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ABSTRACT
Object replication is a common approach to enhance the
availability of distributed data-intensive services and stor-
age systems. Many such systems are known to have highly
skewed object request probability distributions. In this pa-
per, we propose an object replication degree customization
scheme that maximizes the expected service availability un-
der given object request probabilities, object sizes, and space
constraints (e.g., memory/storage capacities). In particular,
we discover that the optimal replication degree of an object
should be linear in the logarithm of its popularity-to-size
ratio. We also study the feasibility and effectiveness of our
proposed scheme using applications driven by real-life sys-
tem object request traces and machine failure traces. When
the data object popularity distribution is known a priori,
our proposed customization can achieve 1.32–2.92 “nines”
increase in system availability (or 21–74% space savings at
the same availability level) compared to uniform replica-
tion. Results also suggest that our scheme requires a mod-
erate amount of replica creation/removal overhead (weekly
changes involve no more than 0.24% objects and no more
than 0.11% of total data size) under realistic object request
popularity changes.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability.

General Terms
Experimentation, performance, reliability.
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1. INTRODUCTION
Object replication is commonly employed to enhance the

availability of data-intensive services, on wide-area networks [2,
7, 16, 18, 21, 36], on mobile and wireless networks [17], on
enterprise-area networks with decentralized management [3,
10], and on centrally-managed local-area clusters [12,13,26,
29–32]. However, existing availability-oriented replication
schemes are often oblivious to object request popularities
when determining object replication degrees. Typically, all
objects are assigned the same number of replicas. For exam-
ple, CFS [7] uniformly maintains k (k = 6 in their settings)
replicas for each file block. Farsite [3,10], guided by its mea-
surement results on desktop free spaces, uses 3 or 4 replicas
per file.

However, many large-scale data-intensive applications con-
tain objects with highly skewed data popularity distribu-
tions. Such popularity skewness may be exploited to im-
prove system availability under a given space constraint.
Intuitively, using more replicas for popular objects (less for
unpopular ones) can increase the overall expected service
availability1 while keeping the total space cost unchanged.
The space constraint here may concern the external stor-
age space or memory space when the dataset must reside
in memory for fast response (as in some interactive Internet
services).

Under space constraint, the popularity-adaptive object
replication degree customization must also consider object
sizes, particularly when object popularity and size distribu-
tions are correlated. Using a simple model, we propose a
replication degree policy that maximizes the availability for
systems with known object popularities and sizes. Specifi-
cally, we find that the optimal number of replicas for each
object i should be linear in log ri

si
, where ri is the normalized

object popularity and si is the normalized object size. We
further consider our result in the context of additional prac-
tical application semantics (multi-object service requests)
and heterogeneous systems (nonuniform/correlated machine
failures).

1In some systems like Farsite [10], the availability metric
is defined as the availability of the least available object in
the whole system. Here we use a service-centric availability
metric called expected service availability — the proportion
of all successful service requests (each of which accesses one
or more data objects) over all requests.



Object popularities in a system may change over time and
such changes may call for adjustments on object replication
degrees. In order for popularity-adaptive object replication
degree customization to be practical, the adjustment over-
head associated with object popularity changes must be lim-
ited. Additionally, a popularity-adaptive replication scheme
tends to select higher replication degrees for more popular
objects. This adversely affects write requests by increasing
the replication consistency maintenance overhead. In this
paper, we derive variants of our proposed replication scheme
to address these feasibility concerns.

Our contribution is two-fold. First, we propose a novel
popularity/size-adaptive object replication degree customiza-
tion scheme for high service availability. Second, we evaluate
its feasibility and effectiveness under practical system en-
vironments. Our quantitative evaluation uses applications
driven by large real-life system data object request traces
(IRCache web proxy cache [15] request trace, Ask.com [1]
web keyword search trace, Harvard NFS file access trace [11],
and CMU Coda file system [17] access trace). The node fail-
ure models in our evaluation are driven by failure/inaccessibility
traces of real distributed systems (Ask.com server machines
and Planetlab machines) and a synthetic WAN service fail-
ure model [8].

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 provides background and
motivation for popularity/size-adaptive object replication
degree customization. Section 4 derives an optimal repli-
cation degree policy using a simplistic model and then we
further consider our result in practical application and dis-
tributed system contexts. Section 5 addresses additional
practical concerns beyond achieving high availability. Sec-
tion 6 quantitatively assesses the benefit and overhead of the
proposed replication scheme. Section 7 concludes the paper.

2. RELATED WORK
There is a large body of previous work concerning object

replication for high availability in distributed systems. The
Farsite project [3, 10], Mickens and Noble [20], and Bhag-
wan et al. [2] all studied the estimation of machine avail-
ability in a distributed system and its utilization in guiding
object replication degree and replica placement. Yu and
Vahdat [37] investigated the relationship between availabil-
ity and a number of factors including replication mainte-
nance overhead. Nath et al. [21] measured correlated ma-
chine failures in real systems and studied its implication
on data replication for high availability. Overall, existing
availability-oriented replication systems or techniques do not
consider object request popularities when determining per-
object replication degrees. In particular, many systems (e.g.,
Farsite [3], CFS [7], GFS [12], Glacier [14], IrisStore [21],
MOAT [36]) use a fixed number of replicas for every object.

Object replication also serves other purposes than enhanc-
ing availability. For instance, Glacier [14] employs object
replication for improving storage durability. Cohen et al. [6]
proposed a square-root principle in determining customized
object replication degrees for short search latency in peer-
to-peer networks. The replication strategy in Beehive [24]
exploits power law query distributions to achieve constant
object look-up time in distributed hash tables. Kangasharju
et al. [16] utilized the object popularities in determining
replication strategies for small object access cost. Gener-
ally speaking, different system models and objective metrics

demand studies on very different sets of issues. In particular,
prior studies on object replication degrees have reached dif-
ferent results from ours since their optimization goals differ
from ours — maximizing availability under space constraint.

Replica consistency has also been heavily studied in the
past. Some have employed relaxed replica consistency se-
mantics [12,31,32] to achieve high service throughput. Oth-
ers seek to achieve high throughput and strong replica con-
sistency at the same time (through application-specific data
replication [13,29] or using chain replication [26]). Determin-
ing object replication degrees for high availability is mostly
an orthogonal issue to replica consistency, except that a
higher replication degree requires more consistency main-
tenance overhead for write-intensive services.

As an alternative to full object replication for data re-
dundancy, erasure coding [22, 23] represents an object by n

fragments, out of which any m fragments can be used to
reconstruct the object (typically 1 < m < n). Weather-
spoon and Kubiatowicz [35] suggested that systems employ-
ing erasure coding can have much higher availability than
replicated systems with similar storage requirements. How-
ever, a later study by Rodrigues and Liskov [27] showed
that erasure coding is not always preferable. In particular,
erasure coding requires more network bandwidth and com-
putation cost; it introduces additional service delay; and it is
inappropriate when partial object retrieval is desirable (e.g.,
retrieving a few top matches in an index file for a search
query). In this paper, we focus on improving availability
through full object replication.

3. BACKGROUND AND MOTIVATION

3.1 Targeted Systems
Generally speaking, our adaptive object replication study

is applicable to any data-intensive distributed systems with
potential machine failures and with space constraints for
data storage (so one cannot replicate all objects with an ar-
bitrarily high degree to achieve desired availability). Here we
describe two common distributed system environments that
are specifically targeted in this paper. We discuss their ma-
chine failure properties and explain their space constraints.

• Decentralized wide-area/enterprise-area systems. Due
to uncoordinated shutdown/maintenance and network
connectivity problems, the per-node failure rate in wide-
area distributed systems can be quite high (averaging
at 0.265 from a four-month Planetlab machine acces-
sibility trace, described later in Section 6.1). Non-
uniform machine failures are commonplace since nodes
in these systems can have very different physical con-
figurations and network accessibility. Additionally, cor-
related machine failures are also possible due to com-
mon failure causes like workload-triggered software bug
manifestations and Denial-of-Service attacks [21]. As
for the space constraint, the high per-node failure rate
in these systems may demand high-degree replication
to achieve desired service availability. Without proper
optimization, this may result in high storage demand
and excessive cost of placing/maintaining the replicas.

• Centrally-managed local-area clusters. Many data-intensive
services run on centrally-managed local-area clusters.
Examples include web keyword search engines and dig-
ital libraries. With central management, the per-node



Traces Num. of distinct objects Num. of requests Collection time periods

IRCache web proxy [15] 4.89 million web pages 33.46 million 09/15/2005–10/27/2005 (six weeks)
Ask.com Search [1] 1.41 million keyword indexes 75.92 million 01/01/2006–02/25/2006 (eight weeks)
Harvard NFS [11] 667,656 files 2.78 million 02/01/2003–03/14/2003 (six weeks)
Coda distributed FS [17] 16,250 files 556,703 01/01/1993–01/31/1993 (four-five weeks)

Table 1: Real system data object request traces and their statistics.
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Figure 1: An illustration on object request popularity skewness. For each trace, the objects are first sorted
in the descending order of their popularities and then partitioned into 50 equal-numbered (the upper row)
or equal-sized (the lower row) groups. The absolute values of popularity and size for each object partition
are both normalized to those of all object partitions combined.

failure rate in these systems is relatively low (averag-
ing at 0.000455 from a six-month Ask.com server fail-
ure trace, described later in Section 6.1). Non-uniform
machine failures are not as likely in these systems but
correlated failures may still exist. As for the space
constraint, these systems typically do not require very
high-degree replication to achieve desired service avail-
ability. However, it is a common requirement to keep
dataset in memory to support fast response for inter-
active Internet users. Therefore the space constraint
here concerns memory space, which is far more pre-
cious than external storage space.

In addition to the system environments, application-level
service semantics may also affect our study. In particular, a
service request may involve multiple data objects and typi-
cally the request succeeds only if all objects are available. An
example is the multi-keyword search query (in a web search
engine) that requires the availability of data indexes associ-
ated with all keywords in the query. Multi-object requests
have subtle implications on system availability [36] and we
must consider them in our object replication scheme.

3.2 Primary Motivations — Object Popular-
ity Skewness and Stability

Many real-world data-intensive applications exhibit high
skewness in their object request popularities. To illustrate
this quantitatively, we collect data object request traces for

four such systems (IRCache web proxy cache [15] request
trace, Ask.com [1] web keyword search trace, Harvard NFS
file access trace [11], and CMU Coda file system [17] access
trace). Table 1 lists some statistics of these traces. The
object request popularity skewness is illustrated in Figure 1.
The upper row shows that the top 10% most popular objects
account for at least 92% system requests in all traces. Due to
such skewness, the overall expected service availability may
be increased by popularity-adaptive replication — higher
replication degrees for more popular objects.

Under space constraint, object sizes also need to be con-
sidered when object popularity and size distributions are
correlated. Such correlation is evidenced by the difference
between size-normalized object popularities (the lower row
of Figure 1) and original object popularities (the upper row).
This correlation is strongest for the Ask.com trace in Fig-
ure 1(B), where a popular keyword tends to be associated
with a large data index (list of web pages containing the key-
word). In such cases, it may not be preferable to use high
replication degrees for popular objects since the large space
consumption diminishes or even outweighs the availability
increase.

The popularity of individual data objects may not stay
constant over the lifetime of a data-intensive service. For
instance, some objects may only become popular for short
bursts of time (e.g., news pieces and security patches for
short-lived viruses). For writable services, new data ob-
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Figure 2: An illustration on object popularity stability. For each trace, we divide it into two equal-length
segments. For the most popular 1000 objects (500 for Coda) in trace segment 1, we compare their popularities
in the two trace segments. The closeness between the dots (popularity in trace segment 2) and the curve
(popularity in trace segment 1) indicates small popularity changes.

jects that did not exist before may enter the system and
become popular. For a popularity-adaptive object replica-
tion scheme, the popularity change of individual data ob-
jects may call for replication degree adjustment and thus
incur replica creation/deletion overhead. In addition to the
replica adjustment overhead, unstable object popularities
also make it difficult to estimate such popularity values that
are used to determine the object replication degrees.

We analyze our object request traces to assess the object
popularity stability in real systems. The four traces listed
in Table 1 are over four to eight weeks long. For each trace,
we divide it into two equal-length segments and we then ex-
amine the object popularity changes between the two trace
segments. Figure 2 illustrates such changes for the most pop-
ular objects. Quantitatively, we define the variation metric
between two distributions π1 and π2 as:

||π1, π2|| =

P

i
|π1(i) − π2(i)|

P

i
π1(i) +

P

i
π2(i)

(1)

Note that ||π1, π2|| ∈ [0, 1]. The variation between the two
trace segments is 0.124, 0.068, 0.167, and 0.108 for IRCache,
Ask.com, Harvard NFS, and Coda respectively.

Our trace analysis suggests that the popularities for most
data objects tend to remain largely stable over multi-week
periods but object popularity changes do exist and their
associated costs must be considered for popularity-adaptive
object replication.

4. OBJECT REPLICATION DEGREE CUS-
TOMIZATION

We present an object replication degree customization
scheme that achieves high expected service availability un-
der given space constraint, object request popularities, and
object sizes. We first provide an optimal result using a sim-
ple model — each service request accesses a single object;
machines fail independently with a uniform failure probabil-
ity. We then further consider this result in the context of
practical issues including multi-object requests, nonuniform
machine failure rates, and correlated machine failures.

4.1 A Simple Model — Single-Object Requests;
Uniform Independent Machine Failures

Our system model assumes independent machine failures
with a uniform failure probability of 0 < p < 1 — each
machine fails to answer requests to its hosted objects with

p machine failure probability
n number of objects
ki number of replicas used for object i

ri request probability of object i

si size of object i (normalized by total data size)
K total space capacity (normalized by total data size)

Table 2: Symbols used in our simplistic model for
availability-oriented object replication.

probability p. There are n objects in the system. The nor-
malized size of the ith object is si with

Pn

i=1
si = 1. For

systems using single-object requests, we define ri as the re-
quest probability of the ith object,

Pn

i=1
ri = 1. The num-

ber of replicas (including the original copy of the object)
used for the ith object is ki. Hence the total space con-
sumption (normalized by the total data size) is

Pn

i=1
si · ki.

We seek to compute object replication degrees, ki’s, that
maximize system availability under a space constraint given
by

Pn

i=1 si · ki ≤ K, where K can be viewed as the normal-
ized total space capacity for replicas. We assume that the
underlying replica placement mechanism never assigns two
replicas of the same object to one machine. Table 2 lists the
symbols defined above.

Given object sizes and popularities, the problem of finding
per-object replication degrees that minimizes the expected
failure probability of single-object requests can be formalized
as the following constrained optimization problem — finding
k1, k2, · · · , kn that

Minimize
n

X

i=1

ri · p
ki , subject to

n
X

i=1

si · ki ≤ K (2)

where the optimization goal minimizes the expected request
failure probability and the optimization constraint guaran-
tees that the space capacity is not exceeded. The replication
degrees (k1, k2, · · · , kn) must be positive integers in practice.
To make our analysis more tractable, we first solve a relaxed
version of the optimization problem in which k1, k2, · · · , kn

can be real numbers. We then discuss integer rounding is-
sues at the end of this section. With this relaxation, an
optimal solution should always use up all available space (so
the optimization constraint becomes

Pn

i=1
si · ki = K).

For the relaxed real-number optimization problem, the so-
lution can be derived using Lagrange multipliers as follows.



As there is just a single constraint, we use only one multi-
plier λ to combine the constraint and the optimization goal
together into the Lagrangian function

Λ(k1, k2, · · · , kn, λ) =
n

X

i=1

ri · p
ki + λ · (

n
X

i=1

si · ki − K) (3)

The critical values of Λ is achieved only when its gradient is
zero, i.e.,

∂Λ

∂k1

= r1 · ln p · pk1 + λ · s1 = 0 =⇒ p
k1 =

s1

r1

·
−λ

ln p

∂Λ

∂k2

= r2 · ln p · pk2 + λ · s2 = 0 =⇒ p
k2 =

s2

r2

·
−λ

ln p

. . . . . .

∂Λ

∂kn

= rn · ln p · pkn + λ · sn = 0 =⇒ p
kn =

sn

rn

·
−λ

ln p

∂Λ

∂λ
= 0 =⇒

n
X

i=1

si · ki − K = 0

(4)

Therefore, we know that the optimal solution of k1, k2, · · · , kn

must satisfy

p
ki ∝

si

ri

=⇒ ki = C + logp

si

ri

, 1 ≤ i ≤ n (5)

where C is a constant independent of i. Applying the above
results to the optimization constraint, we can compute C as
follows.

n
X

i=1

si · ki = K

=⇒

n
X

i=1

»

si ·

„

C + logp

si

ri

«–

= K

=⇒C +

n
X

i=1

si · logp

si

ri

= K

=⇒C = K + Ds||r · logp

1

2

(6)

where Ds||r =
Pn

i=1
si · log2

si

ri
is the Kullback-Leibler diver-

gence [19] between s and r.
Putting (5) and (6) together, we have the solution of ki’s:

ki = K + Ds||r · logp

1

2
+ log 1

p

ri

si

, 1 ≤ i ≤ n (7)

In our solution, ki consists of three parts: 1) K, the number
of replicas that should be used by uniform replication; 2)
Ds||r · logp

1

2
, a data distribution dependent constant that

determines failure probability reduction; 3) log 1

p

ri

si
, an in-

dividual deviation that only depends on the properties of
object i. Given p < 1, this result is consistent with our in-
tuition that an object with a large request popularity and
a small size should use a large number of replicas. On the
contrary, those objects that have large sizes but small pop-
ularities should use few replicas.

The minimized expected request failure probability of our
solution is

n
X

i=1

ri · p
ki = p

K+Ds||r·logp
1

2 = p
K ·

„

1

2

«Ds||r

(8)

Note that pK is exactly the failure probability of uniform
replication since it uses k1 = k2 = · · · = kn = K. In compar-
ison, our solution always yields a smaller failure probability
(2Ds||r times smaller) because Ds||r ≥ 0 is known to hold for
all possible distributions of r, s’s. In particular, Ds||r = 0
exactly when s, r are identical, which suggests that uniform
replication is optimal exactly when object sizes and popular-
ities follow the same distribution. Uniform distributions of
r and s are one obvious special case of this condition. This
also suggests that our replication strategy is more beneficial
when r, s are more different (hence Ds||r is higher). Note
that Ds||r could be much higher than 1 when s, r are sub-
stantially different. For example, if s is uniform and r is a
Zipf’s distribution, then Ds||r ≈ log2 ln n − 1

ln 2
.

Our solution is globally optimal because our optimization
goal in (2) is strictly convex2 and hence its intersection with
a hyperplane (the optimization constraint —

Pn

i=1
si · ki =

K) is also strictly convex. Consequently, our solution is
globally minimal since it is known that a local critical point
of a strictly convex function is also its global minimal point.

In order for the above real number solution of k1, k2, · · · , kn

to be used in practice, they have to be rounded into positive
integers. We can simply round each ki to its nearest integer
while all ki’s that are smaller than 1 are rounded to 1. Such
rounding does not guarantee that the space constraint K is
strictly enforced. If a strict enforcement is desired, we can
make small adjustments such as rounding down ki’s (as op-
posed to nearest integer rounding) or scaling down all ki’s
before the integer rounding.

4.2 Multi-Object Requests
A multi-object request succeeds only if all involved objects

are available. Note that there also exists a loose type of
multi-object requests (particularly in the forms of erasure
coding [22,23]) in which only a partial subset of the involved
objects need to be available. As discussed in Section 2, we
view it as an alternative method to whole-object replication
for achieving high availability and do not consider it here.

Figure 3 shows that the availability of a multi-object re-
quest is affected by different object replica placement. Here
we consider two common object placement strategies: ran-
dom assignment [12,25,34], which randomly assigns objects
to machines; partitioning [14, 17, 22], which groups objects
into partitions and mirrors each partition on a set of ma-
chines.

Random object placement. Consider an m-object request
with xi replicas used for its ith object. Under random place-
ment, the request failure probability is 1 −

Qm

i=1
(1 − pxi),

which approximates
Pm

i=1
pxi when pxi ’s are small.

The above result suggests that we can view the failure
probability of an m-object request as the summed failure
probabilities of m independent single-object requests. There-
fore, the optimization solution derived in Section 4.1 are di-
rectly usable as long as we compute each object (i)’s request
probability ri proportional to the summed probability of all
requests that involve object i.

Partitioning-based object placement. Partitioning-based
object assignment (PTN) is mainly used when multi-object

2A function F is strictly convex if, for all vectors x, y and
all 0 < λ < 1, F (λx + (1 − λ)y) < λF (x) + (1 − λ)F (y).
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Figure 4: Partitioning-based assignment (PTN) of
semantically ordered objects. Objects are parti-
tioned into sets (so that objects within each set tend
to be accessed together) and each set is assigned to
a group of machines.

access locality exists. By partitioning ordered objects into
sets and mirroring each set across a group of machines, PTN
realizes that the objects of each multi-object request have
the same number of replicas and these replicas are placed
on the same group of machines. Figure 4 illustrates such a
placement scheme. Due to strong intra-request object cor-
relations, PTN is known to be the best object assignment
scheme for multi-object requests [36].

We assume an ideal PTN that always places the object
replicas of a multi-object request on the same group of ma-
chines, i.e., no cross-group multi-object requests. In this
case, viewing each partition as a super-object can turn each
original multi-object request into a single-object request on
super-objects. Consequently, our basic results for single-
object requests are directly applicable for determining the
replication degrees of each partition. It is worth noting that
the size of a partition is measured in terms of the number
of occupied machines since an object partition always exclu-
sively uses a machine as a whole.

Assume the PTN has N object partitions and the total
request probability of the multi-object requests on the ith
partition is oi. The total number of machines in the system
is S. Every object in the ith partition uses Ki replicas. The
optimization problem is to find K1, K2, · · · , KN that

Minimize
N

X

i=1

oi · p
Ki subject to

N
X

i=1

Ki = S (9)

The optimization goal is the system availability since a multi-
object request on the ith partition fails with probability pKi ,
independent of the number of objects requested by the re-

quest. As illustrated in Figure 4, the ith partition exclu-
sively uses Ki machines. Hence the optimization constraint
guarantees that the total number of machines used by all
partitions is no more than the system size. Following the
approach used in Section 4.1, we can get the solution of
Ki’s as

Ki =
S

N
+ Du||o · logp

1

2
+ logp

ui

oi

, 1 ≤ i ≤ N (10)

where o is the distribution of oi’s and u represents a uniform
distribution — ui = 1

N
, 1 ≤ i ≤ N . Du||o is the Kullback-

Leibler divergence between o and u. The above result is
achieved by viewing each partition as a super-object with Ki

replicas, which transforms each original multi-object request
into a single-object request on super-objects. Consequently,
our results for single-object requests are applicable for de-
termining the optimal replication degrees of each partition.
It is also worth noting that the storage consumption of a
partition is measured in terms of the number of machines
rather than object sizes. This is because an object partition
always exclusively uses several machine as a whole.

4.3 Nonuniform Machine Failure Rates
Machines in a distributed system may have nonuniform

failure rates due to different hardware/software composi-
tions and configurations as well as varying network acces-
sibility. In such systems, the replica placement can also
affect the service availability. For instance, Farsite [10] mi-
grates object replicas between machines with different failure
rates to improve availability. However, systems that make
such fine-grained replica placement decisions typically re-
quire large lookup tables to support placement lookup. On
the other hand, scalable placement/lookup schemes like the
DHTs [25,28,34] employ random hash-based placement that
is oblivious to specific machine properties. In this paper, we
assume such a placement scheme in which replicas of each
object is placed on machines with no concern on the indi-
vidual machine failure rates.

We assume that n machines have possibly nonuniform fail-
ure probabilities p1, p2, · · · , and pn, respectively. Consider
an object with k replicas. When the replica placement is
oblivious to individual machine failure rates, the expected
object failure probability is 1

nk · (
Pn

i=1 pi)
k, which is the

same as that on uniform failure machines with per-machine
failure probability p = p1+p2+···+pn

n
. This means that our

Section 4.1 result is directly applicable here if we set p as
the average machine failure probability. Note that the above
results do not exclude the possibility that multiple replicas
of one object may be assigned to the same machine. If this is



not allowed, the stated result on the expected object failure
probability is still approximately true for k ≪ n.

The above results show that the failure probability of each
object changes very little when the nonuniform machines are
viewed as uniform machines that fail with the average fail-
ure probability. Consequently, the availability of adaptive
object replication on nonuniform machines is close to that
on corresponding uniform machines.

4.4 Correlated Machine Failures
Machines in a distributed system may not always fail

independently. Simultaneous failures are possible due to
common failure causes like workload-triggered software bug
manifestations and Denial-of-Service attacks [21]. Since the
chance of simultaneous replica failures is higher in these
cases, strongly correlated machine failures may generally di-
minish the effectiveness of object replication for high avail-
ability. Overall, we believe that our proposed popularity/size-
adaptive object replication degree customization would have
a reduced but still significant availability enhancement over
uniform replication. In particular, our evaluation results in
Section 6 show that our availability enhancement is signifi-
cant except under severe machine failure correlations (e.g.,
more than 100 simultaneous failures out of 190 machines).

5. ADDITIONAL PRACTICAL ISSUES
Beyond achieving availability, this section addresses a num-

ber of issues for applying such a scheme in practice.

5.1 Transparent System Integration
It is desirable to be able to integrate object replication de-

gree customization into an existing replication system with-
out excessive changes. We envision the introduction of a
replication manager that is responsible for gathering nec-
essary object popularity information and making the repli-
cation degree policy. Existing storage machines only need
to be slightly changed to collect/report local object access
statistics and implement the replication degree policy de-
termined by the replication manager. The availability of
the replication manager is not essential for normal system
operations since it is only needed for infrequent replication
policy adjustments (e.g., weekly or multi-weekly). Nonethe-
less, the replication manager functionality can be replicated
to enhance its availability.

Ideally, the customization of object replication degrees
should be transparent to system users. In particular, a user
does not need to know the exact object replication degree
when accessing an object. For a DHT-compliant random
hash-based replica placement scheme, we can place an ob-
ject (i)’s ki replicas on machines hash[f(i, 1)], hash[f(i, 2)],
· · · , hash[f(i, ki)], where f(·, ·) can be any deterministic
function. Assume we have a system-wide object replica-
tion degree upper-bound kmax. To look for the object i, a
user (with no knowledge of ki) only needs to check machines
hash[f(i, 1)], hash[f(i, 2)], · · · , hash[f(i, kmax)], either seri-
ally or simultaneously. In this fashion our proposed object
replication degree customization can seamlessly work with
any existing object placement scheme that places an object
with a specific key to a specific location, i.e., the ith replica
of object x is represented by a key tuple [x,i] that solely
determine its placement.

5.2 Replica Creation/Deletion under Dynamic
System Changes

The replication degree policy may need to be adjusted due
to system changes such as varying object request popular-
ities and dynamic machine arrival/departures. A change
of the replication degree policy requires replica creations
and/or deletions. We consider the overhead of such adjust-
ments below.

Changing object request popularities. We expect that
the replica adjustment overhead due to object request pop-
ularity changes would not be excessive in practice. First,
our analysis of real system object request traces in Sec-
tion 3.2 suggests that the popularities of most data objects
tend to remain stable over multi-week periods. Second, the
logarithmic popularity-related term in our proposed replica-
tion scheme of Equation (7) infers that exponential changes
in object popularity would only call for linear adjustments
of the object replication degree. For example, if p = 0.1,
then ten time popularity increase of an object only amounts
to one replica addition. Section 6 will show that no more
than 0.24% objects in four evaluated real-life application
workloads need weekly replica adjustment. The popular-
ity changes of other objects are not high enough to cause
changes in the number of their replicas.

Furthermore, we have the option of lowering the replica
adjustment overhead by using a coarser policy granularity
when determining object replication degrees. For example,
Figure 5(A) uses a fine-grained policy where the replication
degree can be any positive integers. In contrast, Figure 5(B)
employs a coarser policy granularity and hence it is less sen-
sitive to object popularity changes. Note that this scheme
may lead to diminished availability gain at the same time.

For the purpose of determining the thresholds of a coarse-
grained policy, the knee points on the curve of object popularity-
to-size ratios may serve as good candidates. The final choice
among such candidates is subject to further experiments.

Dynamic machine arrival/departures. Dynamic machine
arrival/departures typically change the total space capacity
K in the system and as a result the object replication degrees
may need to be adjusted. According to our proposed repli-
cation scheme in Equation (7), a change of K requires a uni-
form adjustment of replication degrees for all objects. Note
that such adjustment is identical to that of uniform replica-
tion. Therefore our customized replication scheme incurs no
extra replica adjustment overhead over uniform replication.
Such adjustment overhead should be small when the space
capacity K does not change significantly.

5.3 Replica Consistency Maintenance
Some applications may allow write requests on the data

objects. Writes incur replica consistency maintenance over-
head and the overhead grows as more replicas are used. In
a simple read-one/write-all protocol, the object write over-
head is linear in the number of object replicas. For Byzan-
tine fault tolerance protocols [4], Kubiatowicz et al. [18]
pointed out that a nearly linear overhead is achievable if
the the replication degree is not too large. Generally speak-
ing, by using more replicas for popular objects, popularity-
adaptive replication degree customization tends to incur more
replica consistency maintenance cost than uniform replica-



0 5 10 15

x 10
5

10
1

10
2

10
3

10
4

1 replica

2 replicas

3 replicas

4 replicas

5 replicas

Sorted objects

P
op

ul
ar

ity
−

to
−

si
ze

 r
at

io
s

(A) Fine−grained policy

0 5 10 15

x 10
5

15

900

1 replica

3 replicas

5 replicas

Sorted objects

P
op

ul
ar

ity
−

to
−

si
ze

 r
at

io
s

(B) Coarse−grained policy

Figure 5: An example of fine-grained and coarse-grained policies for determining the object replication
degrees of popularity/size-adaptive replication. The popularity-to-size ratio is defined as ri

si
for object i.

tion. Such extra overhead can be bounded by enforcing an
upper-bound on per-object replication degrees (kmax). We
will quantitatively evaluate such overhead in Section 6.

6. EVALUATION
This section evaluates the effectiveness and feasibility of

popularity/size-adaptive object replication on data-intensive
applications driven by real-life traces. Our evaluation con-
siders the impact of a wide range of practical factors, includ-
ing single/multi-object requests, object placement, failure
patterns (uniform/nonuniform, independent/correlated), dy-
namic object popularity changes, and replica consistency
maintenance overhead.

6.1 Evaluation Settings
Our evaluation framework supports different replication

strategies and also allows the injection of various workloads
and failure patterns.

Object replication degree policies. We consider uniform
replication and two customized policies at different rounding
granularities (with performance/overhead trade-off). The
comparison of the three policies is made at the same space
consumption — when the average object replication degree
(weighted by object sizes) is the same.

• Uniform. All objects use the same number of replicas.

• Fine-grained object replication degree customization.
The replication degree of object i is determined by
rounding ki (7) to the nearest integer within [1, kmax],
where kmax sets an upper-bound for per-object replica
consistency maintenance cost. In our evaluation, we
set kmax as four times the average replication degree
over all objects (weighted by object sizes).

• Coarse-grained object replication degree customization.
This policy is the same as the fine-grained customiza-
tion scheme except that ki is rounded in a different
way. In this policy, there are only two possible repli-
cation degrees (high and low) for each object. Each
object chooses from the two replication degrees based
on its popularity-to-size ratio ( ri

si
for object i). More

specifically, an object uses the high replication degree

if its popularity-to-size ratio is higher than a threshold
and it uses the low replication degree otherwise. The
threshold is determined at one of the knee points on
the object popularity-to-size ratio curve, as explained
in Section 5.2. The high and low replication degrees
are carefully selected such that the space constraint is
not violated. Compared with fine-grained replication
degree customization, this scheme incurs less replica
adjustment overhead in response to object popularity
changes, but at the cost of less availability.

Workloads. Our evaluation employs four data-intensive work-
loads driven by real system data object request traces.

• Distributed web store. We collect a web page request
trace from the NLANR web caching project (IRCache) [15],
which consists of ten cooperative web caches. The
trace spans over six weeks of 09/15/2005–10/27/2005.
We use the trace to drive a distributed web content
store application in which each data object is a web
page. Due to a legacy trace processing artifact (for
the purpose of caching), our processed trace does not
contain those web pages that are only accessed once in
the six-week duration (since extremely rare web pages
serve no purpose of caching). This workload contains
4.89 million distinct web pages and 33.46 million re-
quests.

• Index search. We build a prototype web search engine.
The search engine allows full-text keyword search on
3.7 million web pages. The web pages were crawled fol-
lowing URL listings of the Open Directory Project [9]
and preprocessed by using the stopword list of the
SMART software package [33]. The queries are from a
partial query log of 6.8 million queries at the Ask.com
search engine [1]. There are an average of 2.54 keyword
terms per query. In our search application, a data ob-
ject is the data index associated with each keyword. A
multi-keyword search accesses the data indices associ-
ated with all keywords in the query.

This workload allows multi-object requests in the form
of multi-keyword queries. Since the object placement
policy may affect the system availability, we consider
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Figure 6: The PlanetLab machine failure probabilities and failure correlations. The points that are well above
the average in Figure (B) represent correlated machine failures.

two common object placement policies that we dis-
cussed in Section 4.2: Random (or RAND) and PTN.
We thus have two variations of this workload. The ob-
ject partitions in our implementation of PTN are gen-
erated by using the Chaco [5] software package to di-
vide query keywords into semantically clustered groups
— the keywords in each group tend to be queries to-
gether while there are few cross-group queries. An
example of such keyword groups include the follow-
ing words: san, ca, diego, francisco, puerto, tx,
austin, rico, antonio, earthquake, jose, juan, val-
larta, lucas, rican, luis, cabo, fransisco, bernardino.

• Distributed file store (Harvard). We use the Harvard
NFS trace [11] over six weeks (02/01/2003–03/14/2003)
to drive a distributed file store application. The raw
data trace contains all NFS events over the network.
Note that a single file access session from a client on
a file may consist of many NFS file access events. We
believe it is more appropriate to consider these NFS
events as one data object request since they belong to
a single client file access session and they share the
same success/failure outcome depending on the object
(file) availability. Specifically, we merge multiple file
access events from the same client on the same file
over a certain time period (e.g., one hour) into a sin-
gle request. The processed trace contains 2.78 million
requests on 667,656 files.

• Distributed file store (Coda). We employ another dis-
tributed file store workload driven by a Coda distributed
file system [17] trace over one month. The trace con-
tains 556,703 requests on 16,250 files.

The IRCache and Ask.com search workloads are both read-
only. On the other hand, the Harvard and Coda distributed
file system workloads contain some writes. Specifically, the
write ratio for the Coda trace is less than 6% while the write
ratio in the Harvard NFS trace is around 37%. Our evalua-
tion on availability only considers the read portions of these
workloads. We will examine the replica consistency mainte-
nance overhead due to writes in Section 6.3.

Failure patterns. Our availability evaluation uses two real-
life distributed system machine failure patterns (an Ask.com

LAN service trace and a PlanetLab WAN service trace) and
one synthetic WAN failure pattern.

• A six-month Ask.com local-area cluster failure trace.
The trace concerns a cluster of 300 machines with an
MTTF (mean time to next failure) of 275 days and an
MTTR (mean time to next repair) of around 3 hours.
The average machine failure probability is p = 0.000455.
Such a lower failure rate is typical for centrally-managed
local-area clusters.

• A four-month PlanetLab node accessibility trace. The
trace contains all-pair ping snapshots at 20-minute in-
tervals for some PlanetLab nodes over the period of
June–September 2006. We consider a node fails at a
snapshot if no other nodes can successfully ping it.
There are 190 nodes left after we remove those nodes
that never come alive over the four-month period. The
average node failure probability is p = 0.265. This
trace possesses a highly skewed machine failure prob-
ability distribution (Figure 6(A)) and strong failure
correlations (Figure 6(B)).

• A synthetic failure pattern for WAN services. The
PlanetLab testbed probably suffers from higher-than-
normal failures due to its nature as an experimental
research platform. To consider more general patterns,
we also utilize a synthetic WAN service failure model
derived from network connectivity and HTTP server
availability [8]. Specifically, this failure model con-
sists of independent machines each with an MTTF of
11571 seconds and an MTTR of 609 seconds. Each ma-
chine fails with probability p = 0.05.

System setup. In our experiment, the object request pop-
ularity distribution is available to the system a priori. The
distribution is updated on a weekly basis and we adjust our
popularity-aware object replication degrees accordingly. We
run the object request workloads on the simulated nodes,
which fail by strictly following the observed failure time and
durations in the failure trace.

We measure system availability in the commonly used
notation of “nines”. For a system with failure probabil-
ity of f , its “number of nines” is defined as log0.1 f . For
example, a system with 3-“nines” availability means that



Web store Index search Index search File store File store
RAND PTN (Harvard) (Coda)

Coarse-grain 1.73 nines 1.18 nines 1.14 nines 1.07 nines 1.82 nines
Fine-grain 2.12 nines 1.53 nines 1.32 nines 1.71 nines 2.24 nines

Table 3: The availability gain of customized replications over uniform replication on the Ask.com failure
pattern. Due to the low average machine failure rate (0.000455), we focus on a low average object replication
degree for uniform replication — 2 replicas per object. Our customized replications use the same amount of
total space as uniform replication.
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Figure 7: The failure probabilities and availability gain on the synthetic WAN service failure pattern (uniform
independent machine failure rate p = 0.05). The marked availability gains are over the uniform replication.
All three replication strategies use the same amount of total space.

the system is available for 99.9% time. By saying that sys-
tem A (failure probability: fA) achieves x“nines”availability
gain over system B (failure probability: fB), we mean that
log0.1 fA − log0.1 fB = x.

6.2 Effectiveness
Table 3 shows the effectiveness of our proposed replica-

tion degree customization on the Ask.com machine failure
pattern. Due to the low average machine failure rate, we
focus on a low average object replication degree (2 repli-
cas per object) for this failure pattern. Results show that
the proposed popularity/size-adaptive replication achieves
up 1.32–2.24 nines availability increase over uniform repli-
cation. Even the coarse-grained adaptive scheme (that only
allows two distinct replication degrees) achieves 1.07–1.82
nines availability enhancement.

Figure 7 studies the failure probabilities on the synthetic
WAN service failure pattern. We show the results on vary-
ing average replication degrees. The results show that fine-
grained replication degree customization achieves 1.43–2.92

nines availability increase over uniform replication. Fur-
thermore, the increase remains stable over different average
replication degrees. Such stability matches our analytical
result in Equation (8), where the failure probability reduc-
tion factor (2Ds||r ) only depends on data distributions. We
notice that the availability increase of coarse-grained repli-
cation degree customization may vary in different settings.
We believe this is due to relative instability of this scheme.

Figure 8 studies the availability gain of the proposed repli-
cation degree customization on the PlanetLab machine fail-
ure pattern, which possesses a highly skewed machine fail-
ure probability distribution and strong failure correlations
(Figure 6). Results show that the fine-grained customiza-
tion achieves 1.38–2.34 nines availability increase over uni-
form replication, which are slightly inferior to the gains on
the synthetic WAN load with uniform independent machine
failures.

We performed further study to examine the impact of cor-
related machine failures on the availability gain of our pro-
posed popularity/size-adaptive replication. As there is no
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Figure 8: The failure probabilities and availability gain on the PlanetLab failure pattern (with highly corre-
lated machine failures). The marked availability gains are over the uniform replication. All three replication
strategies use the same amount of total space.
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Figure 9: The impact of correlated machine failures
on the availability gain.

clear boundary to differentiate correlated machine failures
and non-correlated failures purely by looking at the fail-
ure trace, we view a lot of simultaneous machine failures as
likely correlated failures and study their impact. The re-
sults in Figure 9 are based on the PlanetLab failure trace.
It shows that strongly correlated failures (many simultane-
ous machine failures) indeed lead to diminished availability
gains but the reduction is not significant except under se-
vere machine failure correlations (e.g., ≥ 100 simultaneous
failures out of 190 machines).

In Table 3, Figure 7, and Figure 8, popularity/size-adaptive
object replication degree customization achieves 1.32–2.92

nines availability gain over uniform replication with the same
space consumption (or 21–74% space savings at the same
availability level). Furthermore, the availability gain mainly
depends on the difference between the object popularity dis-
tribution and size distribution — the higher the difference,
the more the availability gain. Specifically on our studied
four workloads (one of which has two variations), the avail-
ability gain follows the order of “Index search, PTN” < “In-
dex search, RAND” < “File store (Harvard)” < “Web store”
< “File store (Coda)”. This can be explained by character-
istics of respective workload driving traces. As shown in the
lower row of Figure 1, the size-normalized object popular-
ity skewness of the traces follows the order of “Ask.com” <

“Harvard NFS” < “IRCache” < “Coda”. Note that the size
normalization is important. Particularly for the Ask.com
trace, there is a high skewness in object request populari-
ties but the skewness is much lower for the size-normalized
popularities. This is because a popular keyword tends to
be associated with a large data index (the list of web pages
containing the keyword).

6.3 Feasibility
Beyond achieving high availability, the practical appli-

cation of popularity/size-adaptive object replication degree
customization must address issues including dynamic replica
adjustment overhead (caused by object popularity changes)
and increased replica consistency maintenance overhead (due
to higher replication degrees for more popular objects). Here
we evaluate them quantitatively.

The popularity of individual data objects may not stay
constant over the lifetime of a data-intensive service. In
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Figure 10: Weekly replica adjustment overhead caused by dynamic object popularity changes on the Plan-
etLab failure pattern. Results are normalized to the total number of objects or the total data size. The
overhead is even lower on other two failure patterns due to their smaller average machine failure rates.
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Figure 11: Replica consistency maintenance overhead of customized replication (normalized by the overhead
of uniform replication).

the extreme case, some objects may only become popular
for short bursts of time (e.g., breaking news and security
patches for short-lived viruses). Our object replication de-
gree customization is not intended to adapt to such dramatic
object popularity changes (flash crowds) due to large cost of
replication degree adjustment. Instead, we only make repli-
cation degree adjustment in response to long-term stable
changes of object popularities. Fortunately our analysis of
four real service traces in Section 3.2 suggests that the ob-
ject popularity in many large-scale services tend to be stable
over multi-week periods.

Based on our four workloads driven by real-life traces, Fig-
ure 10 shows that the weekly adjustment overhead is low in
relation to the total number of objects and the total data
size. This is because the optimal object replication degree
(C+log 1

p

ri

si
for object i ) is fundamentally insensitive to ob-

ject popularity changes — 1

p
times increase in the popularity

of an object only leads to one more replica. Consequently, no
excessive adjustment is needed unless the change is very sub-
stantial. Furthermore, the overhead becomes much smaller
when the coarse-grained adaptive replication is used.

In practical systems, the number of machines may also
fluctuate due to dynamic machine arrivals or departures.
These events affect available space capacity, which may con-
sequently desire adjustments on object replication degrees.
However, our customized replication scheme does not require

more adjustments of this type than uniform replication does,
as explained at the end of Section 5.2. Therefore we do not
quantitatively evaluate such overhead here.

By using more replicas for popular objects, our customized
replication tends to incur more replica consistency mainte-
nance cost for object writes than uniform replication does.
In our evaluation, we assume that object write overhead is
linear in the number of object replicas. This is true for sim-
ple read-one/write-all protocols and approximately true for
Byzantine fault tolerance protocols as pointed out by Kubi-
atowicz et al. [18]. Assuming that object updates follow
the same popularity distribution as object requests, Fig-
ure 11 shows that the average object update overhead of
fine-grained customization is at most 2.2 times that of uni-
form replication. The coarse-grained customization incurs a
smaller overhead (no more than 1.8 times that of uniform
replication). Although such overhead increase is substan-
tial, the replica consistency maintenance overhead is only
incurred for object mutations and thus it is not a significant
concern for read-only or read-mostly services.

7. CONCLUSION
In this paper, we study the problem of achieving high

service availability under given space constraints by cus-
tomizing object replication degrees to object popularities
and sizes. Such object popularities are highly skewed in



typical distributed data-intensive applications. We find that
the optimal replication degree for an object is linear in the
logarithm of its popularity-to-size ratio. We further ad-
dress a number of practical issues in deploying our pro-
posed customization, including multi-object requests, object
placement, nonuniform machine failure rates and correlated
failures, dynamic object popularity changes, and increased
replica consistency maintenance cost. Our quantitative eval-
uation employs workloads driven by large real-life system
data object request traces (IRCache web proxy cache [15] re-
quest trace, Ask.com [1] web keyword search trace, Harvard
NFS file access trace [11], and CMU Coda file system [17]
access trace) and machine failure traces in real distributed
systems (Ask.com server cluster and PlanetLab machines).

Our main results on its effectiveness are:

• The effectiveness of popularity/size-adaptive replica-
tion mainly depends on the difference between the ob-
ject popularity distribution and size distribution — the
higher the difference, the more the availability gain.
On our four evaluated workloads, popularity/size-adaptive
replication achieves 1.32–2.92 nines availability gain
over uniform replication with the same space consump-
tion (or 21–74% space savings at the same availability
level).

• The availability gain of our popularity/size-adaptive
replication strategy does not change substantially over
different space constraints, individual machine failure
rates, and moderately correlated machine failures (e.g.,
fewer than 100 failures out of 190 PlanetLab machines).

• Compared to the standard form of our proposed repli-
cation degree customization, coarse-grained customiza-
tion that dichotomizes objects based on their popularity-
to-size ratios can reduce the replica adjustment over-
head caused by object popularity changes. Specifically,
a 3.1–6.0 times overhead reduction is achieved by a
particular coarse-grained scheme introduced in this pa-
per. At the same time, its availability gain (0.18–1.80
nines) is lower than the standard (fine-grained) repli-
cation degree customization.

Our main results on its feasibility are:

• The replica adjustment overhead caused by dynamic
object popularity changes is not high in practice, e.g.,
the weekly replica adjustment is no more than 0.24%
of the total number of objects and no more than 0.11%
of the total object size on our studied workloads.

• For object writes, the extra replica consistency main-
tenance overhead caused by popularity-adaptive repli-
cation can be quite high. Specifically, the overhead of
popularity-adaptive replication is up to 2.2 times that
of uniform replication. However, this overhead is only
incurred for write requests and thus it is not a signifi-
cant concern for read-only or read-mostly services.

Based on our results, we conclude that popularity/size-
adaptive object replication degree customization is beneficial
for improving system availability under space constraints
when 1) the application is not write-intensive, 2) the ob-
ject popularities follow a highly skewed distribution, and
3) the object size distribution is significantly different from

the object popularity distribution. Many data-intensive ap-
plication workloads satisfy the above conditions. However,
when deploying customized replication, one must be care-
ful about periodic replica adjustment overhead (caused by
dynamic object popularity changes) and increased replica
consistency maintenance overhead. Such overhead can be
controlled by tuning the granularity for determining object
replication degrees — lower overhead can be achieved by a
coarser-grained customization at the cost of weaker avail-
ability gain.
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