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Abstract—Code layout optimization seeks to reorganize the
instructions of a program to better utilize the cache. On multicore,
parallel executions improve the throughput but may significantly
increase the cache contention, because the co-run programs share
the cache and in the case of hyper-threading, the instruction
cache.

In this paper, we extend the reference affinity model for use
in whole-program code layout optimization. We also implement
the temporal relation graph (TRG) model used in prior work for
comparison. For code reorganization, we have developed both
function reordering and inter-procedural basic-block reordering.
We implement the two models and the two transformations in
the LLVM compiler. Experimental results on a set of benchmarks
show frequently 20% to 50% reduction in instruction cache
misses. By better utilizing the shared cache, the new techniques
magnify the throughput improvement of hyper-threading by 8%.

I. INTRODUCTION

As multi-core processors become commonplace and cloud
computing gains acceptance, more applications are run sharing
the same cache hierarchy. Managing cache sharing is not
just for achieving good performance, but also for ensuring
stable performance in a dynamic environment; and not just
for parallel programs but also for sequential programs co-run
with each other.

Program optimization for shared cache is an important
problem. In this paper, we explore the subject by examining the
effect of traditional cache optimization for sequential code co-
running in shared cache. There are two goals when optimizing
a program for shared cache, defined below informally using
the terms from existing work.

• Defensiveness: making a program more robust against
peer interference [2].

• Politeness: making itself less interfering to others [10],
also called niceness [26].

Traditional cache optimization reduces the reuse distance
of data accesses. The first question is whether it also improves
defensiveness and politeness (and what precisely do these
terms mean). We will address this question in Section II-A.

Next is the choice of cache optimization. We use code
layout optimization. Given a program with F functions, there
are F ! possible layouts. The goal is to find the one with the
best cache performance.

Programs share the instruction cache if they run to-
gether using simultaneous multi-threading (SMT). Most high-
performance processors today use SMT to turn a single phys-
ical core into multiple logical cores. The first implementation
in Intel Xeon showed that it adds less than 5% to the chip size
and maximum power requirement and provides gains of up to
30% in performance [19]. IBM machines have 4 SMT threads
on a Power 7 core and will have 8 threads on Power 8. An
extensive study on sequential, parallel and managed workloads
found that SMT “delivers substantial energy savings” [7].

In an experiment which we will describe in more detail
later, we found that 9 out of 29 SPEC CPU 2006 programs
have non-trivial miss ratios in the instruction cache. The next
table shows the average miss ratio in solo execution and in
hyper-threading co-run with two different peers:

avg. miss ratio increase over solo
solo 1.5% —

co-run 1 2.5% 67%
co-run 2 3.8% 153%

We see that 30% of the benchmark programs will see signif-
icantly higher contention in shared instruction cache, which
makes it a good target for code layout optimization.

A useful concept is reference affinity. It finds data or code
that are often used together in time and places them together
in memory. Past work has shown that reference affinity is
effective to reorganize structure fields and basic blocks inside a
procedure [34], [32], [31]. The number of items to reorder was
small, compared to the number of functions or basic blocks in
a large program. In this paper, we describe an extension to use
reference affinity to reorganize code for the whole program.

Another useful model is called temporal-relation graph
(TRG), which was designed especially to optimize code
layout [8]. It was later used to optimize for SMT shared
cache [13]. In this paper, we study the TRG model as an
alternative solution.

We describe two transformations. One is global reordering
of functions, and the second is inter-procedural reordering of
basic blocks. Previous work targeted either function reorder-
ing or intra-procedural basic block reordering. With the two
locality models and two transforms, we build and evaluate four
code-layout optimizers, three of which have not been studied
in the past.

The paper makes several novel contributions:



1) It formally defines the notions of defensiveness and
politeness as the goals for program optimization for
shared cache.

2) It extends the reference affinity model for global code
layout optimization.

3) It describes a novel design for inter-procedural basic-
block reordering.

4) These models and transformations are implemented
in a real system. The paper evaluates the four opti-
mizers and their effect in shared cache in a multi-core,
multi-level memory hierarchy. Previous work used
simulated (often sequential) hardware. This paper
measures the parallel performance on a real processor
and employs both hardware counters and simulation
in evaluation.

5) It shows many cases that an optimization does not
improve solo-run performance but improve co-run
performance.

6) It relates the positive results to a harsh theoretical
limit on data layout optimization [23].

Program code accounts for often a very small fraction of
run-time memory usage. The end-to-end performance improve-
ment we may expect is small. However, for compiler design,
a few percent improvement is useful enough for a single
optimization pass and significant enough if a large number
of programs can benefit. We will evaluate how broadly typical
programs can benefit.

II. CODE LAYOUT OPTIMIZATIONS FOR SHARED CACHE

This section first defines defensiveness and politeness
more formally. Then it describes two adapted locality models:
affinity and temporal-relation graph (TRG), followed by two
program transformation techniques: function and basic-block
reordering. Finally it gives more details about the implemen-
tation.

A. Optimization for Cache Defensiveness and Politeness

Shared cache co-run increases conflicts in two ways. First,
each program adds to the over demand of cache. The inter-
ference in fully associative cache (i.e. capacity misses) can be
quantified by two metrics: reuse distance (RD) and footprint
(FP) [28], [25], [5], [29]. The relation can be expressed by the
following equation, where the miss probability of each access
by a program A depends on whether the sum of its reuse
distance and the peer footprint exceeds the cache size C.

P (self.miss) = P (self.RD + peer.FP ≥ C)

The footprint is the average amount of memory accessed
during a time period. In the equation, the time period is the
reuse time (the time between the last access to the same data
block and the current access).

A recent, higher order theory shows that in practice, the
reuse distance can be substituted by the footprint [30], where
all-window statistical metrics are explored. Li et al. used all-
window statistical metrics to study memory behaviors [15],
[18], [6], [16]. Thus the equation is changed to:

P (self.miss) = P (self.FP + peer.FP ≥ C)

We can divide the footprint into two parts, instruction and
data, and call them FP.inst and FP.data. Rewriting the last
equation, we have

P (self.miss)=P (self.FP.(inst+data) + peer.FP.(inst+data) ≥ C)
(1)

An instruction cache is special in that it stores only part of
the footprint. From the general Eq 1, we can easily derive the
miss probability in the instruction cache of size C ′:

P (self.icache.miss) = P (self.FP.inst+peer.FP.inst ≥ C ′) (2)

From the last two equations, we can classify the benefits
from reducing the instruction footprint of a program, self.FP,
in shared cache.

1) (Locality) Conventional benefits in solo-run come
from fewer self instruction misses in instruction cache
(Eq 2) and fewer self instruction and data misses in
unified cache (Eq 1).

2) (Defensiveness) Benefits in shared cache, in addition
to (1), come from fewer self instruction misses in
instruction cache (Eq 2) and fewer self instruction
and data misses in unified cache (Eq 1).

3) (Politeness) Benefits in shared cache, in addition to
(1,2), come from fewer peer instruction misses in
instruction cache (Eq 2) and fewer peer instruction
and data misses in unified cache (Eq 1).

These benefits are known but with the new, footprint-based
formulation, we can classify them precisely, as we have just
done.

B. Affinity Analysis

Zhong and her colleagues developed the model of reference
affinity. It measures how close a group of data are accessed
together in a reference trace. It proves that the model gives a
hierarchical partition of program data. At the top is the set of
all data with the weakest affinity. At the bottom is each data
element with the strongest affinity [34].

The technique was developed to model program data and
shown effective for data cache. Here we give a new algorithm
to analyze reference affinity in program code. First, we give
several definitions.

Definition 1: Trimmed BB or Function Trace A trimmed
basic-block (BB) trace is a sequence of basic blocks where no
two consecutive blocks are the same. A trimmed function trace
is a sequence of functions where no two consecutive functions
are the same.

Definition 2: Footprint In a trimmed trace, any two oc-
currences form a window. The footprint fp<a, b> is the total
amount of code occurred in the window, including a, b.
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(a) A basic block accessed trace

(b) The hierarchical basic block affinity
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Output sequence : B1 B4 B2 B3 B5

Fig. 1: Hierarchical w-window affinity

The exact size of a basic block or a function depends on
compiler code generation. As an approximation, we use the
number of distinct basic blocks or functions as the footprint.
In the following, we discuss the analysis over a basic-block
trace, but it applies to a function trace in the same way.

For example, in a trimmed basic-block trace T =
B1B3B2B3B4, the footprint fp<B1, B2> = 3.

Definition 3: w-Window Affinity For any two code blocks
Bx and By , if every occurrence of Bx in the trace has a cor-
responding occurrence of By such that fp<Bx, By> <= w,
we say Bx and By has w-window affinity.

Definition 4: Affinity Group and Affinity Partition
Given w, all basic blocks can be divided into a set of groups
such that in each group, every pair of blocks have w-window
affinity. Each group is a w-window affinity group. The partition
is the w-window affinity partition.

Definition 5: Affinity Hierarchy As w ranges from 1 to
∞, the affinity partitions form the affinity hierarchy. At the
bottom in the 1-window partition, every block is in a separate
affinity group. At the top in the infty-window partition, all
blocks are in one group.

W -window affinity differs from the original definition,
which uses the concept of a link [34]. In w-window affinity,
a w-window marks the locale in which accesses of an affinity
group must happen. In link-based affinity, the window size is
proportional to the size of an affinity group and not constant.
As a result, the partition is unique in link-based affinity but
not in w-window affinity. However, the benefit of w-window
affinity is faster analysis, a feature we will focus on after
showing an example.

Figure 1(a) is an access sequence of 9 executions of 5
basic blocks. With a quick glance, we can see that B3, B5

have 2-window affinity. It is more complex when w = 3.
Two affinity groups are possible, B3, B5 as before and B2, B3.
In the algorithm we will present, the lower-level group takes
precedence. When w = 4, we have B1, B4 and B2, B3, B5 in
two groups. When w = 5, we have all blocks in one group.
The w-window hierarchy is shown in Figure 1(b).

The procedure in Algorithm 1 shows a straightforward
solution to compute the w-window affinity hierarchy. For each
w from small to large, it incrementally forms all affinity
groups.

Algorithm 1: Hierarchical Code Block Locality Affinity

procedure ComputeHierarchicalAffinity

Input: A code block trace

Output: The w-window affinity hierarchy
1: for w from 1 to wmax do
2: initialize an empty set of groups
3: while there exist code blocks not grouped do
4: randomly pick one code block A from the remaining

ungrouped code blocks
5: for each existed code block group G do
6: add to G if every code block B in G such that

fp<A,B> <=w
7: end for
8: if code block A not added to any existed groups then
9: create a new group and add A

10: end if
11: end while
12: end for

endComputeHierarchicalAffinity

We have developed an efficient solution. For a given w, we
run a stack simulation of the trace [20]. At each step, we see
all basic blocks that occur in a w-window with the accessed
block. We record the frequency of co-occurrences. At the end
of the simulation, we put basic blocks in the same group if they
always occur together in a w-window. The time complexity is
O(WNB), where W is the number of w values, N is the
length of the trace, and B is the number of basic blocks. To
improve efficiency, we choose w between 2 and 20, and we
use test-data-set inputs. We also use a trace pruning method,
which we describe in Section II-F. After these optimizations,
the increased compilation time is only a couple of times of
original compilation time, which is fully acceptable.

In comparison, the original definition of reference affinity is
NP-hard to analyze [32]. Zhong et al. gave a heuristic method
to analyze affinity among structure fields [34]. It was used to
analyze up to 14 fields. For code layout analysis, the number
of functions and basic blocks is far more numerous.

Once we have the affinity hierarchy, we generate the
optimized code sequence by simply a bottom-up traversal of
the hierarchy. For the example in Figure 1, the reordered
sequence is B1B4B2B3B5.

C. TRG Analysis

Gloy and Smith defined a temporal-relation graph to
model the potential cache conflicts between program func-
tions [8]. They call their method Temporal Profile Conflict
Model(TPCM). The original algorithm has mainly two parts:
TRG construction first and then TRG reduction. In TRG reduc-
tion, it finds cache-relative alignments for functions greedily
to minimize cache conflicts.

In this paper, we modify the process of TRG reduction.
Instead of adding space between functions, we find a new order



for functions. We also apply the technique to find the order
for basic blocks. We call our adaptation TRG analysis.

First, we define TRG as follows. Figure 2(a) shows an
example.

Definition 6: Temporal Relationship Graph Given a
code block trace, a temporal relationship graph is defined as
a weighted undirected graph G<V,E>. The node V represents
the code block. The edge E has a weight, which is the number
of potential conflicts between the two end nodes. The number
of conflicts is the times that two successive occurrences of one
end node are interleaved with at least one occurrence of the
other end node, and vice versa.

To construct TRG, we follow the original algorithm except
that we used a hash table plus a link list to make the search
part faster (O(1) time).

In TRG reduction, we first assume the same size S for all
code blocks. Let cache size be C, associativity be A and cache
block size be B. A code block occupies d(S/(A ∗B))e cache
sets. The total number of cache sets is C/(A ∗ B). Then we
have (C/(A∗B))/(d(S/(A∗B)))e slots to place a code block
after we align all code blocks to cache block boundary.

Gloy and Smith used the actual code size, which our
compiler cannot do since it has the intermediate not binary
code. We assume the same size for every function and basic
block. They recommended setting the cache size C to be twice
the actual cache size. We abide by this advice.

The constant 2C specifies the footprint window which
the algorithm examines for co-occurrences. In comparison,
affinity analysis consider multiple sizes, not a single size.
In terms of co-occurrence information, TRG is equivalent as
one layer of the affinity hierarchy. In transformation, it uses
the information completely differently. In practice, our affinity
analysis considers the range of window sizes far smaller than
2C.

The Algorithm 2 describes the process of TRG Reduction.
In the algorithm, we use a linked list for each slot. When a
code block is added to a link list L, they will be combined
into one node in TRG. Each link list has one corresponding
node in TRG. The algorithm uses L to denote a node, e.g. in
step 11.

Algorithm 2: TRG Reduction

procedure ReduceTemprolRelationshipGraph

Input: A TRG G<V, E>, K : the number of code slots

Output: A new reordered sequence of code blocks
1: initialize K link lists for K slots
2: for repeatedly choose the heaviest edge <A,B> in the

TRG, where A, B ∈ V do
3: if A is not in the K link lists then
4: initialize a variable slotMark with NULL link list,

that records which link list A will be added to
5: initialize a variable conflicts with ∞
6: for each link list L do
7: if L is an empty link list then
8: assign L to slotMark
9: break

10: else

11: if weight of E<A, L> <conflicts then
12: assign L to slotMark
13: assign weight of E<A, L> to conflicts
14: end if
15: end ifŁ
16: end for
17: add A to slotMark link list
18: combine A and slotMark node into one node in G,

and combine all the connected edges of the two nodes
19: for each other code slot L except slotMark slot do
20: remove E<A, L> in G
21: end for
22: end if
23: repeat steps from 4 to 22 for node B
24: end for
25: for k from 1 to K do
26: if the k−nd link list is not empty then
27: output the header node of the link list and remove it

from the link list
28: end if
29: end for

endReduceTemprolRelationshipGraph

In Algorithm 2, steps from 2 to 24 are working on the graph
reduction process. After these steps, it forms K non-empty link
lists, that represents every code block has chosen its belong-to
code slot. In steps from 25 to 29, we alternately choose and
output the header code block from K link lists as a sequence.
After outputting one, we remove it from link lists. Notice that
when two nodes choose the same slot, to show the conflict
increase we combine all the edges of the two nodes, done in
step 18. When two nodes choose a different slot, there is no
conflict between them. We remove the edge between them,
done in steps 19 to 21.

Figure 2(b) shows the TRG reduction process of Fig-
ure 2(a), where we assume there are three code slots. First,
E<A, B> is reduced. The two nodes choose the first and
second slots respectively. In the second step, E<E, F> is
reduced. E chooses the third slot. F and A are combined into
one node. Meanwhile, E<B, F> is removed. In the third step,
E and C are combined into one node. Finally we generate the
reordered sequence : (A B E F C).

The time complexity of TRG construction is O(N ∗ Q),
where Q is the size of stack (2C as recommended). The time
complexity of TRG Reduction is O(N3). Because it needs
to traverse all edges in TRG, i.e. O(N2) in the worst case.
For each edge, it costs O(K) time to reduce, where K is the
number of slots.

D. Function Reordering

Function reordering is straightforward given the sequence
produced by the affinity analysis or the TRG analysis described
in the previous two sections. In implementation we use the
LLVM compiler [14] by first compiling all program code into a
single byte-code file. The reordering is a simple transformation
over the file. In this transformation, we do not insert spaces
between functions.
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Fig. 2: An example of TRG Reduction. Assume cache is divided into 3 code slots. (a) shows the initial state of an example TRG
graph. (b)(c)(d) show the TRG reduction process. The resulted sequence is (A B E F C).

E. Basic-block Reordering

Much of the literature in code layout optimization is
intra-procedural. Compilers such as LLVM and GCC provide
profiling-based basic block reordering, also within a procedure.
In this work, we have developed a compiler solution that can
reorder basic blocks across functions. When a function has
branches, and each invocation executes only a small fraction
of its body, inter-procedural reordering may be more beneficial
than intra-procedural reordering.

Figure 3 gives an example program. It repeatedly calls two
functions in a loop. In each invocation, only half of either
function is executed. With inter-procedural reordering, we can
extract two related basic blocks from each function and place
them together, as shown by the example in Figure 3.

func X:

X1:

func Y:

main:

 call X
call Y

L2: X2
Y2

L1: X3
L4:

L3: Y3

func X:
goto L5

funcY:

(a) original code (b) opt code

b=1

b=2

global var b;

if (b == 1)
......

else
......

if (a)

else

for 1 to 100

goto L6

X2:

X3:

Y1:
Y2:

Y3:

L5: X1
L6: Y1

main:

 call X
call Y

for 1 to 100

Fig. 3: An example of inter-procedural BB reordering

More specifically, the example shows two functions X,Y .
Two pairs of basic blocks, X2, Y 2 and X3, Y 3, are always
executed together. The other blocks, X1, Y 1, execute with both
pairs. The affinity-based layout places them in the order shown
in the figure. The affinity layout is different from path-based
layout since X1, Y 1 are placed after the other four blocks.

Basic block reordering takes three steps: pre-processing,
reordering and post-processing. In pre-processing, we add a

Prog.
Instr Count L1 Icache Miss

Dynamic Static Solo Co-run
(Billions) (Bytes) Gcc Gamess

perlbench 1937.32 788.67K 1.99% 2.39% 3.12%
gcc 149.80 1.90M 1.56% 1.99% 3.09%
mcf 832.27 86.91K 0.00% 0.05% 0.08%

gobmk 500.70 943.59K 2.73% 4.56% 6.96%
povray 1922.59 453.70K 2.10% 3.01% 4.38%
sjeng 4459.03 145.47K 0.60% 2.13% 4.68%

omnetpp 1605.31 523.97K 0.37% 1.66% 3.44%
xalancbmk 4635.75 16.28M 1.53% 2.92% 5.02%

TABLE I: The characteristics of 8 SPEC CPU2006 bench-
marks

jump instruction at the start of each function to jump to its
first basic block. This is shown in the example in Figure 3.

In addition, we append a jump instruction to some other
basic blocks. In the normal code layout when a branch is not
taken, the execution falls through to the adjacent block. To
enable unrestricted code movement, we need an explicit jump
to find the right fall-through block.

After preprocessing, all basic blocks are free to be re-
ordered. We perform the reordering using a procedure similar
to function reordering. The reordering step is also responsible
for generating assembly code for each basic block according
to the new sequence.

Finally, the post-processing step is responsible for sanity
check, residual code elimination and other cleanup work.

F. System Implementation

The overall system has two main modules: locality mod-
eling and program transformation. For a source program, the
modeling step instruments the program and runs it using the
test data input set. Then it gives the reordered sequence to
program transformation.

As described before, the system implements two locality
models: w-window affinity and the TRG model. It can in-
strument, analyze and transform at either function or basic-
block granularity. The compiler support is implemented in
the instrumentation phase, runtime phase, optimization phase
and code generation phase of LLVM [14] . The output is
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Fig. 4: L1 instruction cache miss ratios under solo- and co-run

four optimized binaries: function affinity, basic block affinity,
function TRG and basic block TRG.

Instrumentation We instrumented each basic block or func-
tion in LLVM’s intermediate representation. After a test-input
run, we record the trace of all functions and all basic blocks
in a file. Meanwhile, we record a mapping file to assign each
basic block or function an index, which is used in representing
the trace and in locality analysis.

Trace Pruning The size of basic-block traces may be too
large for analysis. For example, 403.gcc in SPEC CPU2006
even with the test input has an 8 giga-byte trace. We prune the
trace by selecting the 10,000 most frequently executed basic
blocks and keeping only those occurrences in the trace. We
used the technique of Hashemi et al. [9] to select the most
popular functions and basic blocks during trace processing. We
have also developed techniques for trace sampling to refine
and extract a effective sub-trace without loosing too much
information. Pruning, for example, typically keeps over 90%
of the original trace.

Stack Processing In both models, we need to maintain a
stack when analyzing the trace. We need to search the stack
to find the currently accessed code block. For fast search, we
use a similar technique in the memory management of Linux
OS kernel, with a link list to manage the virtual pages, and a
red-black tree for rapid insertion, search and deletion. In the
kernel, the link list is used for maintain the order of allocated
pages. Here we use a hash table plus a link list. The link list is
to implement a stack. The hash table is for searching the stack
rapidly. Through these improvements, we can analyze our test
suite in time and space acceptable for a compile-time solution.

III. EVALUATION

A. Experimental Setup

Machine Platform We performed our experiments both on
a real machine and an instruction cache simulator. The real
machine has two Intel Xeon E5520 3.2GHz processors. Each
socket has four physical cores. Each core has two hyper-
threads. We used the two hyper-threads to run our programs
so they share the instruction cache. The OS kernel version is

2.6.34. The instruction cache simulator is based on Intel Pin
tool [17] extended to simulate a CMP L1 instruction cache with
size of 32KB and 4-way associativity. The cache configuration
simulated is the same as on the real machine. We also use
PAPI [3] libraries to measure the instruction cache miss ratios
using hardware performance counters.

One may question whether hardware design can simply
solve the problem by increasing the size of the instruction
cache. The size of 32KB has not changed for successive
processor generations in the past. On Intel machines, the size
is chosen as a result of a clever trick which lets a processor,
at a memory access, lookup the physically addressed cache
while translating the virtual address to physical address. The
trick depends on the difference between page size (4KB) and
cache-block size (64B). Since the difference has not changed,
the instruction cache size is unlikely to increase.

Test Suite SPEC CPU benchmarks have relatively small
code sizes but are widely used and representative of workloads
in science and engineering. We firstly run all benchmarks and
measure the instruction miss ratio using hardware performance
counters. We perform three rounds of experiments. In the first
round, we get the L1 instruction cache miss ratios under solo-
run and select those programs that have non-trivial miss ratios.
In the second and the third rounds, we use gcc and gamess as
peer programs to create contention in shared cache.

Based on the solo-run miss ratios shown in Figure 4, we
choose sjeng and 7 other programs whose miss ratio is even
higher. In this group, we exclude tonto and gamess since
they are in Fortran, and our compiler is for C/C++. In their
place, we add two programs, omnetpp, which shows high
sensitivity to peer interference, and mcf, which we have found
to be sensitive in spite of of the near zero miss ratio in a
solo execution. Table I shows numerical measures for the
8 programs, including the length of the trace and the total
instruction size (for the reference input).

The optimized code is compiled in both default and O2 to
test the interaction with other compiler optimizations. For cross
comparison, all function reordering is compiled by default
optimization, and basic block reordering (best performing as
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Fig. 5: The solo-run effect of the two affinity optimizers.

Benchmarks
Function Affinity BB Affinity Function TRG

speedup miss ratio reduction speedup miss ratio reduction speedup miss ratio reduction
hw cnt simulated hw cnt simulated hw cnt simulated

400.perlbench +0.43% 3.79% 5.82% N/A N/A N/A +7.28% -6.30% 12.56%
403.gcc +0.57% 9.11% 8.03% +1.00% 16.86% 21.17% +1.45% -0.58% 13.89%
429.mcf +0.57% 3.81% 33.72% +4.17% 28.04% 4.17% +0.00% 0.00% 0.00%
445.gobmk +7.22% 38.70% 13.00% +4.33% 9.75% 46.67% +5.87% 28.33% 38.10%
453.povray -0.57% -11.43% 18.95% N/A N/A N/A +2.26% -4.41% 11.48%
458.sjeng +1.86% 7.62% 40.61% +1.67% 4.99% 5.00% +10.23% 6.94% 12.75%
471.omnetpp +4.00% 35.79% 60.69% +4.83% 43.96% 55.33% +2.06% 32.25% 27.94%
483.xalancbmk +5.86% 24.78% 31.33% +1.67% 28.60% 34.17% -1.95% -6.19% -1.76%

TABLE II: Average co-run speedup and miss ratio reduction by the three optimizers. The best speedup for each program is
marked in bold.

we will show) is compiled by O2 option. When comparing the
speedups of function reordering and those of BB reordering,
we actually use a faster baseline for BB reordering to improve
on. With sufficient space, we will report both types of re-
ordering on both default and O2. Our compiler could correctly
reorder functions for all test programs. For BB reordering, it
had errors on two programs, perlbench and povray. We show
these as “N/A” in data tables and zero in bar graphs.

B. The Solo-run Effect

We show only the effect from two affinity optimizers. The
TRG optimizers are not better. Across the 8 benchmarks, the
performance is changed between -1% and 2% by function
reordering and 0% and 3% in BB reordering. While the
improvement is modest at best, the reduction in the miss ratio
of the instruction cache is dramatic, up to 34% by function
reordering and 37% by BB reordering. These results confirm
the conventional view that SPEC CPU benchmarks are data
intensive. The instruction cache performance is good enough.

It should be noted that in compiler design, an improvement
over 2% (3% speedup in gobmk and 2% in sjeng) by a single
optimization pass is significant since a compiler typically has
tens of passes working together.

BB affinity is showing consistency and superiority. When
applied to 6 programs, it reduces the miss ratio in 5 of them
by 21% to 37%. The exception is -2% for sjeng from 2.88%
to 2.94%.

C. The Co-run Effect

We have tested co-runs among the 8 programs, which
means up to 8 co-runs per program. Each co-run is a pair-
ing between original and optimized. We time the optimized

and report the relative improvement, normalized to original-
original pairing. The co-run speedups are plotted in Figure 6
for three optimizers. The BB TRG optimizer does not show
improvement, so we omit it from now on. We have also plotted
the miss ratio changes as measured by the hardware counters
and a simulator but omit the figures to save space. For each
program, we compute the average speedup across all co-run
peers, and the average miss ratio reductions (hardware counted
and simulated) and show them in Table II.

By looking at results in both performance and miss ratio
and both individually and averaged, we see consistent trends
emerge from the data to characterize the three optimizers.

BB affinity is the most robust and best performing of the
three. Of its 6 tests, it improves the average co-run performance
by 4% to 5% for 3 (mcf,gobmk,omnetpp), and 1% to 2% for the
remaining 3. The improvement coincides with significant miss
ratio reduction, which ranges between 10% and 44% for the
first 3 and 5% to 29% for the other 3, measured by hardware
counters. Similar reduction, 4% to 55%, is observed by the
simulator.

Function affinity shows robust but modest improvements.
Of 8 programs, it improves 3 programs by 4% to 7.2%, 1 by
1.9%, and the remaining 4 by about 0.5%. The miss ratio
reduction is as dramatic as by BB affinity except for one
11.4% miss increase for povray as measured by the hardware
counters.

Function TRG shows two spectacular but mysterious im-
provements. It improves perlbench in 6 co-runs by 7.3% on
average, but the miss ratio is 6.3% higher on average. It
improves sjeng by over 10% (rare for code layout optimization)
and reduces the miss ratio by 7% and 13% (measured and
simulated). However, for the same program, function affinity
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Fig. 6: Co-run speedup of three optimizers. The comparison is between co-runs of original+optimized and original+original. In
each figure, the x-axis shows the original as probe programs. A bar show the speedup of an optimized program when co-running
with the probe.

removes more misses (7.6% and 41%) but improves the
performance for just 1.9%.

In individual results shown in Figure 6, affinity optimizers
occasionally slow down a program in one co-run. On average,
they always improve the co-run performance, about 0.5% at
least. Function TRG is consistently beneficial except in one
program for which it is consistently harmful (2% on average).

In miss ratio results, however, function TRG is counter
productive in the majority of programs, 4 of the 7. In practice,
TRG is sensitive to the window size 2C. Its improvement
is fragile as we try to pick the value that gives the best
performance. The reason for improvement may come from
factors other than the instruction cache locality. For BB

reordering, TRG shows almost no improvement and many
slowdowns. Still, when it is effective, it can produce the highest
improvement and maintain it across all co-runs.

Overall, hardware counted cache miss ratio reductions are
less than simulated ones. Simulated cache miss ratio reductions
are accurate simulation results of co-run cache sharing due to
merely simulating cache behavior, while in hardware, many
other factors may reduce cache miss ratio reductions because
of its complexity, for example prefetching. Our results in
Table II confirms this point. However, the two trends of
hardware counted and simulated cache miss ratio reductions
coincide.
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(a) Throughput improvement of co-run over solo-run. No optimization.
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(b) Additional throughput improvement due to function affinity optimization.

Fig. 7: Throughput improvement showing first the benefit of sharing the cache and then the more effective sharing due to function
affinity optimization.

D. Petrank-Rawitz Wall of Locality Optimization

In POPL 2002, Petrank and Rawitz showed a harsh limit —
finding optimal data placement is not only NP-hard but also
impossible to approximate within a constant factor if P 6=
NP [23]. Their result is universal, and the same limit applies
to code as well as data. Observing the terms “memory wall”
and “power wall”, which architects use to draw attention to
their problems, we may call this limit the Petrank-Rawitz wall
to draw attention to program optimization.

Because of the theoretical limit, no practical solution
can guarantee optimality or closeness to it. Still, effective
solutions can be developed to capture specific patterns and
optimize for these. Affinity and TRG are two such example
patterns. Furthermore, having more varieties helps because
an application may have more of one pattern than another.
Different granularity, e.g. function or BB, effectively creates
different applications for optimization since the pattern in
function usage may differ from the pattern in BB usage.

The way to approach the Petrank-Rawitz Wall is through
specificity and variety. We have developed four such solutions.
The combined strength is greater. In solo-run, 7 out of 8 are
improved by 1% to 3%. In co-run (highlighted in Table 6), 5
out of 8 gain 5% to 10.3%, and the rest at least 1.5%. These
improvements are for major applications in compilation, com-
binatorial optimization, computer game, network simulation,
document processing, and computer graphics.

Although the individual improvement is small, the tech-
nique is general and automated. We expect that SPEC results
are representative, and a significant portion of real-world
applications will gain a few percent performance from our
techniques.

E. Boosting Hyper-threading

Figure 7(a) shows the benefit of hyper-threading by the
throughput improvement of baseline co-run over baseline solo
run. The downside is that programs have to share the cache and
physical core and they may run slower. However, the benefit
is that the time to finish both programs are 15% to over 30%
faster.

Code layout optimization further improves the throughput.
In Figure 7(b), we show the magnifying effect of function affin-

ity optimization, which is the improvement from optimized-
baseline co-run divided by the improvement from baseline-
baseline co-run, i.e. Figure 7(a). For the 28 co-run pairs, the
magnifying effect is over 5.6% for 16 pairs and 10% or more
for 9 pairs (57% and 32% of all pairs). The largest is 26%.
The arithmetic average is 7.9%. There is only one degradation,
-8% for 453-453 co-run.

F. Combining Defensiveness and Politeness

Here we come to a negative finding. We have selected
the three most improving programs from function affinity
optimization and tested them in optimized-optimized co-run.
Compared to optimized-baseline co-run, we see only negligible
improvements (but no slowdown). This has several implica-
tions. First, the optimization is so effective that after it there
is no contention in the instruction cache in optimized-baseline
co-run. There is no room there to improve. Second, without
benefits in L1, there is no further improvement in the unified
cache in the lower levels. Because of the relative small size
of instruction and the strength of affinity-based optimization,
just optimizing one of the two co-run programs is enough to
obtain the full benefit in shared cache. We conjecture that in
cases where the active code size is large, e.g. database, and the
number of co-run programs is high, combining defensiveness
and politeness should see a synergistic improvement.

IV. RELATED WORK

Peer Aware Optimization Zhang et al. shows significant
benefits of locality optimization in multi-threaded code running
in shared cache [33]. QoS-Compile from Tang et al. [26], [27]
reduces the peer contention in program co-run. The compiler
inserts the QoS markers which at run-time is adjusted to
throttle back a program’s execution to protect the primary
program from having an excessive slowdown. Defensive tiling
reduces the tile size to shorten the residence time of the tiled
data in shared cache [2]. QoS makes a peer program nicer
(more polite) by slowing down its speed. Defensive tiling
makes a program less sensitive by reducing its activity time in
shared cache. QoS is peer dependent, and defensive tiling is
peer independent. The two transform program code but do not
optimize the code layout, which is the goal of this work. Code
layout optimization is peer independent, and the optimization
improves both defensiveness and politeness.



Code Layout Optimization Traditionally a compiler com-
piles one function at a time. Inside a function, a major problem
is to reduce the cost of branches. Code layout techniques
include replication to remove conditional branches [22] and
branch reordering to facilitate branch prediction [11]. A com-
mon tool is hot path profiling [1]. These techniques aim to
improve the speed at which a processor core fetches the next
instruction. They may improve both code layout and code
optimization. However, they do not maximize the utilization
of instruction and data cache. In addition, instruction fetch
logic is not shared and hence not affected by program co-run.

For instruction footprint, cold (infrequent) paths are
also important. Reference affinity finds the pattern of co-
occurrence, both hot and cold, and places related code to-
gether. Zhang et al. reorganized the layout of basic blocks
based on reference affinity and showed improvements over
superblock-based code layout [32]. The transformation was
intra-procedural.

TRG was invented to improve the function layout across
the entire program [8]. A similar model is the Conflict Miss
Graph (CMG), used for function reordering [12]. Other pair-
wise models have been used in cache-conscious data layout [4],
[21], [24]. TRG and CMG have a different purpose than
reference affinity. TRG and CMG are to reduce cache conflicts,
and reference affinity is to improve spatial locality. They are
also similar in that all three find co-occurred functions for
special placement. A key technical difference is that TRG and
CMG use a fixed size window while reference affinity uses
windows of increasing sizes, as discussed in Section II-C.

TRG function layout was used to optimize the shared cache
on SMT [13]. The study was simulation based and necessarily
so because the Intel hyper-threading hardware was not yet
released. By building a real system and using basic-block
reordering, we have validated and extended their pioneering
idea and quantified the improvement on real hardware.

V. SUMMARY

This paper formalized the goals of shared cache optimiza-
tion in terms of defensiveness and politeness and extended
the reference affinity model so it can be used to reorganize
tens of thousands of functions and basic blocks in a large
program. Our work is the first experimental comparison be-
tween reference affinity and TRG. We found that affinity-
based optimizations are robust, and all but basic-block TRG
are effective for shared cache. Of all SPEC CPU benchmarks,
30% have non-trivial miss ratio in the instruction cache.
For majority of them, our optimizations improve the whole-
program performance by up to 3% in solo run and up to 10.3%
in co-run. By better utilizing the shared cache, they magnify
the throughput improvement of hyper-threading by 8%.
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