
Power and Energy Containers for Multicore Servers

Kai Shen
University of Rochester

kshen@cs.rochester.edu

Arrvindh Shriraman
Simon Fraser University
ashriram@cs.sfu.ca

Sandhya Dwarkadas
University of Rochester

sandhya@cs.rochester.edu

Xiao Zhang
∗

University of Rochester
xiao@cs.rochester.edu

ABSTRACT

Power capping and energy efficiency are critical concerns in server

systems, particularly when serving dynamic workloads on resource-

sharing multicores. We present a new operating system facility

(power and energy containers) that accounts for and controls the

power/energy usage of individual fine-grained server requests. This

facility is enabled by novel techniques for multicore power attribu-

tion to concurrent tasks, measurement/modeling alignment to en-

hance predictability, and request power accounting and control.

Categories and Subject Descriptors

C.5.5 [Computer System Implementation]: Servers; D.4.8 [Operating

Systems]: Performance—Measurements, Modeling and prediction

Keywords

Multicore, server system, power and energy management.

1. INTRODUCTION
Online applications continuously evolve with new features and

some (like social networks, Wiki sites, and online collaboration)

rely on end users to supply content or even content-generating code.

The workload diversity and dynamic client-directed processing re-

sult in large power fluctuations on modern hardware with increas-

ing specialization and power proportionality. Recognizing the re-

source usage of individual requests facilitates fine-grained attri-

bution of energy usage to clients, helping expose the full cost of

web usage. Furthermore, high power-consuming tasks (or “power

viruses” [2]) may either appear accidentally or be maliciously de-

vised. Isolating per-client power attribution to identify such tasks

so as to cap the system power draw in a fair fashion is desirable.

Building on our past work [3, 5] on per-request behavior char-

acterization in a multicore server, we address the additional chal-

lenges of per-request power/energy accounting and management.

Request executions in a concurrent, multi-stage server contain fine-

grained activities with frequent context switches. Direct power

measurements on such spatial and temporal granularities are not

available on today’s systems. Concurrent task executions, dynamic

workload behaviors, and multicore hardware sharing lead to addi-

tional complexities in modeling per-task power behavior. Request-

level power and energy management also requires agile, low-cost

control to ensure isolation and achieve efficiency.

∗Zhang is currently affiliated with Google.

Copyright is held by the author/owner(s).
SIGMETRICS’12, June 11–15, 2012, London, England, UK.
ACM 978-1-4503-1097-0/12/06.

We address these challenges in a new operating system facility,

called power and energy containers, which both tracks and allows

control of the power/energy usage of individual requests in multi-

core servers. Our power and energy containers enable fine-grained,

agile management of multicore server power/energy resources in

unprecedented ways. Below, we present design highlights and a

brief case study, with more details in a technical report [4].

2. DESIGN HIGHLIGHTS
We support power attribution and control in two new dimensions—

1) over concurrent executions on a shared-resource multicore and

2) among fine-grained requests in a multi-stage server application.

Power Attribution to Concurrent Tasks.
Bellosa [1] validated a linear model between the system power

consumption and the frequency of hardware events such as instruc-

tions per cycle and memory transaction rate. This suggests that

the power accounting for a task can linearly correlate with physical

event rates at the CPU core that the task runs on. On a multicore

processor chip with intricately shared hardware resources, how-

ever, chip-wide environmental factors also affect per-core power

accounting. In particular, the maintenance of shared multicore re-

sources (including at least clocking circuitry and voltage regula-

tors) consumes some active power as long as one core is running.

However, the power consumption does not change proportionally

with core-level event rates. Our measurements show that the power

increment from idle to one utilized core is much higher than further

power increments, which suggests an active power component that

does not scale proportionally with core-level physical events.

It is intuitive to evenly attribute the chip maintenance power

at each time instant to the currently running tasks. The system

utilization level fluctuates over time in production server environ-

ments. Proper accounting and attribution of shared chip mainte-

nance power is challenging because one task’s share may change

depending on activities (or the lack thereof) on other cores. If a core

is busy while all other siblings are idle, the full chip maintenance

power should be attributed to the task on the busy core. If multiple

(k) cores are busy at a moment, then each running task on one of

the busy cores has 1.0

k
share of the maintenance power. Note that

the chip maintenance power share does not correspond to any pro-

cessor hardware counter and depends instead on time-synchronized

busy states across all CPU cores. The operating system must mon-

itor all CPU busy states to accurately account for this.

Measurement Alignment for Model Recalibration.
Despite the wide uses of event-based power models [1], we found

that large errors may arise in practice. Beyond superficial problems

like insufficient coverage of modeled events, modeling inaccuracy

also results from differing characteristics between calibration and



production workloads. This is particularly the case for unusually

high power-consuming production workloads that demand careful

attention in server system power management. To address the mod-

eling inaccuracy, we utilize online power measurements to adjust

and recalibrate the offline-constructed power models.

The challenge is that while whole-system power measurements

can be acquired through off-the-shelf meters, measurement results

often arrive after some meter reporting delay and data I/O latency.

On the other hand, processor event counter-based power models

can be maintained at the much shorter latency of reading CPU reg-

isters and computing simple statistics. The measurement results

and modeling estimates need to be properly aligned in order to

identify modeling errors and recalibrate the model. Our work finds

that such alignment can be enabled using signal processing cross-

correlation and that the aligned measurement can effect model re-

calibration and improve modeling accuracy.

Request Power Accounting and Control.
We construct OSmechanisms to support request-level power/energy

containers in a server system. We track request execution contexts

so that power-relevant metrics can be properly attributed and con-

trol mechanisms can be properly applied. We identify a request

context on-the-fly with recognized patterns on how it propagates

over multiple server stages. Specifically, we recognize request con-

text propagation events as those that indicate causal dependences

through data and control flows between processes, including socket

calls, IPCs, and task forking. By sampling events at propagation

boundaries, our power model estimates request power consump-

tion based on the collected event metrics. The cumulative energy

usage can be simply calculated as the integral of power over time.

In addition to per-request event sampling, the on-the-fly request

tracking allows us to selectively apply power and energy control

mechanisms on certain requests. For example, we can apply a par-

ticular CPU duty-cycle modulation level to a given request exe-

cution. Effectively, when the request starts executing on a CPU

core, the core duty-cycle level will be set appropriately. When the

CPU core switches to run another request, the core duty-cycle level

will be adjusted according to the policy setting of the new request.

Our mechanism can limit the power consumption of selected re-

quests without hurting the performance of others. We can similarly

support request-specific dynamic voltage/frequency scaling if the

multicore processor allows such scaling on a per-core basis.

3. POWER VIRUS MANAGEMENT
Our power containers enable fair power conditioning on a multi-

core server. While CPU duty-cycle modulation can control surging

power consumption, indiscriminate full-machine throttling would

lead to slowdowns of all running requests regardless of their power

use. Without per-request power containers, the occurrence of a

power virus could force speed reductions on all concurrently run-

ning normal requests. In a power container-controlled system, we

maintain a power consumption target for each request. Those that

exceed the specified target will be subject to request-specific CPU

duty-cycle modulation while other requests will run at full speed.

Our experiment runs a server on a quad-core Intel Nehalem ma-

chine. The workload fully utilizes all four cores on the machine.

In the middle of the experimentation, we inject some high-power

requests to mimic power viruses. Figure 1(A) shows that the in-

troduction of power viruses lead to substantial power spikes. We

apply our container-based fair power conditioning with a system

active power target of 40Watts. Figure 1(B) shows that our request

container-enabled power conditioning can effectively keep power

consumption at or below the target level despite the power viruses.

0 5 10 15 20
20

40

60

P
o

w
e

r 
(i
n

 W
a

tt
s
)

Progress of execution (in seconds)

Introduction of power viruses

←

(A) Behavior of the original system

0 5 10 15 20
20

40

60

P
o

w
e

r 
(i
n

 W
a

tt
s
)

Progress of execution (in seconds)

Introduction of power viruses

←

(B) Behavior of the power container−controlled system

Figure 1: Measured active (full minus idle) power of a quad-core

Nehalem machine. Results are for original (A) and power container-

controlled (B) executions with power viruses.

10 11 12 13 14
5/8

6/8

7/8

8/8

← Normal requests

Power viruses →

Original request power (in Watts)

D
u

ty
 c

y
c
le

 r
a

ti
o

Figure 2: Each point represents a sample request (normal or power

virus). X-coordinate indicates the original (before throttling) request

power consumption. Y-coordinate indicates the CPU duty-cycle (slow-

down) ratio applied to the request.

We next show that the CPU speed adjustment has been applied

fairly to each request. Figure 2 plots the applied CPU duty-cycle ra-

tio and original request power (before throttling) for each request.

Since a request power consumption may fluctuate over its execu-

tion, different duty-cycle levels may be applied over time. We show

the time-averaged duty-cycle ratio for each request. We also esti-

mate its power consumption in the original system. Results show

that the normal server requests suffer small CPU speed slowdown

(averaged at about 9%). At the same time, the power viruses are

subject to more substantial (31% on average) slowdown.

4. ACKNOWLEDGMENTS
This work was supported in part by the National Science Foun-

dation (NSF) grants CCF-0448413, CNS-0834451, CCF-0937571,

and CCF-1016902. Shen was also supported by an IBM Faculty

Award and a Google Research Award.

5. REFERENCES
[1] F. Bellosa. The benefits of event-driven energy accounting in

power-sensitive systems. In SIGOPS European Workshop, 2000.

[2] K. Ganesan, J. Jo, W. L. Bircher, D. Kaseridis, Z. Yu, and L. K. John.
System-level max power (SYMPO): a systematic approach for
escalating system-level power consumption using synthetic
benchmarks. In PACT, 2010.

[3] K. Shen. Request behavior variations. In ASPLOS, 2010.

[4] K. Shen, A. Shriraman, S. Dwarkadas, and X. Zhang. Power and
energy containers for multicore servers. Technical Report #970, Dept.
of Computer Science, Univ. of Rochester, 2011.

[5] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and X. Zhang.
Hardware counter driven on-the-fly request signatures. In ASPLOS,
2008.


