple models
can be generated from pair-wise groupings and the predic-
tions evaluated for the excluded data set sizes. For exam-
ple, for three data set sizes, A, B, and C, three combina-
tions of pairs are possible, (A, B), (A, C), and (B, C). The
data sets used for verification would be C, B, and A, re-
spectively. Thus, a degree of confidence for the model can
be measured with limited exploration of the data set space.

3 Methodology

We use the cache simulator Cheetah[22] included in
Simplescalar 3.0 toolset to collect cache miss statistics.
Cache configurations are fully associative cache, 1-, 2-,
4- and 8-ways and all with a 32-byte block size. We use
Atom[21] to instrument the binary to collect the addresses
of all loads and stores and feed them to Cheetah.

The model predicts capacity miss ratios. The fraction
of compulsory misses is the ratio of the data touched to the
total number of accesses. This ratio cannot be predicted,
in general, because of data dependent features such as a
variable number of iterations over the data. However, the
relative fraction of compulsory misses is small when there
is significant data reuse and can be ignored without signifi-
cant impact on the miss rate. In our results, the compulsory
misses make up an average of 0.7% of the accesses and
account for less than 10% of the misses.

To evaluate our prediction, we post-process the data
collected by Cheetah and extract the number of capacity
and conflict misses, but exclude the compulsory misses.
We call the extracted miss rate the reuse miss rate and
calculate it from the number of accesses (Ntotal) and the
number of compulsory misses (Ncompulsory):

reuse miss rate =
miss rate × Ntotal − Ncompulsory

Ntotal − Ncompulsory

In the results, all reported miss rates are the
reuse miss rate. The sizes of the two target caches are 64
KB and 1 MB, which represent reasonable sizes for the first
and second level caches, respectively.

The benchmarks are listed in Table 1. The third col-
umn shows the main patterns identified for each of the pro-
grams. The table also shows the accuracy of our prediction
scheme for reuse distance. Let xi and yi be the size of
ith group in predicted and measured histograms. The cu-
mulative difference, E, is the sum of differences |yi − xi|
for all i. In the worst case, E is 200%. We use 1 − E/2
as the accuracy. It measures the common parts of the two
histograms, ranging from 0% (no match) to 100% (perfect
match). To show the accuracy of our prediction of reuse
distance, we choose three inputs for each benchmark, as
listed in column 4. Column 5 and 6 summarize these in-
puts by data input size in cache blocks and the total number

5

Table 1. Cache Block Reuse Pattern Prediction
Data size in Memory Block Element *

Benchmark Description Patterns Input cache blocks references Accuracy(%) Accuracy(%)
Applu solution of five const ref(603) 5.70M 4.23B 96.1 83.6

(Spec2K) coupled nonlinear 3rd roots train(243) 333K 230M 97.0 94.7
PDE’s linear test(123) 34.5K 22.3M

Swim finite difference const ref(5122) 461K 132M 98.9 99.0
(Spec95) approximations for 2nd root 4002 289K 80.7M 98.7 99.3

shallow water equation linear 2002 74.3K 20.2M
SP computational fluid const 503 1.21M 443M 96.5 90.3

(NAS) dynamics (CFD) 3rd roots 323 323K 110M 97.0 95.8
simulation linear 283 218K 74.4M

Tomcatv vectorized mesh const ref(5132) 459K 39.4M 94.3 92.4
(Spec95) generation 2nd root train(2572) 116K 9.83M

linear 4002 282K 39.1M 94.6 99.2
FFT fast Fourier const 5122 262K 67.8M 91.8 84.3

transformation 2nd root 2562 65.6K 15.3M 94.0 94.0
linear 1282 16.5K 3.45M

Gcc based on the cp-decl 86.6K 134M 98.7 98.6
(Spec95) GNU C compiler const amptjp 53.4K 103M 98.7 98.7

version 2.5.3 genoutput 18.2K 9.71M
ADI two-dimensional const 5002 188K 5.99M 97.5 na

alternate direction 2nd root 3002 67.5K 2.16M 94.3 na
implicit integration linear 2002 30.0K 959K

Average 96.3 94.2
*Element accuracy comes from [9](PLDI’03)

of memory references. Based on the profiled results of the
two smaller inputs, we predict the reuse distance distribu-
tion for the largest input. We also predict the middle one
based on the smallest and largest inputs. The results are
given in the second to the last column. The average accu-
racy is 96.3%. In our earlier paper[9], we report the pre-
diction of reuse distance for each data element and reprint
those results in the last column. The last two columns show
the block-based prediction obtains comparable results.

4 Results

4.1 Fully-associative cache results

Shown in Figures 7 and 8 are the predicted cache miss
curves for each of the seven applications assuming a fully
associative cache. In each pairing, the upper graph is the
estimate for a 64KB (2K blocks) cache and the lower graph
is the estimate for a 1MB (32K blocks) cache. The input
data set size is varied along the x-axis and the miss rate
percentage along the y-axis. The data size is given in cache
blocks; multiplying by 32 converts the range to bytes. The
data set size is the number of unique cache lines accessed
by the program. The range on the y-axis is the same in all
graphs, but the range on the x-axis varies and is shown as
log scale. The two leftmost vertical lines shown in each
graph mark the two sample data set sizes to generate the
model. The third line is the largest input data size we were
able to simulate. The vertical lines are consistent (at the
same data sizes) within a pair of graphs.

The most noticeable feature is that each graph has one
or more inputs in which the miss rate exhibits a sharp jump.

These jumps occur at input data set sizes where another
portion of the reuse histogram dependent on s moves be-
yond the cache size. Thus, the maximum miss rate of an
application occurs further out in the 1 MB cache compared
to the 64KB cache. At input data sizes that achieve the
maximum miss rate, all hits in the cache are due to the por-
tion of the reuse distance histogram that have a constant
reuse distance within the cache size. It is interesting to note
that the estimation function does not require the input data
sets be from sizes corresponding to “interesting” regions of
the miss rate graph, e.g., bracketing jumps in the miss rate.

The application gcc is notable in its lack of features.
The constant pattern has the best fit because the working
data set size is related to the per function size. Since the
input programs all have similarly sized functions (though
programs may have a different number of functions), the
reuse distance pattern is insensitive to the total program
size. The graphs show a horizontal line for both the 64
KB and 1 MB caches (the line is on the zero mark).

4.2 Limited associativity cache results

Reuse distance is based on a fully associative cache
design implementing LRU replacement. However, fully as-
sociative hardware caches are impractical to implement, so
the caches typically have limited associativity from direct-
mapped to 8-way. In Figures 9 and 10, we verify the cache
miss rate predictions of our model to actual miss rates from
detailed cache simulations. We show the results for each
application for both 64 KB and 1 MB cache sizes. Each
graph has six curves plotted: direct-mapped, 2-way, 4-way,
8-way, fully associative, and the predicted miss rate.

6

Tomcatv reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

Swim reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

Tomcatv reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

data sizein cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

Swim reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

Applu reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

FFT reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

Applu reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

FFT reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

Figure 7. Estimated miss rates for tomactv, swim, applu, fft, 64KB and 1MB caches

7

ADI reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

SP reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

ADI reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

SP reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

Gcc reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 20000 40000 60000 80000 100000 120000

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

Gcc reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 20000 40000 60000 80000 100000 120000

data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated

Figure 8. Estimated miss rates for ADI, SP, gcc, 64KB and 1MB caches

The graphs in Figures 9 and 10 use a subset of the
ranges for the predictions shown in Figures 7 and 8. The
smaller range is because of limitations in the processor
memory, the capabilities of the Cheetah simulator, or the
difficulty in generating large enough input sets. In Fig-
ures 7 and 8, the third vertical line (rightmost) in each graph
marks the largest data set size actually simulated. What is
evident is that most applications exhibit interesting behav-
ior beyond what we were able to simulate for this paper.
This difficulty highlights a benefit of our approach: a pa-
rameterized model of cache behavior can reveal data set
sizes where interesting cache behavior occurs and where
program analysis should be focused. In fact, only for ADI

with a 64 KB cache were we successful in simulating a
wide enough data set range to capture all interesting cache
behavior predicted by the model.

Overall, it is difficult to separate the different lines in
each of the plots because the curves across the different
configurations are so similar. However, this also demon-
strates that our modeling technique makes accurate predic-
tions. Figures 11(a) and 11(b) summarize the relative error
across all the applications and cache configurations. Shown
is the absolute relative error of the hit rate between the mea-
sured and predicted values averaged across all measured
data points for each application and for each associativity.
We use the hit rate for the error measure because it is more

8

Tomcatv reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

Swim reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

Tomcatv reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

Swim reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

Applu reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

FFT reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

Applu reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

FFT reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

Figure 9. Verification miss rate estimates tomactv, swim, applu, fft, 64KB and 1MB caches

9

ADI reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

SP reuse miss rate for 64K cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

ADI reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

SP reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

Gcc reuse miss rate for 64K cache

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

0 20000 40000 60000 80000 100000 120000

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

Gcc reuse miss rate for 1M cache

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

0 20000 40000 60000 80000 100000 120000

data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

Figure 10. Verification miss rate estimates ADI, SP, gcc, 64KB and 1MB caches

stable than the miss rate in regions where the miss rate is
near zero. Of course, a small percentage error in the hit rate
will generally represent a larger relative percentage in the
miss rate. The full data set shown in Figures 9 and 10 can
be used to put the error rates into proper perspective.

From Figure 11, the average relative error is less than
1% between the model and a simulated fully associative
cache (FA). The error is below 2% for all applications when
the cache associativity is 4-way or greater. Two applica-
tions, tomcatv and swim, have a higher relative error (max
7.4%) when the associativity is small. Referring back to
Figures 9 and 10, the direct mapped cache plot for both
applications have noticeably worse miss rates. These ad-

ditional misses are conflict misses which full associativity
eliminates. The overall accuracy despite ignoring conflict
misses is due to the fact in many applications that the miss
rate is dominated by capacity misses [19].

The program ADI exhibits interesting behavior in Fig-
ure 10. For a cache size of 1 MB, the model predicts a
dramatic rise in the miss rate between data set sizes of 20K
and 40K cache blocks, i.e., 640 KB and 1.28 MB. This is
the point in which the cache’s 1 MB capacity is exceeded.
However, the direct mapped cache’s miss rate exhibits a
slower rise between 30K and 70K cache blocks, i.e., 960
KB and 2.1 MB. The reason for the improved miss rate is
that the fully associative cache LRU policy displaces blocks

10

that will be used in the relatively near future because of in-
sufficient capacity. In the direct mapped cache, however,
the limited mapping of blocks results in blocks being re-
placed randomly relative to their access order, which hap-
pens to improve the miss rate overall for a limited data set
range.
A visualization tool Interested readers can recreate these
results as well as results for other cache sizes and other
benchmarks using an on-line interactive graphical tool at
www.cs.rochester.edu/research/locality/.

5 Related Work

Program cache behavior has been extensively studied
mainly from two directions: program analysis and trace-
driven cache simulation.

Program analysis. Dependence analysis analyzes data
accesses and can measure the number of capacity misses
in a loop nest. Gannon et al. estimated the amount of
memory needed by a loop [12]. Other researchers used
various types of array sections to measure data access in
loops and procedures. Such analysis includes linearization
for high-dimensional arrays by Burke and Cytron [4], lin-
ear inequalities for convex sections by Triolet et al. [23],
regular sections by Callahan and Kennedy [5], and refer-
ence list by Li et al. [17]. Havlak and Kennedy studied
the effect of array section analysis on a wide range of pro-
grams [14]. Cascaval extended dependence analysis to es-
timate the distance of data reuses [6]. One limitation of
dependence analysis is that it does not model cache inter-
ference caused by the data layout. Ferrente et al. gave
an efficient approximation of cache interference in a loop
nest [11]. Recent studies used more expensive (worst-
case super-exponential) tools to find the exact number of
cache misses. Ghosh et al. modeled cache misses of a
perfect loop nest as solutions to a set of linear Diophan-
tine equations [13]. Chatterjee et al. studied solutions of
general integer equations and used Presburger solvers like
Omega [7]. The precise methods are effective for a sin-
gle loop nest. For full applications, researchers have com-
bined compiler analysis with cache simulation. McKin-
ley and Temam carefully measured various types of refer-
ence locality within and between loop nests [19]. Mellor-
Crummey et al. measured fine-grained reuse and program
balance through a tool called HPCView [20].

For regular loop nests, compiler analysis identifies not
only the cache behavior but also its exact causes in the
code. However, the precise analysis does not yet model
inter-nest cache misses efficiently except for Cascaval [6].
In addition, compiler analysis is not as effective for pro-
grams with input-dependent control flows and data indi-
rection. This paper presents an alternative that is fairly
accurate, efficient, and applicable to programs with arbi-
trary control flow and data access expressions. At least
four compiler groups have used reuse distance for differ-
ent purposes: to study the limit of register reuse [16] and
cache reuse [8, 24], to evaluate the effect of program trans-
formations [1, 2, 8, 24], and to annotate programs with
cache hints to a processor [3]. In the last work, Beyls and

D’Hollander used reuse distance profiles to generate hints
in SPEC95 FP benchmarks and improved performance by
7% on an Itanium processor [3]. The techniques in this pa-
per will allow compiler writers to estimate cache behavior
for data inputs based on a few profiling runs.

Cache simulation. Trace-driven cache simulation has
been the primary tool to evaluate cache design including
the cache size, block size, associativity, and replacement
policy. Mattson et al. gave a stack algorithm that measured
cache misses for all cache sizes in one simulation [18].
Hill extended the one-pass algorithms to measure the miss
rate in direct-mapped caches and practical set-associative
caches [15]. While these techniques simulated the entire
address trace, many later studies used sampling to reduce
the length of the simulation. Our work adds another di-
mension. It estimates the miss rate of data inputs without
running all inputs, including those that might be too large
to run, let alone to simulate.

Eeckhout et al. studied correlations between miss rates
of 9 programs across 79 inputs using principal components
analysis followed by hierarchical clustering [10]. Since
program runs in the same cluster had similar behavior, they
could reduce the redundancy in a benchmark set by picking
only one run from each cluster. Our result may strengthen
their method by increasing the coverage. It suggests that
many programs have only a few different miss rates across
all data inputs, and a wide range of inputs may have the
same miss rate. The miss-rate prediction can ensure that
a benchmark set includes all miss rates and the smallest
program runs for these miss rates by suggesting them as
candidates for benchmark selection.

6 Summary

This paper presents an algorithm for estimating the
miss rate of a program for all its input sizes. Based on a
few training runs, the algorithm constructs a parameterized
model that predicts the miss rate of a fully associative cache
with a given cache-block size. By supplying the range of all
input sizes as the parameter, we can predict miss rates for
all data inputs on all sizes of fully associative caches. For
a given cache size, the model also predicts the input size
where the miss rate exhibits marked changes. Our experi-
ments show the prediction accuracy is 99% for fully asso-
ciative caches and better than 98% for caches of limited as-
sociativity, excluding compulsory misses. In addition, the
predicted miss rate is either very close or proportional to
the miss rate of direct-map or set-associative cache.

References

[1] G. Almasi, C. Cascaval, and D. Padua. Calculating stack
distances efficiently. In Proceedings of the first ACM SIG-
PLAN Workshop on Memory System Performance, Berlin,
Germany, June 2002.

[2] K. Beyls and E. D’Hollander. Reuse distance as a metric for
cache behavior. In Proceedings of the IASTED Conference
on Parallel and Distributed Computing and Systems, August
2001.

11

Avg Hit Rate Relative Error: 64K cache

0.0%

2.0%

4.0%

6.0%

8.0%

SA_1 SA_2 SA_4 SA_8 FA

cache configurations

re
la

ti
ve

 e
rr

o
r

ADI APPLU FFT GCC SP SWIM TOMCATV

(a) 64KB cache

Avg Hit Rate Relative Error: 1M cache

0.0%

2.0%

4.0%

6.0%

8.0%

SA_1 SA_2 SA_4 SA_8 FA

re
la

ti
ve

 e
rr

o
r

ADI APPLU FFT GCC SP SWIM TOMCATV

(b) 1MB cache

Figure 11. Relative hit rate error

[3] K. Beyls and E. D’Hollander. Reuse distance-based cache
hint selection. In Proceedings of the 8th International Euro-
Par Conference, Paderborn, Germany, August 2002.

[4] M. Burke and R. Cytron. Interprocedural dependence anal-
ysis and parallelization. In Proceedings of the SIGPLAN ’86
Symposium on Compiler Construction, Palo Alto, CA, June
1986.

[5] D. Callahan, J. Cocke, and K. Kennedy. Analysis of in-
terprocedural side effects in a parallel programming envi-
ronment. Journal of Parallel and Distributed Computing,
5(5):517–550, Oct. 1988.

[6] G. C. Cascaval. Compile-time Performance Prediction of
Scientific Programs. PhD thesis, University of Illinois at
Urbana-Champaign, 2000.

[7] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck.
Exact analysis of the cache behavior of nested loops. In
Proceedings of ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, Snowbird, UT,
2001.

[8] C. Ding. Improving Effective Bandwidth through Compiler
Enhancement of Global and Dynamic Cache Reuse. PhD
thesis, Dept. of Computer Science, Rice University, January
2000.

[9] C. Ding and Y. Zhong. Predicting whole-program locality
with reuse distance analysis. In Proceedings of ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, San Diego, CA, June 2003.

[10] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere.
Workload design: selecting representative program-input
pairs. In Proceedings of International Conference on
Parallel Architectures and Compilation Techniques, Char-
lottesville, Virginia, September 2002.

[11] J. Ferrante, V. Sarkar, and W. Thrash. On estimating and en-
hancing cache effectiveness. In U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors, Languages and Compil-
ers for Parallel Computing, Fourth International Workshop,
Santa Clara, CA, Aug. 1991. Springer-Verlag.

[12] K. Gallivan, W. Jalby, and D. Gannon. On the problem of
optimizing data transfers for complex memory systems. In
Proceedings of the Second International Conference on Su-
percomputing, St. Malo, France, July 1988.

[13] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equa-
tions: A compiler framework for analyzing and tuning mem-
ory behavior. ACM Transactions on Programming Lan-
gauges and Systems, 21(4), 1999.

[14] P. Havlak and K. Kennedy. An implementation of inter-
procedural bounded regular section analysis. IEEE Trans-
actions on Parallel and Distributed Systems, 2(3):350–360,
July 1991.

[15] M. D. Hill. Aspects of cache memory and instruction buffer
performance. PhD thesis, University of California, Berke-
ley, November 1987.

[16] Z. Li, J. Gu, and G. Lee. An evaluation of the potential ben-
efits of register allocation for array references. In Workshop
on Interaction between Compilers and Computer Architec-
tures in conjuction with the HPCA-2, San Jose, California,
February 1996.

[17] Z. Li, P. Yew, and C. Zhu. An efficient data dependence
analysis for parallelizing compilers. IEEE Transactions on
Parallel and Distributed Systems, 1(1):26–34, Jan. 1990.

[18] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evalua-
tion techniques for storage hierarchies. IBM System Journal,
9(2):78–117, 1970.

[19] K. S. McKinley and O. Temam. Quantifying loop nest local-
ity using SPEC’95 and the perfect benchmarks. ACM Trans-
actions on Computer Systems, 17(4):288–336, November
1999.

[20] J. Mellor-Crummey, R. Fowler, and D. B. Whalley. Tools for
application-oriented performance tuning. In Proceedings of
the 15th ACM International Conference on Supercomputing,
Sorrento, Italy, June 2001.

[21] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design
and Implementation, Orlando, Florida, June 1994.

[22] R. A. Sugumar and S. G. Abraham. Efficient simulation of
multiple cache configurations using binomial trees. Tech-
nical Report CSE-TR-111-91, CSE Division, University of
Michigan, 1991.

[23] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization
of CALL statements. In Proceedings of the SIGPLAN ’86
Symposium on Compiler Construction, Palo Alto, CA, June
1986.

[24] Y. Zhong, C. Ding, and K. Kennedy. Reuse distance analy-
sis for scientific programs. In Proceedings of Workshop on
Languages, Compilers, and Run-time Systems for Scalable
Computers, Washington DC, March 2002.

12

