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Abstract
Many sequential applications are difficult to parallelize because
of unpredictable control flow, indirect data access, and input-
dependent parallelism. These difficulties led us to build a software
system for behavior oriented parallelization (BOP), which allows a
program to be parallelized based on partial information about pro-
gram behavior, for example, a user reading just part of the source
code, or a profiling tool examining merely one or few executions.

The basis of BOP is programmable software speculation, where
a user or an analysis tool marks possibly parallel regions in the
code, and the run-time system executes these regions speculatively.
It is imperative to protect the entire address space during specula-
tion. The main goal of the paper is to demonstrate that the gen-
eral protection can be made cost effective by three novel tech-
niques: programmable speculation, critical-path minimization, and
value-based correctness checking. On a recently acquired multi-
core, multi-processor PC, the BOP system reduced the end-to-end
execution time by integer factors for a Lisp interpreter, a data com-
pressor, a language parser, and a scientific library, with no change
to the underlying hardware or operating system.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Concurrent Programming—parallel programming; D.3.4
[Programming Languages]: Processors—optimization, compilers

General Terms Languages, Performance

Keywords speculative parallelization, program behavior

Dedication This paper is dedicated to the memory of Ken
Kennedy, who passed away on February 7, for his lasting lead-
ership in parallel computing research.

1. Introduction
Many existing programs have dynamic high-level parallelism, such
as, a compression tool that processes data buffer by buffer, an En-
glish parser parsing sentence by sentence, and an interpreter in-
terpreting expression by expression. They are complex and may
make extensive use of bit-level operations, unrestricted pointers,
exception handling, custom memory management, and third-party

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

while (1) {
get work();
...
BeginPPR(1);
step1();
step2();
EndPPR(1);
...

}

Figure 1. possible loop paral-
lelism

...
BeginPPR(1);
work(x);
EndPPR(1);
...
BeginPPR(2);
work(y);
EndPPR(2);
...

Figure 2. possible function
parallelism

libraries. The unknown data access and control flow make such ap-
plications difficult if not impossible to parallelize in a fully au-
tomatic fashion. On the other hand, manual parallelization is a
daunting task for complex programs, pre-existing ones in particular.
Moreover, many programs have input-dependent behavior where
both the degree and the granularity of parallelism are not guaran-
teed or even predictable. The complexity and the uncertain perfor-
mance gain make it difficult to justify the investment of time and
the risk of error.

We address these problems with behavior oriented paralleliza-
tion (BOP). Here the behavior is defined as the set of all possible
executions of a program. The goal of BOP is to improve the (part
of) executions that contain coarse-grain, possibly input-dependent
parallelism, while guaranteeing correctness and basic efficiency for
other cases. Unlike traditional code-based approaches that exploit
the invariance in all behavior, a behavior based system utilizes par-
tial information to incrementally parallelize a program or to stream-
line it for common uses.

The new system lets a user or a profiling tool to suggest possibly
parallel regions (PPR) in a program by marking the start and the end
of the region with matching markers: BeginPPR(p) and EndPPR(p).
Figures 1 and 2 show the marking of possible (pipelined) loop
parallelism and possible function parallelism respectively. PPR
is region-based (which is different from communication-based
do-across [1, 10]), the parallelism is likely but not definite
(which is different from future and parallel section constructs [17,
27]), and a region may have unpredictable entries or exits (which is
different from transactions [19]).

To support possible parallelism, BOP protects the entire address
space by dividing it into possibly shared and privatizable subsets
and monitoring and replicating them accordingly. The virtual mem-
ory (VM) protection mechanism in modern operating systems can
be readily used for this purpose. For BOP, the VM protection effects
on-demand data replication and supports complete rollback.

The process-based protection has a high overhead. However,
much of it is inherently unavoidable for a software scheme to



support unpredictable computations. A major goal of this paper
is to show that general protection can be made cost effective by
mainly three techniques.

First, most overheads—starting, checking, and committing—
are placed on the speculative path, while the system uses unmon-
itored, non-speculative execution to ensure basic progress if all
speculation should fail. We will show how the system holds a
tournament between speculative and non-speculative executions, so
that it uses the speculative result only when the parallel execution
finishes not only correctly but also faster than the sequential exe-
cution. The parallelized program in the worst case is as fast as its
unmodified sequential version.

Second, BOP uses value-based checking, which is more general
than dependence-based checking (also known as Bernstein condi-
tions [1, 3]). It permits parallel execution in the presence of true
dependences and it is one of the main differences between process-
based BOP and existing thread-based systems (as discussed in Sec-
tion 2.5). In the paper we give a proof of its correctness and show
how BOP bounds and hides its run-time costs.

In implementation, BOP differs from prior techniques of specu-
lative execution and current techniques of transactional memory in
that the overhead of BOP depends on the size of accessed data rather
than the length of the parallel execution. Consequently, the cost is
negligible if the size of the parallel task is sufficiently large. This
leads to its third feature: BOP is programmable. We will describe its
profiling technique and user interface for finding appropriate paral-
lel regions.

BOP inherits two inherent limitations of speculation: the execu-
tion may be faster but not more efficient (because of extra CPU,
memory, and energy usage), and the speculative region cannot in-
voke general forms of I/O and other operations with unrecoverable
side effects. However, the main advantage of BOP is ease of pro-
gramming. Parallelizing a complex application will perhaps always
require non-trivial code changes, but the process is greatly facili-
tated by the system because the programmer no longer needs to un-
derstand the entire application, spend time in parallel programming
or debugging, or worry about the negative performance impact of
parallelization.

Compared to thread-based techniques, BOP has the overhead of
general protection and the problem of false sharing. However, the
overhead of the system is automatically hidden by the granularity
of tasks regardless of their parallelism. Furthermore, BOP can be
more efficient because it uses unmodified, fully optimized sequen-
tial code, while explicit threading and its compiler support are of-
ten restrained due to concerns over the weak memory consistency
on modern processors. As we will see in the evaluation section,
the generality and basic efficiency make it possible for large, exist-
ing software to benefit from parallel execution, that is, to be paral-
lelized without being paralyzed.

2. Behavior-oriented Parallelization
2.1 Possibly Parallel Regions
The PPR markers are written as BeginPPR(p) and EndPPR(p), where
p is a unique identifier. At a start marker, BOP forks a process that
jumps to the matching end marker and speculatively executes from
there. While multiple BeginPPR(p) may exist in the code, EndPPR(p)
must be unique for the same p. The matching markers can only
be inserted into the same function. The exact code sequence in C
language is as follows.

• BeginPPR(p): if (BeginPPR(p)==1) goto EndPPR p;
• EndPPR(p): EndPPR(p); EndPPR p:;

At the presence of unpredictable control flows, there is no guar-
antee that a start marker is followed by its end marker, or the match-

ing markers are executed the same number of times. For example, a
longjmp in the middle of a parallel region may cause the execution
to back out and re-enter.

The BOP system constructs a sequence of non-overlapping PPR
instances using a dynamic scope. Based on the order the PPR
markers are executed at run time, BOP dynamically delineates the
boundary of PPR instances. While many options are possible, in
the current design we use the following scheme: At any point t,
the next PPR instance starts from the first start marker operation
BeginPPR(p) after t and then ends at the first end marker operation
EndPPR(p) after the BeginPPR(p). For example, assume the program
has two PPR regions P and Q marked by mb

P , me
P , mb

Q, and me
Q.

If the program, from the start t0, executes the markers six times
from t1 to t6 as follows:

t0 t1 t2 t3 t4 t5 t6
mb

P mb
P me

P mb
Q me

P me
Q

Two dynamic PPR instances are from t1 to t3 and from t4 to t6,
which will be run in parallel. The other fragments of the execution
will be run sequentially, although the part from t3 to t4 is also
speculative. Note that the above scheme is only one example of
the many choices the run-time system can take. In principle, BOP
may dynamically explore different schemes in the same execution.

Compared to the static and hierarchical scopes used by most
parallel constructs, the dynamic scope lacks the structured paral-
lelism to model complex task graphs and data flows. While it is
not a good fit for static parallelism, it is a useful solution for the
extreme case of dynamic parallelism in unfamiliar code.

A coarse-grain task often executes thousands of lines of code,
communicates through dynamic data structures, and has non-local
control flows (exceptions). Functions may be called through indi-
rect pointers, so parallel regions may be interleaved instead of being
disjoint. Some of the non-local error handling may be frequent, for
example, an interpreter encountering syntax errors. In addition, ex-
ceptions are often used idiomatically, for example, resizing a vector
upon an out-of-bound access. Some non-local jumps are rare. For
example, the commonly used gzip program has error checking and
abnormal exit in the compression code. Although in our experience
no error has ever happened, if one cannot prove the absence of er-
ror in gzip (or other sizeable software), dynamic scopes such as PPR
can be used to parallelize the common cases while guarding against
unpredictable or unknown entries and exits.

Since the PPR markers can be inserted anywhere in a program
and executed in any order at run-time, the system tolerates incorrect
marking of parallelism, which can easily happen when the region is
marked by a profiling tool based on a few inputs or given by a user
unfamiliar with the code. The markers are programmable hints, so
are other parts of the interface, where the quality of hints affects the
parallelism but not the correctness nor the worst-case performance.

2.2 The Parallel Ensemble
The BOP system uses concurrent executions to hide the speculation
overhead off the critical path, which determines the worst-case per-
formance where all speculation fails and the program runs sequen-
tially.

2.2.1 Lead and Spec Processes
The execution starts as the lead process, which continues to execute
the program non-speculatively until the program exits. At a (pre-
specified) speculation depth k, up to k processes are used to execute
the next k PPR instances. For a machine with p available processors,
the speculation depth is set to p−1 to make the full use of the CPU
resource (assuming CPU is the bottleneck).

Figure 3 illustrates the run-time setup by an example. Part (a)
shows the sequential execution of three PPR instances, P , Q, and
R. Part (b) shows the speculative execution. When the lead process
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Figure 3. An illustration of the sequential and the speculative
execution of three PPR instances

reaches the start marker of P , mb
P , it forks the first speculation

process, spec 1, and continues to execute the first PPR instance.
Spec 1 jumps to the end marker of P and executes from there.
When spec 1 reaches the start of Q, mb

Q, it forks the second
speculation process, spec 2, which jumps ahead to execute from
the end of Q.

At the end of P , the lead process starts the understudy process,
which re-executes the following code non-speculatively. Then it
waits for spec 1 to finish, checks for conflicts, and if no conflict
is detected, commits its changes to spec 1, which assumes the role
of the lead process so later speculation processes are handled recur-
sively in a similar manner. The kth spec is checked and combined
after the first k−1 spec processes commit. When multiple spec pro-
cesses are used, the data copying is delayed until the last commit.
The changed data is copied only once instead of multiple times in
a rolling commit. Our implementation of these steps is shown later
in Section 3.1.

The speculation runs slower than the normal execution because
of the startup, checking, and commit costs. The costs may be much
higher in process-based systems than in thread-based systems. In
the example in Figure 3(b), the startup and commit costs, shown as
gray bars, are so high that the parallel execution of spec 1 finishes
slower than the sequential understudy. However, by that time spec
2 has finished and is ready to commit. The second commit finishes
before the understudy finishes, so spec 2 aborts the understudy and
becomes the next lead process.

BOP executes PPR instances in a pipeline and shares the basic
property of pipelining: if there is an infinite number of PPRs, the
average finish time is determined by the starting time not the length
of each speculation. In other words, the parallel speed is limited
only by the speed of the startup and the size of the sequential
region outside PPR. The delays during and after speculation do not
affect the steady-state performance. This may be counter intuitive
at first because the commit time does not matter even though it is
sequentially done. In the example in Figure 3(b), spec 2 has similar
high startup and commit costs but they overlap with the costs of
spec 1. In experiments with real programs, if the improvement
jumps after a small increase in the speculation depth, it usually
indicates a high speculation overhead.

Table 1. BOP actions for unexpected behavior
behavior prog. exit or error unexpected PPR markers
lead exit continue
understudy exit continue
spec(s) abort speculation continue

2.2.2 Understudy: Non-speculative Re-execution
BOP assumes that the probability, the size, and the overhead of
parallelism are all unpredictable. The understudy provides a safety
net not only for correctness (when speculation fails) but also for
performance (when speculation is too slow). For performance, BOP
holds a two-team race between the non-speculative understudy and
the speculative processes.

The non-speculative team represents the worst-case perfor-
mance or the critical path. If all speculation fails, it sequentially
executes the program. As we will explain in the next part, the over-
head for the lead process only consists of the page-based write
monitoring for the first PPR instance. The understudy runs as the
original code without any monitoring. As a result, if the granularity
of PPR instance is large or when the speculation depth is high, the
worst-case running time should be almost identical to that of the
unmodified sequential execution. On the other hand, whenever the
speculation finishes faster than the understudy, it means a perfor-
mance improvement over the would-be sequential execution.

The performance benefit of understudy comes at the cost of
potentially redundant computation. However, the cost is at most
one re-execution for each speculatively executed PPR, regardless
of the depth of the speculation.

With the understudy, the worst-case parallel running time is
mostly equal to the sequential time. One may argue that this can
be easily done by running the sequential version side by side in
a sequential-parallel race. The difference is that the BOP system
is running a relay race for every group of PPR instances. At the
whole-program level it is sequential-parallel collaboration rather
than competition because the winner of each relay joins together
to make the fastest time. Every time counts when speculation runs
faster, and no penalty when it runs slower. In addition, the parallel
run shares read-only data in cache and memory, while multiple se-
quential runs do not. Finally, running two instances of a program is
not always possible for a utility program, since the communication
with the outside world often cannot be undone. In BOP, unrecover-
able I/O and system calls are placed outside the parallel region.

2.2.3 Expecting the Unexpected
Figure 3 shows the expected behavior when an execution of PPR
runs from BeginPPR to EndPPR. In general, the execution may reach
an exit (normal or abnormal) or an unexpected PPR marker. Ta-
ble 1 shows the actions of the three types of processes when they
encounter an exit, error, or unexpected PPR markers.

The abort by spec in Table 1 is conservative. For example, spec-
ulation may correctly hit a normal exit, so an alternative scheme
may delay the abort and salvage the work if it turns out correct. We
favor the conservative design for performance. Although it may re-
compute useful work, the checking and commit cost cannot delay
the critical path.

The speculation process may allocate an excessive amount of
memory and attempt unrecoverable operations such as I/O, other
OS calls, or user interactions. The speculation is aborted upon file
reads, system calls, and memory allocation over a threshold. The
file output is buffered and is either written out or discarded at
the commit point. Additional engineering can support regular file
I/O. The current implementation supports stdout and stderr for the
pragmatic purpose of debugging and verifying the output.



2.2.4 Strong Isolation
We say that BOP uses strong isolation because the intermediate re-
sults of the lead process are not made visible to speculation pro-
cesses until the lead process finishes the first PPR. Strong isolation
comes naturally with process-based protection. It is a basic differ-
ence between BOP and thread-based systems, where the updates of
one thread are visible to other threads. We call it weak isolation.
We discuss the control aspect of the difference here and complete
the rest of comparisons in Section 2.5 after we describe the data
protection.

Weak isolation allows opportunistic parallelism between two
dependent threads, if the source of the dependence happens to
be executed before the sink. In the BOP system, such parallelism
can be made explicit and deterministic using PPR directives by
placing dependent operations outside the PPR region (for example,
in Figure 3, the code outside PPR executes sequentially). At the
loop level, the most common dependence comes from the update
of the loop index variable. With PPR, the loop control can be easily
excluded from the parallel region and the pipelined parallelism is
definite instead of opportunistic.

The second difference is that strong isolation does not need syn-
chronization during the parallel execution but weak isolation needs
to synchronize between the lead and the spec processes when com-
municating the updates between the two. Since the synchroniza-
tion delays the non-speculative execution, it adds visible overheads
(when speculation fails) to the thread-based systems but not to BOP.

Although strong isolation delays data updates, it detects specu-
lation failure and success before the speculation ends. Like systems
with weak isolation, strong isolation detects conflicts as they hap-
pen because all access maps are visible to all processes for reads
(each process can only update its own map during the parallel exe-
cution). After the first PPR, strong isolation can check for correct-
ness before the next speculation finishes by stopping the specula-
tion, checking for conflicts, and communicating data updates. As
a design choice, BOP does not abort speculation early because of
the property of pipelined parallelism, explained at the end of Sec-
tion 2.2.1. The speculation process, no matter how slow, may im-
prove the program speed, when enough of them work together.

2.3 Checking for Correctness
The BOP system guarantees that the same result is produced as
in the sequential execution if the speculation succeeds. It par-
titions the address space of a running program into three dis-
joint groups: shared, checked, and private. More formally, we
say Dall = Dshared + Dchecked + Dprivate, and any two of
Dshared, Dchecked, and Dprivate do not overlap.

For the following discussion we consider two concurrent
processes—the lead process that executes the current PPR instance,
and the spec process that executes the next PPR instance and the
code in between. The cases for k (k > 1) speculation processes
can be proved inductively since they commit in a sequence in the
BOP system.

2.3.1 Three types of data protection
Page-based protection of shared data All program data are
shared at BeginPPR by default and protected at page granularity.
During execution, the system records the location and size of all
global variables and the range of dynamic memory allocation. At
BeginPPR, the system turns off write permission for the lead pro-
cess and read/write permission for the spec processes. It installs
customized page-fault handlers that raise the permission to read or
write upon the first read or write access. At the same time, the han-
dler records which page has what type of access by which process.
At the commit time, each spec process is checked in an increasing
order, the kth process fails if and only if a page is written by the

shared = GetTable();
...
while (...) {
...
BeginPPR(1)
...
if (...)
checked = checked + Search(shared, x)
Insert(private, new Node(checked))
...
if (!error) Reset(checked)
...
EndPPR(1)
...

}

Figure 4. Examples of shared, checked, and private data

lead process and the previous k−1 spec processes but read by spec
k. If speculation succeeds, the modified pages are merged into a
single address space at the commit point.

By using Unix processes for speculation, the BOP system elim-
inates all anti- and output dependences through the replication of
the address space and detects true dependences at run-time. An ex-
ample is the variable shared in Figure 4. It may point to some large
dictionary data structures. Page-based protection allows concurrent
executions as long as a later PPR does not need the entries produced
by a previous PPR.

The condition is significantly weaker than the Bernstein condi-
tion [3], which requires that no two concurrent computations access
the same data if at least one of the two writes to it. The additional
parallelism is due to the replication of modified data, which re-
moves anti- and output dependences. For example, the write access
by spec k to a page does not invalidate earlier spec processes that
read concurrently from the same (logical) page.

Page-based protection has been widely used for supporting dis-
tributed shared memory [22,23] and many other purposes including
race detection [28]. While these systems enforce parallel consis-
tency among concurrent computations, the BOP system checks for
dependence violation when running a sequential program.

A common problem in page-level protection is false sharing.
We alleviate the problem by allocating each global variable on its
own page(s). Writes to different parts of a page may be detected
by checking the difference [22] at the end of PPR. In addition,
the shared data is never mixed with checked and private data (to
be described next) on the same page, although at run time newly
allocated heap data are private at first and then converted to shared
data at EndPPR.

Value-based checking Dependence checking is based on data ac-
cess not data value. It is sufficient but not necessary for correctness.
Consider the variable checked in Figure 4, which causes true de-
pendences as both the current and next PPR instances may read and
modify it. On the other hand, the reset statement at the end may re-
install the old value as checked had at the beginning. The parallel
execution is still correct despite of the true dependence violation.
This case is called a silent dependence [31].

There is often no guarantee that the value of a variable is reset by
EndPPR. In the example, the reset depends on a flag, so the “silence”
is conditional. Even after a reset, the value may be modified by
pointer indirection. Finally, the rest operation may assign different
values at different times. Hence run-time checking is necessary.

For global variables, the size is statically known, so the BOP
system allocates checked variables in a contiguous region, makes a
copy of their value at the BeginPPR of the lead process, and checks
their value at the EndPPR. For dynamic data, the system needs to
know the range of addresses and performs the same checking steps.



Checked data are found through profiling analysis or identified by a
user (described more in Section 2.6). Since the values are checked,
incorrect hints would not compromise correctness. In addition, a
checked variable does not have to return to its initial value in
every PPR instance. Speculation still benefits if the value remains
constant for just two consecutive PPR instances.

Most silent dependences come from implicit re-initialization.
Some examples are that the loop level increments and decrements
when a compiler compiles a function, the traversed bits of the
objects in a graph are set and reset during a depth-first search, and
the work-list is filled and emptied in a scheduling pass. We classify
these variables as checked data, which may take the same value at
BeginPPR and EndPPR, in other words, the PPR execution may have
no visible effect on the variable.

The shared data and checked data have a significant overlap,
which are the data that are either read only or untouched by the
parallel processes. We classify them as checked if their size is
small; otherwise, they are shared. A problem is when different
parts of a structure or an array require different protection schemes.
Structure splitting, when possible, may alleviate the problem.

The correctness of checked data is not obvious because their
intermediate values may be used to compute other values that are
not checked. Section 2.4 presents a formal proof of the correctness
to show how the three protection schemes work together to cast a
complete shield against concurrency errors.

Likely private data The third group is private data, which is
initialized before being used and therefore causes no conflict. In
Figure 4, if private is always initialized before it is used, the access
in the current PPR cannot affect the result of the next PPR, so any
true dependence cause by it can be ignored.

Private data come from three sources. The first is the program
stack, which includes local variables that are either read-only in the
PPR or always initialized before use. Dataflow analysis can identify
privatizable variables [4, 16]. When the two conditions cannot be
guaranteed by compiler analysis, for example, due to unknown
control flow or the address of a local variable escaping into the
program heap, we can redefine the local variable to be a global
variable and classify it as shared data. For recursive functions, we
can either use a stack of pages or disable the PPR.

The second source is global variables and arrays that are always
initialized before the use in the PPR. The standard technique to de-
tect this is inter-procedural kill analysis [1]. In general, a compiler
may not always ascertain all cases of initialization. For global data
whose access is statically known in a program, the compiler auto-
matically inserts calls after the initialization assignment or loop to
classify the data as private at run time. Any access by the specula-
tion process before the initialization causes it to be treated as shared
data. For (non-aggregate) data that may be accessed by pointers, the
system places it on a single page and treats it as shared until the first
access. Additionally, we allow the user to specify the list of vari-
ables that are known to be written before read in PPR. These vari-
ables are reinitialized to zero at the start of a PPR instance. Since we
cannot guarantee write-first access in all cases, we call this group
likely private data.

The third type of private date is newly allocated data in a PPR
instance. Before BeginPPR, the lead process reserves regions of
memory for speculation processes. Speculation would abort if it
allocates more than the capacity of the region. The main process
does not allocate into the region, so at EndPPR, its newly allocated
data can be merged with the data from the speculation process.
For programs that use garbage collection, we encapsulate the heap
region of spec processes, which we will describe when discussing
the test of a lisp interpreter. Another solution is to ignore GC,
which, if happens during a PPR instance, will cause speculation
to fail because of the many changes it makes to the shared data.

Overheads on the critical path The three data protection schemes
are summarized and compared in Table 2. We now discuss their
overheads. Most speculation costs—the forking of speculation pro-
cesses, the change of protection, data replication and read and write
monitoring, the checking of access maps for conflicts, the merging
of modified pages, and the competition between the understudy and
the spec processes—are off the critical path. Therefore, the relation
between the worst-case running time T max

parallel and the time of un-
modified sequential program Tseq is

T max
parallel= Tseq + c1 ∗ (Sshared/Spage)

+c2 ∗ (Smodified by 1st ppr + Schecked)
The two terms after Tseq are the cost from data monitoring and
copying on the critical path, as we explain next.

For monitoring, at the start of PPR, the lead process needs to set
and reset the write protection and the access map for shared data
(including global variables) before and after the first PPR instance.
The number of pages is the size of shared data Sshared divided by
the page size Spage, and the cost per page is a constant c1. During
the instance, a write page fault is incurred for every page of shared
data modified in the first PPR instance. The constant per page cost
is negligible compared to the cost of copying a modified page.

Two types of copying costs may appear on the critical path. The
first is for pages of shared data modified by the lead process in
the first PPR instance and (among those) pages modified again by
the understudy. The second is taking the snapshot of checked data.
The cost in the above formula is the worst case. The copy-on-write
mechanism in modern OS may hide most of both costs.

Data copying may hurt locality across PPR boundaries, although
the locality within is preserved. The footprint of a speculative run
is larger than the sequential run as modified data are replicated.
However, the read-only data is shared by all processes in main
memory and in shared cache (that is physically indexed). As a
result, the footprint may be much smaller than running k copies
of a program.

2.4 The Correctness Proof
It is sufficient to prove the correctness for a single instance of the
parallel execution between two PPR instances. We first define an
abstract model of an execution.

memory Vx: a set of variables. Vall represents all variables in
memory.

memory state St
V : the content of V at time t. For ease of reading

we use St
x (rather than St

Vx
) to denote the state of Vx at t.

instruction rx: the instructions we consider are the markers of the
two PPRs, P and Q, P b, P e, Qb, and Qe (corresponding to
mb

P , me
P , mb

Q, and me
Q in Section 2.1). P and Q can be the

same region.

execution state (rx, St
V ): a point in execution where the current

instruction is rx and the state is St
V .

execution (r1, S
t1
all)

p
=⇒ (r2, S

t2
all): a continuous execution of a

process p (which can be either seq, lead or spec) from instruc-
tion r1 and state St1

all to the next occurrence of r2 at the state
St2

all.

Figure 5 shows the parallel execution and the states of the lead
and the spec processes at different times. If a parallel execution
passes the three data protection schemes, all program variables in
our abstract model can be partitioned into the following categories:

• Vwf : variables whose first access by spec is a write. wf stands
for write first.

• Vexcl lead: variables accessed only by lead when executing the
first PPR instance P .



Table 2. Three types of data protection
type shared data Dshared checked data Dchecked (likely) private data Dprivate

protection Not written by lead Value at BeginPPR is the same at EndPPR no read before 1st write in spec.
and read by spec in lead. Concurrent read/write allowed. Concurrent read/write allowed.

granularity page/element element element
needed support compiler, profiler, run-time compiler, profiler, run-time compiler (run-time)

overhead on 1 fault per mod. page copy-on-write copy-on-write
critical path copy-on-write

(a) sequential execution

(b) parallel execution
(lead on the left,
spec on the right)

(Pb
 
, S

init
)

(Qe, S
seq

)

(Pb, S
init

)

(Pe, S
lead

)

(Pe, S
init

)

(Qe, S
spec

)

P

Q

P

Q

Figure 5. The states of the sequential and parallel execution

• Vexcl spec: variables accessed only by spec.
• Vchk: the remaining variables. chk stands for checked.

Vchk = Vall − Vwf − Vexcl lead − Vexcl spec

Examining Table 2, we see that Dshared contains data that are
either accessed by only one process (Vexcl lead and Vexcl spec),
written before read in spec (Vwf ), read only in both processes or
not accessed by either (Vchk). Dprivate contains data either in Vwf

or Vchk. Dchecked is a subset of Vchk. In addition, the following
two conditions are met upon a successful speculation.

1. the lead process reaches the end of P at P e, and the spec
process, after leaving P e, executes the two markers of Q, Qb

and then Qe.

2. the state of Vchk is the same at the two ends of P (but it may
change in the middle), that is, Sinit

chk = Slead
chk .

To analyze correctness, we examine the states of the sequential
execution, Sinit at P b and Sseq at Qe of the sequential process
seq, and the states of the parallel execution, Sinit at P b, Slead at
P e of the lead process and Sinit at P e and Sspec at Qe of the spec
process. These states are illustrated in Figure 5.

The concluding state of the parallel execution, Sparallel at Qe,
is a combination of Slead and Sspec after the successful specula-
tion. To be exact, the merging step copies the modified pages from
the lead process to the spec process, so

Sparallel = Sspec
all−excl lead + Slead

excl lead

In the following proof, we define each operation rt by its inputs
and outputs. All inputs occur before any output. The inputs are the
read set R(rt). The outputs include the write set W (rt) and the
next instruction to execute, rt+1

1.

1 An operation is an instance of a program instruction. For the simplicity of
the presentation, we overload the symbol rx as both the static instruction
and its dynamic instances. To distinguish in the text, we call the former an
instruction and the latter an operation, so we may have only one instruction
rx but any number of operations rx.

THEOREM 1 (Correctness). If the spec process reaches the end
marker of Q, and the protection in Table 2 passes, the speculation
is correct, because the sequential execution would also reach Qe

with a state Sseq = Sparallel, assuming that both the sequential
and the parallel executions start with the same state, Sinit at P b.

Proof Consider the speculative execution, (P e, Sinit)
spec
=⇒

(Qe, Sspec), for the part of the sequential execution,
(P e, Smid)

seq
=⇒ (Qe, Sseq). We denote the correct sequen-

tial execution as pe, r1, r2, · · · and the speculative execution as
pe, r

′
1, r

′
2, · · · . We prove by contradiction that every operation r′t in

the speculative execution must be “identical” to rt in the sequential
execution in the sense that rt and r′t are the same instruction, they
read and write the same variables with the same values, and they
move next to the same instruction rt+1.

Assume the two sequences are not identical and let r′t be the
first instruction that produces a different value than rt, either by
modifying a different variable, the same variable with a different
value, or moving next to a different instruction. Since rt and r′t
are the same instruction, the difference in output must be due to a
difference in the input.

Suppose rt and r′t read a variable v but see different values v
and v′. Since the values cannot differ if the last writes do not exist,
let rv and r′v be the previous write operations that produce v and
v′.

The operation r′v can happen either in spec before r′t or in the
lead process as the last write to v. We show neither of the two
cases is possible. First, if r′v happens in spec, then it must produce
the same output as rv as per our assumption that r′t is the first to
deviate. Second, r′v is part of lead and produces a value not visible
to spec. Consider the only way v can be accessed. Since (r′v is the
last write so) v is read before being modified in spec, it does not
belong to Vwf or Vexcl lead. Neither is it in Vexcl spec since it is
modified in the lead process. The only case left is for v to belong
to Vchk. Since V lead

chk = V init
chk , after the last write the value of v is

restored to the beginning state where spec starts and consequently
cannot cause r′t in spec to see a different value as rt does in the
sequential run. Therefore rt and r′t cannot have different inputs
and produce different outputs, and the speculative and sequential
executions must be identical.

We now show that Sparallel is correct, that is, Sparallel = Sseq .
Since spec reads and writes correct values, Vwf , Vexcl spec, and the
accessed part of Vchk are correct. Vexcl lead is also correct because
of the copying of the their values at the commit time. The remaining
part of Vchk is not accessed by lead or spec and still holds the same
value as Sinit. It follows that the two states Sparallel and Sseq are
identical.

The proof is similar to that of the Fundamental Theorem of De-
pendence(Sec. 2.2.3 in [1]). While the proof in the book deals with
statement reordering, the proof here deals with region reordering
and value-based checking. It rules out two common concerns. First,
the intermediate values of checked data never lead to incorrect re-
sults in unchecked data. Second, the data protection always ensures
the correct control flow by speculation. In BOP, the three checking
schemes work together to ensure these strong guarantees.



Table 3. Comparisons between strong and weak isolation
during speculation strong weak
data updates visible to outside no yes
overall overhead proportional to data size data use
synchronization on critical path none needed
hardware memory consistency independent dependent
support value-based checking yes no
detect spec failure early yes yes
can certify spec success early yes yes

2.5 Comparisons with Thread-based Systems
Strong and weak isolation as discussed in Section 2.2.4 is a basic
difference between process-based BOP and thread-based systems
that include most hardware and software speculation and transac-
tional memory techniques. The previous section discussed the con-
trol aspect. Here we discuss the data protection and system imple-
mentation. The comparisons are summarized in Table 3.

Weak isolation needs concurrent access to both program data
and system data. It needs synchronization to eliminate race con-
ditions between parallel threads and between the program and the
run-time system. The problem is complicated if the hardware uses
weak memory consistency, which does not guarantee correct re-
sults without explicit synchronization, if the memory operations
are reordered by the compiler and the hardware. In fact, concurrent
threads lack a well-defined memory model [5]. A recent loop-level
speculation system avoids race conditions and reduces the num-
ber of critical sections (to 1) by carefully ordering the system code
based on a sequential memory consistency model and adding mem-
ory directives to enforce the order under relaxed consistency mod-
els [9].

In BOP, parallel processes are logically separated. The correct-
ness check is done sequentially in rolling commits with a complete
guarantee as stated in Theorem 1. There is no synchronization over-
head on the critical path. The compiler and hardware are free to
reorder program operations as they do for a sequential program.

Thread-based systems do not yet support general value-based
checking. When data updates are visible, the intermediate value
of a checked variable can be seen by a concurrent thread and the
effect cannot be easily undone even if the variable resumes the ini-
tial value afterwards. This is widely known as the ABA problem,
where a thread may be mistakenly holding different data by the
same pointer (see [18] for a solution). In hardware, a correct value
prediction may cause a thread to read at a wrong time and vio-
late the sequential consistency, so value prediction requires careful
extra tracking by hardware [24]. No software speculation systems
we know use value-based checking. With strong isolation in BOP,
the intermediate values of checked variables have no effect on other
processes, so value-based checking is not only correct but also adds
little cost on the critical path.

Value-based checking is different from value-specific dynamic
compilation (for example in DyC [13]), which finds values that are
constant for a region of the code rather than values that are the
same at specific points of an execution (and can change arbitrar-
ily between these points). It is different from a silent write, which
writes the same value as the previous write to the variable. Our soft-
ware checking happens once per PPR for a global set of data, and
the correctness is independent of the memory consistency model of
the hardware.

Most previous techniques monitor data at the granularity of
array elements, objects, and cache blocks; BOP uses pages for heap
data and padded variables for global data. Paging support is more
efficient for monitoring unknown data structures but it takes more
time to set up the permissions. It also gives rise to false sharing.

 PPR

control

control

Figure 6. An illustration of the parallelism analysis. Region-
carried dependences, shown as dotted edges, cause speculation to
fail. Loop-carried dependences are marked with a bar.

The cost of page-based monitoring is proportional to the size of
accessed data (for the overhead on the critical path it is the size
of modified data) rather than the number of accesses as in thread-
based systems, making page-based protection especially suitable
for coarse-grain parallelism.

2.6 Programming using PPR
2.6.1 The Profiling Analysis
Offline profiling analysis first identifies the high-level phase struc-
ture of a program [32,33]. Then it uses dependence profiling to find
the phase with the largest portion of run-time instructions that can
be executed in parallel as the PPR. At the same time, it classifies
program data into shared, checked and private categories based on
their behavior in the profiling run.

For example consider a PPR within a loop. We call the rest
of the loop the control code. Figure 6 shows an example PPR
region. For each possible region during a training run, an instance
is parallelizable if there is no dependence that originates from this
instance region to later regions or later instances of the same region.
Figure 6 shows most types of dependences. While not all types are
shown for simplicity, all three types of region-carried dependences,
which would prohibit parallelization, are shown as dotted edges.
Loop-carried dependences, marked by a bar, are not the same as
region-carried dependences. In addition to the parallelism, we need
to analyze the size of possible PPR instances. The parallelism of a
region is then measured by the total size of its parallel instances.
We want to find the largest of possible parallel regions.

A brute force method would test all possible regions, which is`
n
2

´
= n(n−1)

2
for a loop body with n statements. Alternatively

we can use a graph model. We define each statement in the loop
body as an elementary region. We construct a graph in which a
node represents an elementary region, and a directed edge exists
between two nodes if they have a dependence. We first find strongly
connected components and collapse each into a single node. A
node cannot belong to PPR if it has a loop-carried dependence. The
largest PPR is the set of nodes that represent a continuous region
that has no outgoing dependences. The time complexity is linear
to the size of the graph, which in the worst case is the same as
complete enumeration.

Phase analysis identifies coarse-grain tasks such as locality
phases in scientific programs [33] and variable-length phases in
compilers, interpreters and data transcoding programs [32]. The
analysis problem is similar to the one illustrated in Figure 6 ex-
cept that the boundary of possible regions are phase markers. Each
region is continuous at run time even though the code for it may



not be contiguous in the program. In fact, the same program code
may belong to both PPR and control.

2.6.2 The Programming Interface
BOP can also be invoked manually. The programming interface has
three parts. The first is the PPR markers, which can be practically
peppered anywhere in any quantity in a program. The second is a
list of global and static variables that are write first (privatizable)
and checked. The programmer specifies the place where the vari-
ables are initialized, and the system treats the data as shared until
the initialization.

The third component of the interface is the run-time feedback
to the user. When speculation fails, the system outputs the cause of
the failure, in particular, the memory page that receives conflicting
accesses. In our current implementation, global variables are placed
on separate memory pages by the compiler. As a result, the system
can output the exact name of the global variable when it causes a
conflict. A user can then examine the code and remove the conflict
by marking the variable privatizable or moving the dependence out
of the parallel region.

Three features of the API are especially useful for working with
large, unfamiliar code. First, the user does not write a parallel pro-
gram and never needs parallel debugging. Second, the user paral-
lelizes a program step by step as hidden dependences are discov-
ered and removed one by one. Finally, the user can parallelize a
program for a subset of inputs rather than all inputs. The program
can run in parallel even if it has latent dependences.

3. Evaluation
3.1 Implementation and Experimental Setup
We have implemented the compiler support in Gcc 4.0.1. After
high-level program optimization passes but before machine code
generation, the compiler converts global variables to use dynamic
allocation for proper protection. We did not implement the compiler
analysis for local variables. Instead the system privatizes all stack
data. All global and heap data are protected. Each global variable
is allocated on separate page(s) to reduce false sharing. We im-
plemented similar systems using two binary instrumentors, which
do not require program source but offer no easy way of relocating
global data, tracking register dependences, or finding the cause of
conflicts at the source level.

The BOP run-time is implemented as a statically linked library.
For lack of space, we only include a part of the pseudo-code in
Figure 7. It shows the basic steps taken when a process reaches
EndPPR. Partial commit or early error detection requires further
refinements. The listed code has three key comments in italics.
The first two mark the finish line of the sequential-parallel race.
The third comment marks the important fall-through case of the
if statement, where a speculation process, after passing the cor-
rectness check, implicitly becomes the lead process and continues
the rolling commit with the next speculation process. Note that the
commit procedure also includes actions invoked by signals, which
are not shown in the pseudo-code. For example, the concede sig-
nal from the understudy will cause all except the new lead process
to exit. The implementation uses shared memory for storing snap-
shots, access maps, and for copying data at a commit. The rest of
communication is done by signals. No locks are used.

We have implemented an instrumentor and a behavior analyzer.
The instrumentor, also based on Gcc 4.0.1, collects complete pro-
gram traces with unique identifiers for instructions, data accesses,
and memory and register variables, so the behavior analyzer can
track all data dependences and identify PPR.

In BOP, the original lead process may die long before the pro-
gram ends, since each successful speculation produces a new lead

subroutine BOP EndPPR():
switch (myStatus)
case understudy:

undyWorkCount++
if (undyWorkCount<specDepth) return
the finish line of the sequential execution
myStatus = lead
undyWorkCount = 0
AbortSpeculation()
CommitOutput()
return

case spec:
WaitForLeadDoneSignal()
SendSpecDoneSignal()
if (FoundConflicts())

AbortSpeculation()
if (lastSpec)

ClearProtection()
PullChangedDataFromPipe()
WaitEnsureUnderstudyCreated()
SignalUnderstudySpecSuccess()
WaitForUnderstudyToConcede()
the finish line of the parallel execution
myStatus = lead
CommitOutput()
return

else fall through
case lead:

if (myStatus == lead)
ClearProtection()
StartUnderstudy()

SignalLeadDone()
WaitSpecDoneSignal()
PushChangedDataToPipe()

Figure 7. Pseudo-code executed at the end of a PPR region

(for example in Figure 3). For one moment we thought we had an
incredible speedup. Now each parallelized program starts with a
timing process that forks the first lead process and waits until the
last process is over (when a lead process hits a program exit). In-
stead of counting the time for all processes, we use the wall-clock
time of the timing process, which includes the OS overheads. We
use multiple runs on an unloaded system.

We use GNU Gcc 4.0.1 with “-O3” flag for all programs. We
use a new Dell PowerEdge 6850 machine (after installing a 250V
power supply) with four dual-core Intel 3.40 GHz Xeon 7140M
processors (a total of 8 CPUs), 16MB cache, and 4GB physical
memory.

3.2 Gzip v1.2.4 by J. Gailly
Gzip takes one or more files as input and compresses them one by
one using the Lempel-Ziv coding algorithm (LZ77). We use version
1.2.4 available from the SPEC 2000 benchmark suite. Much of the
8616-line C code performs bit-level operations, some through in-
line assembly. The kernel was based on an earlier implementation
on 16-bit machines. We did not specify “spec” so the program
behaves as a normal compressor rather than a benchmark program
(which artificially lengthens the input by replication).

We make two parallel versions, one by automatic methods,
and the other by hand. In the first one, BeginPPR and EndPPR are
automatically inserted before reading a file and after the output of
the compressed file (for this one we allow file I/O in the PPR), and
the variables and allocation sites are classified through profiling
analysis.



The second parallel version compresses a single file in parallel.
The sequential code compresses one buffer at a time and stores
the results until the output buffer is full. We manually placed
PPR around the buffer loop and specified the set of likely private
variables through the program interface described in Section 2.6.
The program returned correct results but speculation failed because
of conflicts caused by two variables, “unsigned short bi buf” and
“int bi valid”, as detected by the run-time monitoring.

The two variables are used in only three short functions. Inspect-
ing the code, we realized that the compression algorithm produced
bits, not bytes, and the two variables stored the partial byte of the
last buffer. The dependence was hidden below layers of code and
among 104 global variables, but the run-time analyzer enabled us
to quickly uncover the hidden dependence. We first tried to fill the
byte, as the program does for the last byte. However, the result file
could not be decompressed. In fact, a single extra or error bit would
render the output file meaningless to the decompressor. Our second
solution is to compress buffers in parallel and concatenate the com-
pressed bits afterwards. This requires tens of lines of coding, but it
was sequential programming and was done by one of the authors in
one day.

Inter-file parallel gzip performs similarly as one may get from
invoking multiple gzip programs. The intra-file compression per-
mits single-file compression to use multiple processors. We test
bop-gzip on a single 84MB file (the Gcc4.0.1 tar file) and com-
pares the running times of the unmodified sequential code and the
BOP version with three speculation depths. Each PPR instance com-
presses about 10MB of the input file. The execution time is stable in
sequential runs but varies by as much as 67% in parallel runs, so in
the following table we include the result of six consecutive tests of
each version and compute the speedup based on the average time.

version sequen- speculation depth
tial 1 3 7

times (sec) 8.46, 8.56, 7.29, 7.71 5.38, 5.49, 4.80, 4.47,
8.50, 8.51 7.32, 7.47 4.16, 5.71 4.49, 3.10
8.53, 8.48 5.70, 7.02 5.33, 5.56 2.88, 4.88

avg time 8.51 7.09 5.27 4.10
avg speedup 1.00 1.20 1.61 2.08

With 2, 4, and 8 processors, the parallel compression gains
speedups of 1.20, 1.61, and 2.08. The 8-way gzip is twice as fast.
The compression is now slightly faster than decompression (by
gunzip), which is unusual for such a tool. The critical path of bop-
gzip, when all speculation fails, runs slightly faster than the sequen-
tial version because of the effect of prefetching by the speculation.

The BOP run-time allocates 138 4KB pages for the 104 global
variables, 19200 pages for shared heap data, and 9701 pages for
likely write-first data. The commit operations copy a total of 2597,
3912, and 4504 pages respectively during the parallel execution for
the three speculation depths.

3.3 Sleator-Temperley Link Parser v2.1
According to the Spec2K web site, “The parser has a dictionary
of about 60000 word forms. It has coverage of a wide variety of
syntactic constructions, including many rare and idiomatic ones.
... It is able to handle unknown vocabulary, and make intelligent
guesses from context about the syntactic categories of unknown
words.” It is not clear in the documentation or the 11,391 lines
of its C code whether the parsing of sentences can be done in
parallel. In fact, they are not. If a PPR instance parses a command
sentence which changes the parsing environment, e.g. turning on or
off the echo mode, the next PPR instance cannot be speculatively
executed. This is a typical example of dynamic parallelism.

The parallelism analyzer identifies the sentence-parsing loop.
We manually strip-mine the loop (for a recent textbook description
see [1]) to create a larger PPR. The data are then classified auto-

matically. During the training run, 16 variables are always written
first by the speculation process during training, 117 variables al-
ways have the same value at the two ends of a PPR instance, and 35
variables are shared. The system allocates 132 pages of shared data
and 75 pages private and checked data.

We test the parallel parser using 1022 sentences obtained by
replicating SPEC95 train input twice. When each PPR includes the
parsing of 10 sentences, the sequential run takes 11.34 second,
and the parallel runs show speedup of 1.13, 1.62 and 2.12 with a
few failed speculations due to the dynamic parallelism. We have
studied the parallel performance as a function of the PPR size (i.e.
the number of sentences per PPR) but have to leave it out for lack
of space. The total number of pages being copied during commits
varies between 0 and 21 pages depending on the size of PPR and
the depth of speculation.

version sequen- speculation depth
tial 1 3 7

times 11.35, 11.37 10.06, 10.06 7.03, 7.01 5.34, 5.35
(sec) 11.34 10.07 7.04 5.34
speedup 1.00 1.13 1.62 2.12

3.4 XLisp Interpreter v1.6 by D. M. Betz
According to its author in 1985, Xlisp is “a small implementation of
lisp with object-oriented programming.” We use the code available
as part of the SPEC 1995 benchmark suite, which has 25 files and
7616 lines of C code. The main function has two control loops,
one for reading expressions from the keyboard and the other for
batch processing from a file. By hand we mark the body of the
batch loop as a PPR. Through the programming interface described
in Section 2.6, we identify 5 likely privatizable variables:

buf for copying string constants
gsprefix for generated name strings
xlfsize for counting the string length in a print call
xlsample the vestige of a deleted feature called oscheck
xltrace intermediate results for debugging

5 checked variables:
xlstack current stack pointer, restored after an evaluation
xlenv current environment, restored after an evaluation
xlcontext the setjump buffer for exception handling
xlvalue would-be exception value
xlplevel parenthesis nesting level, for command prompt

and one reduction variable, gccalls, which counts the number of
garbage collections. We do not know much about the rest of the 87
global variables (including function pointers) except that they are
all monitored by BOP.

The so-parallelized xlisp runs fine until a garbage collection,
which changes the heap and always kills the speculation. To solve
the problem, we have revised the xlisp mark-sweep collector for
BOP, which we describe very briefly here. The key idea is to insu-
late the effect of GC, so it can be done concurrently without caus-
ing unnecessary conflicts. Each PPR uses a separate page-aligned
region. At the start (after forking but before data protection), a PPR
instance runs a marking pass over the entire heap and records all
reachable objects in a start list. During the PPR, it allocates new
objects inside the region. At a garbage collection, it marks just ob-
jects inside the region but it traverses the start list as an additional
set of root pointers. It frees an object if it is inside the region. At the
end, it performs GC again, so only the pages with live objects are
copied at the commit. The code changes include three new global
variables and 12 statements, counted by the number of semi-colons,
for region-based GC, mostly for collecting and traversing the start
list and resetting the MARK flags in its nodes.

The region-based mark-sweep has non-trivial costs at the start
and the end of PPR. In the middle it may not be as efficient because
it may not collect all garbage (as some nodes in the start list



would have become unreachable in the sequential run). These costs
depend on the input. In addition, the regions will accumulate long-
live data, which leads to more false alerts from false sharing. The
evaluation may trigger an exception and an early exit from PPR,
so the content of checked variables may not be restored even for
parallel expressions. Therefore, one cannot decide a priori whether
the chance of parallelism and its likely benefit would outweigh
the overhead. However, these are the exact problems that BOP is
designed to address with the streamlined critical path and the on-
line sequential-parallel race.

To test the bop-lisp interpreter, we use an input from SPEC95,
which in five expressions computes all positions of n queens on an
n × n board. When n is 9, the sequential run takes 2.36 seconds
using the base collector and 2.25 seconds using the region-based
collector (which effectively has a larger heap but still needs over
4028 garbage collections for nine 10K-node regions). We modify
four lines of the lisp program, so the problem is solved by 13
expressions, 9 parallel and 4 sequential. The dependence between
sequential expressions is automatically detected due to the conflicts
in the internal data structure of the interpreter. To avoid false alerts
when executing the parallel expressions, we disable the monitoring
of the heap in the following experiment. We test three speculation
depths three times each, and the (idealized) results are:

version sequen- speculation depth
tial 1 3 7

times (sec) 2.25, 2.27, 1.50, 1.48 .95, .94, .68, .68,
2.26 1.47 .94 .68

speedup 1.00 1.53 2.39 3.31
The last row shows that the speedup, if we pick the lowest time
from three runs, is 1.53 with 2 processors, 2.39 with 4 processors,
and 3.31 with 8 processors. Failed speculations account for 0.02
second of the parallel time. Compared to the other test programs,
bop-lisp has a small memory footprint. In the test run, it allocates
103 pages for monitored global variables, 273 pages for the heap
(currently not monitored to avoid the false alert), and 111 for other
unmonitored data.

3.5 Comparison with Threaded Intel Math Kernel Library
The Intel Math Kernel Library 9.0 (MKL) provides highly opti-
mized, processor-specific, and multi-threaded routines specifically
for Intel processors. The library includes Linear Algebra Pack-
age (LAPACK) routines used for, among other things, solving sys-
tems of linear equations. In this experiment we compare the per-
formance of solving eight independent systems of equations using
the dgesv routine. MKL exploits thread-level parallelism inside but
not across library calls. We set the number of threads using the
OMP NUM THREADS environment variable. BOP, on the other
hand, can speculatively solve the systems in parallel using the se-
quential version of the library (by setting OMP NUM THREADS
to 1). Since the program data are protected, BOP monitors inter-
system dependences (which may arise when the same array is
passed to multiple calls) and guarantees program correctness if
speculation succeeds. We compare the speed of speculative paral-
lel invocations of unparallelized dgesv with the speed of sequential
invocation of the hand-crafted parallel implementation.

The experiment was conducted over the range of 500 to 4500,
in increments of 500, equations per system. For each, the number
of threads in the MKL-only implementation tested was 1, 2, 4, and
8. For the BOP and MKL implementation, the levels of speculation
tested was 0, 1, 3, and 7. To reduce the monitoring cost, the BOP
version makes a copy of the matrices and pass the unmonitored
temporary copies to dgesv. The memory usage includes 32 pages
for global variables, 3920 to 316K pages for monitored matrices of
coefficients, and the same amount for their unmonitored temporary
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Figure 8. Solving 8 systems of linear equations with Intel MKL

twin. The number of copied pages during commits ranges from 0
to 107.

The performance comparison is shown in Figure 8. Zero-
speculation BOP is slightly faster than single-threaded MKL pos-
sibly due to the difference in memory allocation. bop-mkl depth 1
and omp-mkl thread 2 perform similarly, with the MKL-only im-
plementation achieving at most an 18% increase in operations per
second for 1000 equations. For bop-mkl depth 3 and bop-mkl depth
7, the runtime overhead of the BOP system prevents speedups for
roughly 1750 and 1300 number of equations, respectively, and be-
low. However, above these ranges the course-grained parallelism
provided by BOP is able to outperform the fine-grained, thread-
level parallelism of the MKL library. Increases between 15% and
20% are seen for bop-mkl depth 7 compared to omp-mkl thread 8
and increases between 7% and 11% are seen for bop-mkl depth 3
compared to omp-mkl thread 4.

The comparison with threaded MKL helps to understand the
overhead of process-based BOP, in particular its relation with the
size of parallel tasks and the speculation depth. The results demon-
strate the property explained in Section 2.2.1: the overhead be-
comes less if the granularity is large or if the speculation depth
is high. For 1500 equations, 3 speculation processes perform 10%
slower than 4-thread MKL because of the overhead. However, for
the same input size, the greater parallelism from 7 speculation pro-
cesses, more than compensates for the overhead and produces an
improvement of 16% over 8-thread MKL. We have also tested BOP
against another scientific library, the threaded ATLAS, and found
similar results, although ATLAS is slower than MKL on our test
machine.

4. Related work
Parallel languages Most languages let a user specify the unit
of parallel execution explicitly, for example, pcall and future in
Multilisp [17], parallel loop and section in OpenMP [27], SIMD
model of UPC [7] and Co-array Fortran [26]. They require definite
parallelism enclosed in regions or procedures with predictable en-
tries and exits. The annotations are binding because they affect the
program correctness. In data parallel languages such as HPF [1] and
array languages such as the publicly available Single-assignment C
(SaC) [14], the parallelism is implicit but a user has limited control
over the partition of program computation. In comparison, PPR re-



gions are not binding but allow a user to directly specify the unit
of parallel execution. As such it allows computation partitioning
based on the partial information about program behavior, for ex-
ample, a user reading part of the source code, or a profiling tool
examining a few inputs.

For general-purpose imperative programs, the synchronization
is either static (e.g. in OpenMP) or dynamic based on the run-
time access of the shared data. The access can be specified as
programmed (and typed) descriptions as in Jade [30]. BOP assumes
all data are shared by default and uses profiling analysis, so it needs
little or no user specification. In addition, the checked and private
data are suggested through non-binding hints, which allow partial
and incorrect specifications. The disadvantage is the additional cost
of data protection and hint checking, which BOP hides on the
speculative path.

Software speculation Automatic loop-level software speculation
is pioneered by the lazy privatizing doall (LPD) test [29]. LPD
has two separate phases: the marking phase executes the loop and
records access to shared arrays in a set of shadow arrays, and the
analysis phase then checks for dependence between any two itera-
tions. Later techniques speculatively privatize shared arrays (to al-
low for false dependences) and combine the marking and checking
phases (to guarantee progress) [9,11,15]. Previous systems also ad-
dress issues of parallel reduction [15,29] and different strategies of
loop scheduling [9]. A weaker type of software speculation is used
for disk prefetching, where only the data access of the speculation
needs to be protected (through compiler-inserted checks) [6]. We
observe the prefetching effect in one of our tests, gzip.

Recently two programmable systems are developed: safe fu-
ture in Java [38] and ordered transactions in X10 [36]. The first
is designed for (type-safe) Java programs and is supported entirely
in software, utilizing read/write barriers of the virtual machine to
monitor data access, object replication to eliminate false depen-
dences, and byte-code rewriting to save program states. At the
syntax level, the difference between procedure-based future and
region-based PPR is superficial but as a programming construct,
they differ in two important aspects. First, PPR supports unsafe
languages with unconstrained control flows. Second, the commit
point is implicit in PPR but explicit in future (i.e. get). Ordered
transactions rely on hardware transactional memory support for ef-
ficiency and correctness but provide profiling analysis to identify
parallel regions. A user manually classifies program data into five
categories. It does not use value-based checking, nor does the sys-
tem checks the correctness of the data classification. Our profiling
analysis is similar to theirs in purpose but uses phase analysis to
identify program-level regions.

At the implementation level, the BOP system is unique in that
the speculation overhead is proportional to the size of program
data, while the cost of other systems, including the transactional
memory, is proportional to the frequency of data access. Among
software techniques, BOP is the first to speculatively privatize the
entire address space and apply speculative execution beyond the
traditional loop-level parallelism by address the problems of un-
predictable code, task size, parallelism, and speculation overhead.

The main appeal of programmable speculation is that the spec-
ification of parallelism is purely a performance hint and has no ef-
fect on program correctness. The BOP system attempts to demon-
strate that this new style of parallel programming can be efficiently
supported for a more general class of applications.

Hardware thread-level speculation (TLS) Hardware-based
thread-level speculation is among the first to automatically exploit
loop- and method-level parallelism in integer code. An on-line
survey cited 105 related papers [20]. An early effort is described
in [34]. The term lead thread is used in [35]. Since speculative

states are buffered in hardware, the size of threads is usually no
more than thousands of instructions. A recent study classifies
existing loop-level techniques as control, data, or value speculation
and shows that the maximal speedup is 12% on average for
SPEC2Kint assuming no speculation overhead and unlimited
computing resources [21]. The limited potential at the loop level
suggests that speculation needs to be applied at larger granularity
to fully utilize multi-processor machines.

Software transactional memory Transactional memory allows
the programmer to identify sections of a parallel program that
must be executed atomically, and which the system may choose to
speculatively execute in parallel [19]. Transaction semantics, which
requires a serializable result, is less restrictive than parallelization,
which requires observational equivalence or the same result as the
original sequential execution. Like transactions, PPR regions do
not guarantee parallelism. Unlike transactions, PPR regions do not
affect the meaning of a program. Since incorrectly inserted regions
do not break a program, PPR is easier to use for a user or a tool to
parallelize an unfamiliar program.

At the implementation level, serializibility checking requires
the monitoring of both data reads and writes, so it is more costly
than the run-time dependence checking. The additional flexibility
is useful for supporting parallel reduction, but it is not strictly
necessary for parallelization as it is for concurrency problems such
as on-line ticket booking. Current transactional memory systems
monitor data accesses rather than values for conflict detection.

Run-time data monitoring For large programs using complex
data, per-access monitoring causes slow-downs often in integer
multiples, as reported for data breakpoints and on-the-fly data race
detection, even after removing as many checks as possible by ad-
vanced compiler analysis [25, 28, 37]. It is difficult for dynamic
speculation to afford such slowdown and be practical. Run-time
sampling based on data [12] or code [2,8] are efficient but does not
monitoring all program accesses. BOP uses page-based monitoring
for shared data to trade precision for efficiency (without compro-
mising correctness) and to bound the cost by the size of data rather
than the frequency of access.

5. Summary
With programmable dynamic PPR regions, strong isolation dur-
ing speculation, minimal critical path, and value-based correctness
checking, BOP enables parallelization based on the partial informa-
tion of program behavior. We have built a prototype implementa-
tion including a parallelism analyzer, a compiler, and a run-time
system and have parallelized a set of non-trivial applications, most
of them have not been parallelized (or known to be parallelizable)
before this work. On a 8-CPU machine, their end-to-end speed is
improved by integer factors.

BOP is best suited for parallelizing large, existing code with a
minimal effort. Known dependences, such as error handling and
garbage collection, can stay in code as long as they happen rarely.
Parallelization can be done in incremental steps by removing de-
pendences one by one as detected by the run-time feedbacks. At no
point does a programmer need to perform parallel debugging.
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