
Journaling of Journal Is (Almost) Free

Kai Shen Stan Park∗ Meng Zhu
University of Rochester

Abstract

Lightweight databases and key-value stores manage
the consistency and reliability of their own data, often
through rollback-recovery journaling or write-ahead log-
ging. They further rely on file system journaling to pro-
tect the file system structure and metadata. Such journal-
ing of journal appears to violate the classic end-to-end ar-
gument for optimal database design. In practice, we ob-
serve a significant cost (up to 73% slowdown) by adding
the Ext4 file system journaling to the SQLite database on
a Google Nexus 7 tablet running a Ubuntu Linux instal-
lation. The cost of file system journaling is up to 58% on
a conventional machine with an Intel 311 SSD.

In this paper, we argue that such cost is largely due to
implementation limitations of the existing system. We
apply two simple techniques—ensuring a single I/O op-
eration on the synchronous commit path, and adaptively
allowing each file to have a custom journaling mode (in
particular, whether to journal the file data in addition to
the metadata). Compared to SQLite without file system
journaling, our enhanced journaling improves the perfor-
mance or incurs minor (<6%) slowdown on all but one of
our 24 test cases (with 14% slowdown in the exceptional
case). On average, our enhanced journaling implementa-
tion improves the SQLite performance by 7%.

1 Introduction

Ensuring data consistency and durability despite sud-
den system crashes (due to power/battery outages and
software panics) is a critical aspect of computer system
dependability. Following such failures, the application
and system data should be recovered from durable stor-
age to a consistent state without unexpected data losses.
With data-driven applications spreading from servers and
desktops to resource-constrained devices and near-client
cloudlets [17], the overhead of such protection is also an
important concern. Many applications utilize lightweight
databases and key-value stores to manage their data. For
instance, the SQLite database [19] and Kyoto Cabinet [3]
protect the consistency of their data through techniques
such as rollback-recovery journaling or write-ahead log-
ging. Transactions are flushed to durable storage at com-
mit time to prevent the loss of data.

∗Park is currently affiliated with HP Labs.

These data management applications run on traditional
file systems. While file system journaling protects the
file system structure and metadata, it lacks knowledge
of the application’s semantics to protect application data.
Such journaling of journal appears to violate the classic
end-to-end argument that the low-level implementation
of a function (transactional data protection in this case)
is incomplete and it can hurt the overall system perfor-
mance [16, 21].

We argue that the cost of additional file system jour-
naling is largely due to implementation limitations of
the current system. Simple enhancements can be made
following two principles—1) the critical path of a syn-
chronous I/O commit should involve a single sequen-
tial I/O operation to the storage device, 2) different
application-level log files should be allowed to use cus-
tomized file system journaling modes that best match
their respective access patterns. This paper describes the
design and implementation of our techniques on the Ext4
file system, as well as a performance evaluation with the
SQLite database on a Google Nexus 7 tablet and a con-
ventional machine with a NAND Flash-based SSD.

We note that the journaling of journal can be avoided
if the operating system provides a richer interface that
allows application data protection semantics to be ex-
posed to the OS. The OS can then provide unified data
protection for both application data and the file system
metadata. Examples of such enhanced OS data manage-
ment interface include I/O transactions [13,18], software
persistent memory [4], and failure-atomic msync() [11].
In contrast to these approaches, we explore performance
enhancements of the existing file system journaling with
only minor addition to its semantics and usage, which
can be more easily deployed in practice.

The issue of journaling of journal has been raised be-
fore, notably in the context of Android’s employment of
the SQLite database on smartphones [6, 7]. While our
work was partially motivated by these studies, our own
observation in limited experimental setups suggest that
the performance of many typical Android smartphone
workloads is dominated by network (particularly wide-
area network) delay rather than storage I/O. Although
we make no argument on the importance of smartphone
storage I/O performance in this paper, we do caution that
the performance findings of our work only applies to I/O-
intensive workloads in server/cloud and client systems.



For clarity, we will call an application-level journal a
log file in the rest of this paper and the term journaling
will refer to the file system journaling by default.

2 Fast Journaling of Journal

When an application-level transaction commits, its
REDO or UNDO information is synchronously written
to a log file. The atomicity of such a commit is often en-
sured through a checksum code written together with the
committed transaction. A rollback-recovery log records
transaction UNDO information. Updates on the database
file(s) occur after the log write but before the transaction
completes. Alternatively, write-ahead logging records
transaction REDO information. Since the REDO record
contains sufficient information to keep the database up-
to-date, updates to the database file(s) do not need to hap-
pen before the transaction commits. In fact they can be
delayed until they are overwritten by future transactions
and therefore never written to durable storage.

Write operations are particularly expensive on NAND
Flash-based storage devices [1, 12]. File system jour-
naling protects the file system structure and metadata
which can incur additional I/O costs in two ways. First,
it may increase the number of I/O operations. For in-
stance, the Ext4 ordered-mode journaling only journals
the file system metadata but for consistency, it must write
the file data before journaling the metadata. Second, it
may increase the write size. For instance, the Ext4 data-
mode journaling may write twice as much as the appli-
cation does (once to the journal and a second time to
the main file system structure). Furthermore, the journal
data writes can be substantially larger than the original
data writes due to the minimal journal record granularity
(e.g., a 4 KB page).

However, we show that the cost of file system journal-
ing can be mitigated through simple implementation en-
hancements. Our techniques do not change the existing
journaling semantics of protecting the file system meta-
data and require very little application modification.

2.1 Single-I/O Data Journaling

Under journaling of journal, the data management ap-
plication protects the consistency of its own data while
file system journaling protects the file system integrity.
However, the journaling of both metadata and file data
(e.g., Ext4 data-mode journaling) allows a single sequen-
tial I/O operation on the critical path of a synchronous
I/O commit (a fsync(), fdatasync(), or msync())
and therefore may enhance performance.

To accomplish single-I/O data journaling, the oper-
ating system should avoid direct file data or metadata
writes on the synchronous I/O commit path. This prin-

/* writes to the SQLite log file */
write(log_fd, …);
… …
/* commit the log file to file system */
fsync(log_fd);

/* writes to the SQLite database file */
write(db_fd, …);
… …
/* commit the database to file system */
fsync(db_fd);

A
 tr

an
sa

ct
io

n 
co

m
m

it

Application execution

Memory
buffer

Durable
storage

File writes to memory 
buffer, delayed I/O

Single I/O write for 

journaling file data & inode

Figure 1: A simplified illustration of the journaling of
journal during a transaction commit—file system jour-
naling of the SQLite database that employs rollback-
recovery logging.

ciple is compatible with data journaling semantics since
the journaled content contains sufficient information to
recover the committed data in the event of a crash. To en-
sure it on Linux/Ext4, we examined its I/O traces and in-
spected its file sync code paths which led us to identify a
violation in its current implementation. Specifically, the
ext4 sync file() function flushes the dirty file buffer
(through filemap write and wait range()) before
writing the journal. Such flushes skip buffers ready for
data journaling but still write previously journaled dirty
data buffers (resultant from earlier transactions). These
file buffer writes are unnecessary for the journaling se-
mantics and they slow down the synchronous commit.
We make corrections to avoid these writes under data
journaling.

The single I/O operation in the synchronous commit
path only writes the file data and metadata to the file sys-
tem journal. They would in theory still need to be asyn-
chronously checkpointed to the main file system struc-
ture. In practice, the asynchronous checkpoints may
never happen for data and log files when they are over-
written or deleted (for some UNDO logs) during contin-
uous transaction processing. For instance, Figure 1 pro-
vides a simplified segment of system call trace during a
transaction commit for the SQLite database that employs
rollback-recovery logging. For the log file, the fsync()
call would trigger a single I/O operation that commits the
file data and metadata to the file system journal. Check-
points to the SQLite log file itself are delayed and then
typically canceled when the log file is deleted after the
database transaction commits. Memory buffering and
journaling for the database file writes behave similarly, in
that the delayed checkpointing writes may be overwritten
by a later transaction that writes to the same database lo-
cation.

We also note that a traditional file system journaling
transaction commit involves two write operations—first
synchronously writing the transaction content and then
writing a transaction commit record—to ensure atom-



icity. Alternatively, single-I/O atomic transaction com-
mit can be accomplished by adding a checksum in the
transaction block. In Ext4, this is supported by the
journal async commit option. This option is not
used widely in production systems due to a challenge of
handling corrupted checksums in journal recovery [22].
There is also a concern in the case of ordered journal-
ing that, with journal async commit’s removal of the
I/O flush before writing the transaction commit record,
the ordering between data writes and metadata journal-
ing commits may not be enforced [23].

2.2 File-Adaptive Journaling

While single-I/O journaling of both file data and meta-
data minimizes the number of I/O operations during a
synchronous commit, it may write a larger volume of
data than the original write. This is primarily due to the
typical journaling implementation’s use of whole pages
for journaling records (including Ext4/JBD2). Under
such an implementation, a small write of a few bytes
still requires a 4 KB journal record. This presents an ef-
ficiency dilemma between the single-I/O full data/meta-
data journaling and ordered metadata-only journaling—
the former allows a single I/O operation on the commit
path but may write significantly more data. Note that the
single-I/O data journaling described in Section 2.1 is an
important foundation for this dilemma because otherwise
the ordered journaling would almost always outperform
the standard data journaling.

In earlier work, Prabhakaran et al. [14] have proposed
an adaptive journaling approach that selects the best jour-
naling mode for each transaction according to its I/O
access pattern. Specifically, a transaction that would
perform sequential I/O under ordered journaling mode
should utilize ordered journaling. Such a transaction typ-
ically writes a contiguous set of data blocks without mak-
ing any file metadata change. On the other hand, a trans-
action that contains multiple I/O segments or performs
both data and metadata writes should use full data/meta-
data journaling to gain the efficiency of a single, sequen-
tial I/O operation.

However, per-transaction adaptive journaling may not
be safe in the case of overwrites. Specifically, consider
two transactions T1 and T2 (in that order) that overlap
in their file data writes. Assume that the adaptive jour-
naling system chooses the full data/metadata journaling
for T1 while it selects the ordered journaling for T2. A
crash-induced journal replay will apply the metadata and
file data for T1 but only the metadata for T2, and thus
incorrectly leaving T1’s file data write as the final state.
This effectively reorders writes in the two transactions
that would not have happened under the standard (non-
adaptive) full data journaling or ordered journaling. This

problem may be resolved by a recent technique [2, Sec-
tion 4.3.6] that journals data buffer overwrites for trans-
actions which utilize ordered journaling.

Another concern for per-transaction adaptive journal-
ing is its implementation challenge. Specifically, since
the relevant transaction characteristics for adaptive jour-
naling decision (e.g., sequential I/O or not) is not known
at the beginning of a transaction, writes at the early stage
of a transaction would have to be done in a way that per-
mits either data or ordered journaling. This presents new
challenges to a typical journaling implementation that
performs a write differently depending on the journaling
mode. For instance, a write under data journaling must
prohibit dirty data flushes until the transaction is commit-
ted to the journal while a write under ordered journaling
flushes dirty data earlier. Furthermore, a write under data
journaling records data writes in the journal while a write
under ordered journaling does not.

To avoid these safety and implementation complica-
tions, we propose a coarse-grained (per-file) adaptive
journaling approach. As long as all journal transactions
to a given file follow a single journaling mode (either
full data/metadata journaling or ordered metadata-only
journaling), a crash-induced journal replay should al-
ways result in the correct final state for the file data.
Furthermore, we let the application to set the journal-
ing mode for a file according to its access characteris-
tics. This approach works well for practical journaling
of journal circumstances. Specifically, write-ahead log
files are generally written sequentially with little meta-
data change and therefore more suitable for the ordered
file system journaling. In contrast, a rollback-recovery
log file deletes or truncates the transaction record at the
end of each transaction and therefore triggers substantial
metadata changes. Consequently it is more suitable for
full data/metadata file system journaling.

The proposed file-adaptive journaling can be easily
implemented in practice. Changes to Linux/Ext4 primar-
ily include new file and inode flags set through ioctl()
that indicate the desired journaling mode for each file.
The journaling code will preform appropriate actions for
a file according to its inode flag. For safety, changing
the journaling mode for a file requires the flushing of
all pending journal transactions. In practice, such flush-
ing incurs little overhead if the journaling modes are set
once at database open time for files that persist through
a long work session (e.g., the write-ahead log files). Our
changes to the SQLite database involve adding about 20
lines of C code right after each log file open.

There is one additional correctness concern for per-file
adaptive journaling in the case of data reuses between
files. Specifically, if a data block is freed from a data-
journaled file (after transaction T1) and then reused by
an ordered-journaled file (followed with transaction T2),



then the block may be journaled in T1 but not in T2.
Therefore our earlier example of journal replay-induced
write re-ordering may again appear. In fact, similar block
reuse problems already exist in the standard ordered jour-
naling, when a metadata block is freed from a file and
then reused by another file as a data block [24]. The stan-
dard solution to such a problem is to use journal revoke
records that instruct the journaling replay mechanism to
avoid replaying the concerned blocks. This has not yet
been implemented in our current prototype system.

3 Experimental Evaluation

We implemented our journaling enhancements in the
Linux 3.1.10 kernel and its Ext4 file system. We per-
formed experiments on a Google Nexus 7 tablet with in-
ternal eMMC NAND storage. The Nexus 7 has a quad-
core dynamic-frequency Tegra3/ARM processor, which
was fixed to run at 1.0 GHz during our experiments. Our
Nexus 7 is installed with the Ubuntu 12.10 Linux distri-
bution. We also experimented with a conventional ma-
chine with an Intel 311 Flash-based SSD and two dual-
core 2.0 GHz Intel processors. In each platform, we mea-
sured the transaction performance of the SQLite database
(version 3.8.0.2).

We configured the system and application software
to optimal-performance settings to establish a strong
baseline. The Ext4 file system is mounted with
noatime,nodiratime,journal async commit op-
tions. We also enable the barrier=1 option to ensure
the journal write ordering. We configured SQLite to use
fdatasync() (instead of fsync()) for I/O commits.
Note that fdatasync() will still write the dirty inode
if the inode change affects the file system structural in-
tegrity (e.g., file size change).

3.1 Performance of File System Journaling

We compare the performance of different file system
journaling approaches. Note that our file-adaptive jour-
naling builds on our single I/O data journaling as de-
scribed at the beginning of Section 2.2.

Our workloads run insert, update, and delete opera-
tions on a SQLite database table. Each record has an
integer key and a 100-character value field. We test
two transaction sizes—small, one-operation transactions
and large, 1000-operation transactions. We also ex-
periment with two application-level logging approaches
in SQLite—write-ahead logging (WAL) and rollback-
recovery logging. WAL is faster at transaction commits
by issuing fewer fdatasync()’s (once vs. four times
under the rollback-recovery logging), but it also has a
number of practical disadvantages including poor sup-
port for reads and requiring periodic checkpoints [20].

Our test runs in rounds. Each round starts with an
empty database table, inserts 10,000 records (10,000
one-operation transactions or ten 1000-operation trans-
actions), updates the 10,000 records (in a random order
that is likely different from the insert order), and deletes
the 10,000 records (again in a random order). For each
test case we run at least five rounds and report the aver-
age transaction response time.

Figures 2 and 3 illustrate performance results on our
two platforms. Compared to no file system journaling,
Ext4 ordered journaling has a worst-case slowdown of
about 20%. Ext4 data journaling has a worst-case slow-
down of about 73%. These indicate substantial costs of
journaling of journal systems. Our single-I/O data jour-
naling has enhanced the performance from the original
Ext4 data journaling but it still suffers from a worst-case
slowdown of 38%.

Our file-adaptive journaling has no more than 6%
transaction slowdown compared to no file system jour-
naling in all but one of our 24 test cases. It experi-
ences 14% slowdown under the exceptional case of small
(1 op/txn) update transactions with SQLite rollback-
recovery logging on Nexus 7. A closer inspection finds
that the overhead is due to page-granularity file system
journal records and resultant larger write volume under
full data/metadata journaling for the SQLite rollback-
recovery log file. In one representative journal commit,
nine small writes of a total 2,576 bytes turned into nine
4 KB pages (along with inode journaling and commit
block, totaling 45,056 bytes) on the file system journal
in Ext4/JBD2. We note that the page-granularity record
is not a necessary design choice for file system journal-
ing and previous work has shown that fractional-page
journaling record is possible [5]. We expect that such
an enhancement, if robustly incorporated into file system
journaling, should further strengthen our argument that
the journaling of journal is (almost) free.

We also find that our single-I/O data journaling and
file-adaptive journaling achieve faster transaction re-
sponses than no file system journaling in some cases.
This is most pronounced for large (1000 ops/txn) insert
transactions with SQLite rollback-recovery logging on
both machines. This is due to the substantial benefit of
coalescing multiple piecemeal writes into a single I/O
operation on the synchronous commit path. On aver-
age of all our test cases over different workload patterns
and SQLite logging modes, our file-adaptive journaling
in fact improves the performance of no file system jour-
naling by 4% on Nexus 7, and by 9% on Intel 311.

Error bars in Figures 2 and 3 show the standard de-
viations of results from multi-round tests in each case.
Most tests show stable results. The most deviating per-
formance results do not always reoccur under a given test
condition, which hints at the possible effect of occasional



Insert Update Delete
0

1

2

3

4

T
xn

 r
es

p.
 ti

m
e 

(in
 m

se
cs

)

1op/txn, SQLite write−ahead logging on Nexus7

 

 

No journaling

Ext4 ordered

Ext4 data

Data single−I/O

File−adaptive

Insert Update Delete
0

5

10

15

T
xn

 r
es

p.
 ti

m
e 

(in
 m

se
cs

)

1op/txn, SQLite rollback logging on Nexus7

Insert Update Delete
0

100

200

300

T
xn

 r
es

p.
 ti

m
e 

(in
 m

se
cs

)
1000ops/txn, SQLite write−ahead logging on Nexus7

Insert Update Delete
0

100

200

300

400

T
xn

 r
es

p.
 ti

m
e 

(in
 m

se
cs

)

1000ops/txn, SQLite rollback logging on Nexus7

Figure 2: SQLite transaction response time under different file system journaling approaches on Nexus 7. The error
bars show the standard deviations of results from multi-round tests in each case. The two columns show results for
two SQLite logging modes (write-ahead logging and rollback-recovery logging). The two rows show results on two
transaction sizes (1 operation per transaction and 1000 operations per transaction).

Insert Update Delete
0

0.2

0.4

0.6

0.8

1

T
xn

 r
es

p.
 ti

m
e 

(in
 m

se
cs

)

1op/txn, SQLite write−ahead logging on Intel311

 

 

No journaling

Ext4 ordered

Ext4 data

Data single−I/O

File−adaptive

Insert Update Delete
0

1

2

3

4
T

xn
 r

es
p.

 ti
m

e 
(in

 m
se

cs
)

1op/txn, SQLite rollback logging on Intel311

Insert Update Delete
0

20

40

60

T
xn

 r
es

p.
 ti

m
e 

(in
 m

se
cs

)

1000ops/txn, SQLite write−ahead logging on Intel311

Insert Update Delete
0

20

40

60

80

T
xn

 r
es

p.
 ti

m
e 

(in
 m

se
cs

)

1000ops/txn, SQLite rollback logging on Intel311

Figure 3: Performance results on a conventional machine with an Intel 311 SSD.

background Flash tasks such as garbage collection.

3.2 Cost of Transactional Data Protection

While we argue that properly adding file system jour-
naling to applications that protect their own data incurs
little additional cost, we are not suggesting that trans-
actional data protection (ensuring data consistency and
durability) over system failures is free. To reveal the cost
of transactional data protection, we compare three sys-

tem conditions on our experimental platforms—

• Full protection: SQLite write-ahead logging
(application-level protection) combined with Ext4
file-adaptive journaling (file system protection).

• Application-level protection: SQLite write-ahead
logging without any file system journaling.

• No protection: no SQLite logging or file system
journaling; all writes are asynchronous and almost
all operations are performed entirely in memory.



Insert Update Delete
0

0.5

1

1.5

2

2.5

T
xn

 r
es

p.
 ti

m
e 

(in
 m

se
cs

)

1op/txn on Nexus7

 

 

No transaction, async writes SQLite WAL without FS journaling SQLite WAL with file−adaptive journaling

Insert Update Delete
0

50

100

150

200

T
xn

 r
es

p.
 ti

m
e 

(in
 m

se
cs

)

1000ops/txn on Nexus7

Insert Update Delete
0

0.2

0.4

0.6

0.8

T
xn

 r
es

p.
 ti

m
e 

(in
 m

se
cs

)

1op/txn on Intel311

Insert Update Delete
0

10

20

30

40

50

T
xn

 r
es

p.
 ti

m
e 

(in
 m

se
cs

)

1000ops/txn on Intel311

Figure 4: Cost of transactional data protection—performance comparison of application/system-level data protection
mechanisms against the situation of no protection (effectively in-memory operations).

Results in Figure 4 show that in all cases, the full
data protection with file system journaling adds almost
no cost beyond application-level protection. Compared
to no data protection with effectively in-memory oper-
ations, the transactional data protection and associated
atomic, synchronous I/O adds substantial costs for small
transactions (almost an order of magnitude slowdown).
However, the costs are not excessive for large transac-
tions (less than a factor of two). Larger transactions
can be accomplished through careful application devel-
opment and tuning, or system approaches that intelli-
gently commit only when necessary [10].

4 Conclusion and Discussions

This paper argues that properly adding file system
journaling to applications that protect their own data in-
curs minor additional cost. The large costs for journaling
of journal on existing systems are primarily attributable
to implementation limitations. We applied simple tech-
niques that ensure a single I/O operation on the syn-
chronous commit path and adaptively allow each file to
have its custom file system journaling mode. We per-
formed experiments for SQLite transactions on a Google
Nexus 7 tablet and a conventional machine with an In-
tel 311 SSD. Compared to no file system journaling, our
enhanced journaling implementation improves the per-
formance or incurs minor (<6%) slowdown on all but
one of our 24 test cases (with 14% slowdown in the ex-
ceptional case). On average, our enhanced journaling im-
plementation improves the SQLite performance by 7%.

Our work contributes to the debate between using tra-
ditional vs. log-structured file systems [15] on NAND
Flash-based systems. While a number of log-structured
file systems (including NILFS [9] and F2FS [8]) have
emerged recently and promise high performance on
NAND storage, many systems have still chosen the Ext4
file system due to the concern of system maturity and
robustness for production use. Our work suggests that
such a choice does not necessarily carry significant per-

formance costs.
Our proposed file-adaptive journaling is just one form

of possible adaptive journaling approaches [14]. It has
limited adaptation granularity (all transactions on a file
must use a single journaling mode) but is effective for
application-level log files that exhibit clear I/O patterns
and journaling preferences. A broader use of adaptive
journaling may require intelligent learning of the file ac-
cess pattern and finer-grained control. Beyond adaptive
journaling, journaling performance can be further en-
hanced by relaxing its ordering constraints [2].

Our cost evaluation has targeted the application re-
sponse time. At the same time, we recognize that the
employment of full data and metadata journaling tends
to write more to a NAND Flash device and increase its
wear. We explained in the paper that such increase of
the write volume is primarily due to the page-granularity
records in the journaling file system implementation.
This can be potentially mitigated by a fractional-page
journaling implementation [5].

Experimental work in this paper has focused on sys-
tems with NAND Flash-based storage. While much of
our design rationale should also apply to mechanical
disks, the resulted quantitative benefits might be differ-
ent. In particular, since seek time dominates the perfor-
mance of a mechanical disk, our single-I/O data journal-
ing (Section 2.1) may produce larger performance gains
than on Flash storage. On the other hand, the benefit of
write size reduction under file-adaptive journaling (Sec-
tion 2.2) might be much smaller on mechanical disks.

Acknowledgments This work was supported in part
by the National Science Foundation grants CCF-
0937571, CNS-1217372, CNS-1239423, and CCF-
1255729, and by a Google Research Award. We thank
Ted Ts’o for clarifying relevant issues in the Ext4 file
system and its journaling support. We also thank the
anonymous FAST reviewers and our shepherd Florentina
Popovici for comments that helped improve this paper.



References

[1] F. Chen, D. A. Koufaty, and X. Zhang. Understand-
ing intrinsic characteristics and system implications
of Flash memory based solid state drives. In ACM
SIGMETRICS, pages 181–192, Seattle, WA, June
2009.

[2] V. Chidambaram, T. S. Pillai, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Optimistic
crash consistency. In SOSP’13: 24th ACM Symp.
on Operating Systems Principles, pages 228–243,
Farmington, PA, Nov. 2013.

[3] FAL Labs. Kyoto Cabinet: a straightforward imple-
mentation of DBM. http://fallabs.com/
kyotocabinet/.

[4] J. Guerra, L. Mármol, D. Campello, C. Crespo,
R. Rangaswami, and J. Wei. Software persis-
tent memory. In USENIX Annual Technical Conf.,
Boston, MA, June 2012.

[5] A. Hatzieleftheriou and S. V. Anastasiadis.
Okeanos: Wasteless journaling for fast and reliable
multistream storage. In USENIX Annual Technical
Conf., Portland, OR, June 2011.

[6] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won. I/O
stack optimization for smartphones. In USENIX
Annual Technical Conf., San Jose, CA, June 2013.

[7] H. Kim, N. Agrawal, and C. Ungureanu. Revis-
iting storage for smartphones. In FAST’12: 10th
USENIX Conf. on File and Storage Technologies,
San Jose, CA, Feb. 2012.

[8] J. Kim. F2FS: Introduce Flash-friendly file system,
Oct. 2012. https://lwn.net/Articles/
518718/.

[9] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Ki-
hara, and S. Moriai. The Linux implementation of
a log-structured file system. ACM SIGOPS Operat-
ing Systems Review, 40(3):102–107, July 2006.

[10] E. B. Nightingale, K. Veeraraghavan, P. M. Chen,
and J. Flinn. Rethink the sync. ACM Trans. on
Computer Systems, 26(3), Sept. 2008.

[11] S. Park, T. Kelly, and K. Shen. Failure-atomic
msync(): A simple and efficient mechanism for pre-
serving the integrity of durable data. In EuroSys’13
Conf., Prague, Czech Republic, Apr. 2013.

[12] M. Polte, J. Simsa, and G. Gibson. Comparing
performance of solid state devices and mechanical
disks. In 3rd Petascale Data Storage Workshop,
Austin, TX, Nov. 2008.

[13] D. E. Porter, O. S. Hofmann, C. J. Rossbach,
A. Benn, and E. Witchel. Operating system transac-
tions. In SOSP’09: 22th ACM Symp. on Operating
Systems Principles, pages 161–176, Big Sky, MT,
Oct. 2009.

[14] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Analysis and evolution of jour-
naling file systems. In USENIX Annual Technical
Conf., Anaheim, CA, Apr. 2005.

[15] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file system.
ACM Trans. on Computer Systems, 10(1):26–52,
Feb. 1992.

[16] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-
end arguments in system design. ACM Trans. on
Computer Systems, 2(4):277–288, Nov. 1984.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies. The case for VM-based cloudlets in
mobile computing. IEEE Pervasive Computing,
8(4):14–23, Oct. 2009.

[18] R. Sears and E. Brewer. Stasis: Flexible transac-
tional storage. In OSDI’06: 7th USENIX Symp.
on Operating Systems Design and Implementation,
Seattle, WA, Nov. 2006.

[19] SQLite. http://www.sqlite.org/.

[20] SQLite Write-Ahead Logging. http://www.
sqlite.org/wal.html.

[21] M. Stonebraker. Operating system support for
database management. Communications of the
ACM, 24(7):412–418, July 1981.

[22] T. Ts’o. What to do when the journal check-
sum is incorrect, May 2008. http://lwn.net/
Articles/284038/.

[23] T. Ts’o. Personal communication, Jan. 2014.

[24] S. Tweedie. EXT3, journaling filesystem. In
Ottawa Linux Symposium, July 2000. http://
olstrans.sourceforge.net/release/
OLS2000-ext3/OLS2000-ext3.html.


