
calable Synchronization on

JOHN M. MELLOR-CRUMMEY
Rice University

and

MICHAEL L. SCOTT
University of Rochester

Busy-wait techniques are heavily used for mutual exclusion and barrier synchronization in
shared-memory parallel programs Unfortunately, typical implementations of busy-waiting tend
to produce large amounts of memory and interconnect contention, introducing performance
bottlenecks that become markedly more pronounced as applications scale. We argue that this
problem is not fundamental, and that one can in fact construct busy-wait synchronization
algorithms that induce no memory or interconnect contention. The key to these algorithms is for
every processor to spin on separate locally-accessible flag variables, and for some other processor
to terminate the spin with a single remote write operation at an appropriate time. Flag variables
may be locally-accessible as a result of coherent caching, or by virtue of allocation in the local
portion of physically distributed shared memory

We present a new scalable algorithm for spin locks that generates O (1) remote references per
lock acquisition, independent of the number of processors attempting to acquire the lock. Our
algorithm provides reasonable latency in the absence of contention, requires only a constant
amount of space per lock, and requires no hardware support other than a swap-with-memory
instruction. We also present a new scalable barrier algorithm that generates O (1) remote
references per processor reaching the barrier, and observe that two previously-known barriers
can likewise be cast in a form that spins only on locally-accessible flag variables. None of these
barrier algorithms requires hardware support beyond the usual atomicity of memory reads and
writes.

We compare the performance of our scalable algorithms with other software approaches to
busy-wait synchronization on both a Sequent Symmetry and a BBN Butterfly. Our principal
conclusion is that contention due to synchronization need not be a problem in large-scale
shared-memory multiprocessors. The existence of scalable algorithms greatly weakens the case
for costly special-purpose hardware support for synchronization, and provides a case against
so-called "dance hall" architectures, in which shared memory locations are equally far from all
processors

This paper was funded in part by the National Science Foundation under Cooperative Agree-
ment CCR-8809615 and under Institutional Infrastructure grant CDA-8822724.
Authors' Addresses: J. M. Mellor-Crummey, Center for Research on Parallel Computation, Rice
University, P.O. Box 1892, Houston, TX 77251-1892. M. L Scott, Computer Science Depart-
ment, University of Rochester, Rochester, NY 14627.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery To copy otherwise, or to republish, requires a fee and/or
specific permission.
@ 1991 ACM 0734-2071/91/0200-0021 $01.50

ACM Transactions on Computer Systems, Vol. 9, No. 1, February, 1991, Pages 21-65.

22 . J. M Mellor-Crummey and M. L Scott

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles-cache memo-
ries, shared memories; C . l . 2 [Processor Architecture]: Multiple Data Stream Architectures
(Multiprocessors)-interconnection architectures, parallel processors; C 4 [Computer Systems
Organization]: Performance o f Systems-design studies; D.4 1 [Operating Systems]: Process
Management-mutual exclusion, synchronization; D.4.2 [Operating Systems]: Storage Manage-
ment-storage hierarchies: D.4.8 [Operating Systemsl: Performance-measurements

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Atomic operations, barrier synchronization, contention,
fetch-and-phi, locality, spin locks

1. INTRODUCTION

Techniques for efficiently coordinating parallel computation on MIMD,
shared-memory multiprocessors are of growing interest and importance as
the scale of parallel machines increases. On shared-memory machines, pro-
cessors communicate by sharing data structures. To ensure the consistency of
shared data structures, processors perform simple operations by using hard-
ware-supported atomic primitives and coordinate complex operations by us-
ing synchronization constructs and conventions to protect against overlap of
conflicting operations.

Synchronization constructs can be divided into two classes: blocking con-
structs that deschedule waiting processes and busy-wait constructs in which
processes repeatedly test shared variables to determine when they may
proceed. Busy-wait synchronization is fundamental to parallel programming
on shared-memory multiprocessors and is preferred over scheduler-based
blocking when scheduling overhead exceeds expected wait time, when proces-
sor resources are not needed for other tasks (so that the lower wake-up
latency of busy waiting need not be balanced against an opportunity cost), or
when scheduler-based blocking is inappropriate or impossible (for example in
the kernel of an operating system).

Two of the most widely used busy-wait synchronization constructs are spin
locks and barriers. Spin locks provide a means for achieving mutual exclu-
sion (ensuring that only one processor can access a particular shared data
structure at a time) and are a basic building block for synchronization
constructs with richer semantics, such as semaphores and monitors. Spin
locks are ubiquitously used in the implementation of parallel operating
systems and application programs. Barriers provide a means of ensuring that
no processes advance beyond a particular point in a computation until all
have arrived at that point. They are typically used to separate "phases" of an
application program. A barrier might guarantee, for example, that all pro-
cesses have finished updating the values in a shared matrix in step t before
any processes use the values as input in step t + 1.

The performance of locks and barriers is a topic of great importance. Spin
locks are generally employed to protect very small critical sections, and may

ACM Transactions on Computer Systems, Vo l 9 , N o 1 , February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors - 23

be executed an enormous number of times in the course of a computation.
Barriers, likewise, are frequently used between brief phases of data-parallel
algorithms (e.g., successive relaxation), and may be a major contributor to
run time. Unfortunately, typical implementations of busy-waiting tend to
produce large amounts of memory and interconnection network contention,
which causes performance bottlenecks that become markedly more pro-
nounced in larger machines and applications. As a consequence, the overhead
of busy-wait synchronization is widely regarded as a serious performance
problem [2, 6, 11, 14, 38, 49, 511.

When many processors busy-wait on a single synchronization variable,
they create a hot spot that is the target of a disproportionate share of the
network traffic. Pfister and Norton [381 showed that the presence of hot spots
can severely degrade performance for all traffic in multistage interconnection
networks, not just traffic due to synchronizing processors. As part of a larger
study, Agarwal and Cherian [2] investigated the impact of synchronization on
overall program performance. Their simulations of benchmarks on a cache-
coherent multiprocessor indicate that memory references due to synchroniza-
tion cause cache line invalidations much more often than nonsynchronization
references. In simulations of the benchmarks on a 64-processor "dance hall"
machine (in which each access to a shared variable traverses the processor-
memory interconnection network), they observed that synchronization ac-
counted for as much as 49 percent of total network traffic.

In response to performance concerns, the history of synchronization tech-
niques has displayed a trend toward increasing hardware support. Early
algorithms assumed only the ability to read and write individual memory
locations atomically. They tended to be subtle, and costly in time and space,
requiring both a large number of shared variables and a large number of
operations to coordinate concurrent invocations of synchronization primitives
[12, 25, 26, 36, 401. Modern multiprocessors generally include more sophisti-
cated atomic operations, permitting simpler and faster coordination strate-
gies. Particularly common are various f etch-and_@ operations [221 which
atomically read, modify, and write a memory location. Fetch-and_$ opera-
tions include test-and-set, fetch-and-store (swap), fetch-and-add, and
c~m~are_and_swa~.~

More recently, there have been proposals for multistage interconnection
networks that combine concurrent accesses to the same memory location [17,
37, 421, multistage networks that have special synchronization variables
embedded in each stage of the network [211, and special-purpose cache
hardware to maintain a queue of processors waiting for the same lock [14, 28,
351. The principal purpose of these hardware primitives is to reduce the
impact of busy waiting. Before adopting them it is worth considering the
extent to which software techniques can achieve a similar result.

--

 etcha and-store exchanges a register with memory. Compareandswap compares the contents of
a memory location against a given value, and sets a condition code to indicate whether they are
equal. If so, it replaces the contents of the memory with a second given value.

ACM Transactions on Computer Systems, Val 9, No. 1, February 1991.

24 . J. M Mellor-Crummey and M L Scott

For a wide range of shared-memory multiprocessor architectures, we con-
tend that appropriate design of spin locks and barriers can eliminate all
busy-wait contention. Specifically, by distributing data structures appropri-
ately, we can ensure that each processor spins only on locally-accessible
locations, locations that are not the target of spinning references by any
other processor. All that is required in the way of hardware support is a
simple set of f etch_and_$ operations and a memory hierarchy in which each
processor is able to read some portion of shared memory without using the
interconnection network. On a machine with coherent caches, processors spin
on locations in their caches. On a machine in which shared memory is
distributed (e.g., the BBN Butterfly [8], the IBM RP3 [371, or a shared-
memory hypercube [lo]), processors spin only on locations in the local portion
of shared memory.

The implication of our work is that efficient synchronization algorithms
can be constructed in software for shared-memory multiprocessors of arbi-
trary size. Special-purpose synchronization hardware can offer only a small
constant factor of additional performance for mutual exclusion, and at best a
logarithmic factor for barrier synchronization. In addition, the feasibility
and performance of busy-waiting algorithms with local-only spinning pro-
vides a case against "dance hall" architectures in which shared memory
locations are equally far from all processors.

We discuss the implementation of spin locks in Section 2, presenting both
existing approaches and a new algorithm of our own design. In Section 3 we
turn to the issue of barrier synchronization, explaining how existing ap-
proaches can be adapted to eliminate spinning on remote locations, and
introducing a new design that achieves both a short critical path and the
theoretical minimum total number of network transactions. We present
performance results in Section 4 for a variety of spin lock and barrier
implementations, and discuss the implications of these results for software
and hardware designers. Our conclusions are summarized in Section 5.

2 . SPIN LOCKS

In this section we describe a series of five implementations for a mutual-ex-
elusion spin lock. The first four appear in the literature in one form or
another. The fifth is a novel lock of our own design. Each lock can be seen as
an attempt to eliminate some deficiency in the previous design. Each as-
sumes a shared-memory environment that includes certain fetch-and_$
operations. As noted above, a substantial body of work has also addressed
mutual exclusion using more primitive read and write atomicity; the com-
plexity of the resulting solutions is the principal motivation for the develop-
ment of f etch_and_@ primitives. Other researchers have considered mutual
exclusion in the context of distributed systems [31, 39, 43, 45, 461 but the

' ~ a r d w a r e combining can reduce t h e t i m e t o achieve a barrier f rom O(1og P) t o O(1) steps if
processors happen t o arrive a t t h e barrier s imultaneously

ACM Transactions on Computer Systems. Vol. 9. No 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors - 25

characteristics of message passing are different enough from shared memory
operations that solutions do not transfer from one environment to the other.

Our pseudo-code notation is meant to be more or less self explanatory. We
have used line breaks to terminate statements, and indentation to indicate
nesting in control constructs. The keyword shared indicates that a declared
variable is to be shared among all processors. The declaration implies no
particular physical location for the variable, but we often specify locations in
comments and/or accompanying text. The keywords processor private indi-
cate that each processor is to have a separate, independent copy of a declared
variable. All of our atomic operations are written to take as their first
argument the address of the memory location to be modified. All but com-
pare-and-swap take the obvious one additional operand and return the old
contents of the memory location. Compare-and-swap (addr, old, new) is de-
fined as i f addr " ! = old return false; addr - := new; return true. In one
case (Figure 3) we have used an atomic-add operation whose behavior is the
same as calling f etch-and-add and discarding the result.

2.1. The Simple Test-and-Set Lock

The simplest mutual exclusion lock, found in all operating system textbooks
and widely used in practice, employs a polling loop to access a Boolean flag
that indicates whether the lock is held. Each processor repeatedly executes a
test-and-set instruction in an attempt to change the flag from false to true,
thereby acquiring the lock. A processor releases the lock by setting it to false.

The principal shortcoming of the test-and-set lock is contention for the
flag. Each waiting processor accesses the single shared flag as frequently as
possible, using relatively expensive read-modify-write (f etch-and_$) instruc-
tions. The result is degraded performance not only of the memory bank in
which the lock resides but also of the processor/memory interconnection
network and, in a distributed shared-memory machine, the processor that
owns the memory bank (as a result of stolen bus cycles).

Fetch_and_$ instructions can be particularly expensive on cache-coherent
multiprocessors since each execution of such an instruction may cause many
remote invalidations. To reduce this overhead, the test-and-set lock can be
modified to use a test-and-set instruction only when a previous read indi-
cates that the test-and-set might succeed. This so-called test-and-
test-and-set technique [441 ensures that waiting processors poll with read
requests during the time that a lock is held. Once the lock becomes available,
some fraction of the waiting processors detect that the lock is free and
perform a test-and-set operation, exactly one of which succeeds, but each of
which causes remote invalidations on a cache-coherent machine.

The total amount of network traffic caused by busy-waiting on a
test-and-set lock can be reduced further by introducing delay on each
processor between consecutive probes of the lock. The simplest approach
employs a constant delay; more elaborate schemes use some sort of backoff on
unsuccessful probes. Anderson [5] reports the best performance with exponen-
tial backoff; our experiments confirm this result. Pseudo-code for a

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

26 J M. Mellor-Crummey and M L. Scott

t y p e l o c k = (unlocked, locked)

p rocedure acqui re - lock (L : " lock)
d e l a y : i n t e g e r := 1
whi le t e s t a n d - s e t (L) = locked // r e t u r n s o l d v a l u e

pause (de lay) // consume t h i s many u n i t s of t ime
d e l a y := d e l a y * 2

procedure r e l e a s e - l o c k (L : ' lock)
lock* := unlocked

Fig. 1. Simple tes t -and-se t lock with exponential backoff.

test-and-set lock with exponential backoff appears in Figure 1. Test-and-set
suffices when using a backoff scheme; test-and-test-and-set is not necessary.

2 2 . The Ticket Lock

In a test-and-test-ad-set lock, the number of read-modify-write operations
is substantially less than for a simple test-and-set lock but still potentially
large. Specifically, it is possible for every waiting processor to perform a
test-and-set operation every time the lock becomes available, even though
only one can actually acquire the lock. We can reduce the number of
f etch-and_$ operations to one per lock acquisition with what we call a ticket
lock. At the same time, we can ensure FIFO service by granting the lock to
processors in the same order in which they first requested it. A ticket lock is
fair in a strong sense; it eliminates the possibility of starvation.

A ticket lock consists of two counters, one containing the number of
requests to acquire the lock, and the other the number of times the lock has
been released. A processor acquires the lock by performing a fetch-and-in-
crement operation on the request counter and waiting until the result (its
ticket) is equal to the value of the release counter. It releases the lock by
incrementing the release counter. In the terminology of Reed and Kanodia
[411, a ticket lock corresponds to the busy-wait implementation of a semaphore
using an eventcount and a sequencer. It can also be thought of as an
optimization of a Lamport's bakery lock [24], which was designed for fault-
tolerance rather than performance. Instead of spinning on the release counter,
processors using a bakery lock repeatedly examine the tickets of their peers.

Though it probes with read operations only (and thus avoids the overhead
of unnecessary invalidations in coherent cache machines), the ticket lock still
causes substantial memory and network contention through polling of a
common location. As with the test-and-set lock, this contention can be
reduced by introducing delay on each processor between consecutive probes of
the lock. In this case, however, exponential backoff is clearly a bad idea.
Since processors acquire the lock in FIFO order, overshoot in backoff by the
first processor in line will delay all others as well, causing them to back off
even farther. Our experiments suggest that a reasonable delay can be
determined by using information not available with a test-and-set lock:
namely, the number of processors already waiting for the lock. The delay can

ACM Transactions on Computer Systems. Vol 9, No. 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors 27

type lock = record
next-ticket : unsigned integer := 0
now-serving : unsigned integer := 0

procedure acquire-lock (L : "lock)
my-ticket : unsigned integer := fetch-and-increment (&L->next_ticket)

// returns old value; arithmetic overflow is harmless
loop

pause (my-ticket - L->now_serving)
// consume this many units of time
// on most machines, subtraction works correctly despite overflou

if L->now_serving = my-ticket
return

procedure release-lock (L : "lock)
L->now_serving := L->now_serving t 1

Fig. 2. Ticket lock with proportional backoff.

be computed as the difference between a newly-obtained ticket and the
current value of the release counter.

Delaying for an appropriate amount of time requires an estimate of how
long it will take each processor to execute its critical section and pass the
lock to its successor. If this time is known exactly, it is in principle possible to
acquire the lock with only two probes, one to determine the number of
processors already in line (if any), and another (if necessary) to verify that
one's predecessor in line has finished with the lock. This sort of accuracy is
not likely in practice, however, since critical sections do not in general take
identical, constant amounts of time. Moreover, delaying proportional to the
expected average time to hold the lock is risky: if the processors already in
line average less than the expected amount, the waiting processor will delay
too long and slow the entire system. A more appropriate constant of propor-
tionality for the delay is the minimum time that a processor can hold the
lock. Pseudo-code for a ticket lock with proportional backoff appears in
Figure 2. It assumes that the new-ticket and now-serving counters are large
enough to accommodate the maximum number of simultaneous requests for
the lock.

2.3. Array-Based Queuing Locks

Even using a ticket lock with porportional backoff, it is not possible to obtain
a lock with an expected constant number of network transactions, due to the
unpredictability of the length of critical sections. Anderson [51 and Graunke
and Thakkar [18] have proposed locking algorithms that achieve the constant
bound on cache-coherent multiprocessors that support atomic fetch-and-in-
crement or fetch-and-store, respectively. The trick is for each processor to
use the atomic operation to obtain the address of a location on which to spin.
Each processor spins on a different location, in a different cache line. Ander-
son's experiments indicate that his queuing lock outperforms a test-and-set
lock with exponential backoff on the Sequent Symmetry when more than six

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

28 J. M. Mellor-Crumrney and M L. Scott

t y p e l o c k = r e c o r d
s l o t s : a r r a y [O..numprocs -11 of (has-lock, must-wait)

: (h a s l o c k . must-wait, m u s t w a i t , must-wait)
// each element of s l o t s should l i e i n a d i f f e r e n t memory module
// o r cache l i n e

n e x t - s l o t : i n t e g e r := 0

// parameter my-place, below, p o i n t s t o a p r i v a t e v a r i a b l e
// i n an e n c l o s i n g scope

procedure acqui re - lock (L : " lock , my-place : " i n t e g e r)
my-place" := fetch-and-increment (& L - > n e x t s l o t)

// r e t u r n s o l d va lue
i f my-place- mod numprocs = 0

atomic-add (&L->next_slot , -numprocs)
// avoid problems wi th overflow; r e t u r n va lue ignored

m y p l a c e " " := my-place- mod numprocs
r e p e a t whi le L->slotsCmy-place'] = must-wait // s p i n
L->slots[my_place"] := must-wait // i n i t f o r nex t t ime

procedure r e l e a s e - l o c k (L : ' lock, my-place : " i n t e g e r)
L->slots[(my-place" + 1) mod numprocs] := has-lock

Fig 3. Anderson's array-based queuing lock.

processors are competing for access. Graunke and Thakkar's experiments
indicate that their lock outperforms a test-and-set lock on the same ma-
chine when more than three processors are competing.

Pseudo-code for Anderson's lock appears in Figure 3;3 Graunke and
Thakkar's lock appears in Figure 4. The likely explanation for the better
performance of Graunke and Thakkar's lock is that fetch-and-store is
supported directly in hardware on the Symmetry; fetch-and-add is not. To
simulate fetch-and-add, Anderson protected his queue-based lock with an
outer test-and-set lock. This outer lock (not shown in Figure 3) introduces
additional overhead and can cause contention when the critical section
protected by the queue-based lock is shorter than the time required to acquire
and release the outer lock. In this case competing processors spend their time
spinning on the outer test-and-set lock rather than the queue-based lock.

Neither Anderson nor Graunke and Thakkar included the ticket lock in
their experiments. In qualitative terms both the ticket lock (with propor-
tional backoff) and the array-based queuing locks guarantee FIFO ordering of
requests. Both the ticket lock and Anderson's lock use an atomic
f etch-and-increment instruction. The ticket lock with porportional backoff is
likely to require more network transactions on a cache-coherent multiproces-
sor but fewer on a multiprocessor without coherently cached shared vari-
ables. The array-based queuing locks require space per lock linear in the
number of processors whereas the ticket lock requires only a small constant

--

'~nderson 's original pseudo-code did not address the issue of overflow, which causes his algo-
rithm to fail unless numprocs = 2'. Our variant of his algorithm addresses this problem.

ACM Transactions on Computer Systems, Vol 9, No. 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors 29

type lock = record
s l o t s : array [O..numprocs -11 of Boolean := t r u e

// each element of s l o t s should l i e i n a d i f f e r e n t memory module
// o r cache l i n e

t a i l : record
w h o w a s l a s t : 'Boolean := 0
this-means-locked : Boolean := f a l s e
// this-means-locked i s a one-bit quant i ty .
// who_was_last po in t s t o an element of s l o t s .
// i f a l l elements l i e a t even addresses, t h i s t a i l "record"
// can be made t o f i t i n one word

processor p r i v a t e vpid : i n t ege r // a unique v i r t u a l processor index

procedure acquire-lock (L : "lock)
(who_is_ahead_of_me : "Boolean, w h a t i s l o c k e d : Boolean)

:= f etch-and-store (&L->ta i l , (&s lo t s [vpidl , s l o t s [vpidl))
repeat while who_is_ahead_of_me" = what_is_locked

procedure release-lock (L : ' lock)
L->slots [vpid] : = not L->slots [vpid]

Fig. 4. Graunke and Thakkar's array-based queuing lock

amount of space.4 We provide quantitative comparisons of the locks' perfor-
mance in Section 4.3.

2.4. A New List-Based Queuing Lock

We have devised a new mechanism called the MCS lock (after out initials)
that

-guarantees FIFO ordering of lock acquisitions;
-spins on locally-accessible flag variables only;
-requires a small constant amount of space per lock; and
-works equally well (requiring only O(1) network transactions per lock

acquisition) on machines with and without coherent caches.

The first of these advantages is shared with the ticket lock and the
array-based queuing locks, but not with the test-and-set lock. The third is
shared with the test-and-set and ticket locks, but not with the array-based
queuing locks. The fourth advantage is in large part a consequence of the
second and is unique to the MCS lock.

Our lock was inspired by the Queue On Lock Bit (QOLB) primitive
proposed for the cache controllers of the Wisconsin Multicube [141, but is
implemented entirely in software. It requires an atomic fetch-and-store
(swap) instruction and benefits from the availability of compare-and-swap.
Without compare-and-swap, we lose the guarantee of FIFO ordering and

^ ~ t first glance, one might suspect t ha t the flag bits of the Graunke and Thakkar lock could be
allocated on a per-processor basis, rather t han a per-lock basis. Once a processor releases a lock,
however, i t cannot use i ts bit for anything else until some other processor has acquired the lock
i t released.

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

30 J. M. Mellor-Crurnrney and M. L. Scott

type qnode = record
next : "qnode
locked : Boolean

type lock = 'qnode

// parameter I, below, points to a qnode record allocated
// (in an enclosing scope) in shared memory locally-accessible
// to the invoking processor

procedure acquire-lock (L : "lock, I : qnode)
I->next := nil
predecessor : "qnode := fetch-and-store (L, I)
if predecessor ! = nil // queue was non-empty

I->locked := true
predecessor->next := I
repeat while I->locked // spin

procedure release-lock (L : 'lock, I: "qnode)
if I->next = nil // no known successor

if compare_and_swap (L, I, nil)
return
// compare-and-swap returns true iff it swapped

repeat while I->next = nil / / spin
I->next->locked := false

Fig 5 The MCS list-based queuing lock.

introduce the theoretical possibility of starvation, though lock acquisitions
are likely to remain very nearly FIFO in practice.

Pseudo-code for our lock appears in Figure 5. Every processor using the
lock allocates a qnode record containing a queue link and a Boolean flag.
Each processor employs one additional temporary variable during the ac-
quire-lock operation. Processors holding or waiting for the lock are chained
together by the links. Each processor spins on its own locally-accessible flag.
The lock itself contains a pointer to the qnode record for the processor at the
tail of the queue, or a n i l if the lock is not held. Each processor in the queue
holds the address of the record for the processor behind it-the processor it
should resume after acquiring and releasing the lock. Compare-and-swap
enables a processor to determine whether it is the only processor in the
queue, and if so remove itself correctly, as a single atomic action. The spin in
acquire-lock waits for the lock to become free. The spin in release-lock
compensates for the timing window between the fetch-and-store and the
assignment to predecessor - >next i n acquire-lock. Both spins are local.

Figure 6, parts (a) through (e), illustrates a series of acquire-lock and
release-lock operations. The lock itself is represented by a box containing
an 'L.' The other rectangles are qnode records. A box with a slash through it
represents a n i l pointer. Non-nil pointers are directed arcs. In (a), the lock is
free. In (b), processor 1 has acquired the lock. It is running (indicated by the
'R'), thus its locked flag is irrelevant (indicated by putting the 'R' in
parentheses). In (c), two more processors have entered the queue while the
lock is still held by processor 1. They are blocked spinning on their locked

A C M Transactions on Computer Systems, Vol. 9, No. 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors 31

Fig. 6. Pictorial example of MCS locking protocol in the presence of competition

flags (indicated by the 'B's.). In (d), processor 1 has completed and has
changed the locked flag of processor 2 so that it is now running. In (e),
processor 2 has completed, and has similarly unblocked processor 3. If no
more processors enter the queue in the immediate future, the lock will return
to the situation in (a) when processor 3 completes its critical section.

Alternative code for the release-lock operation, without compare-and-swap,
appears in Figure 7. Like the code in Figure 5, it spins on processor-specific,
locally-accessible memory locations only, requires constant space per lock,
and requires only O(1) network transactions regardless of whether the ma-
chine provides coherent caches. Its disadvantages are extra complexity and
the loss of strict FIFO ordering.

Parts (e) through (h) of Figure 6 illustrate the subtleties of the alternative
code for release-lock. In the original version of the lock, compare-and-swap
ensures that updates to the tail of the queue happen atomically. There are no

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

32 - J M. Mellor-Crummey and M L. Scott

procedure release-lock (L : ' lock, I : 'qnode)
1f I->next = ml // no known successor

o l d - t a i l : q n o d e := fetch-and-store (L, n i l)
i f o l d - t a i l = 1 // I r e a l l y had no successor

r e t u r n
// we have accidenta l ly removed some processor(s) from t h e queue;
// we need t o put them back
usurper := fetch-and-store (L, o l d - t a i l)
r epea t while I->next = n i l // wait f o r po in t e r t o victim l i s t
i f usurper I = n i l

/ / somebody got i n t o t h e queue ahead of our v ic t ims
usurper->next : = I->next // l i n k victims a f t e r t h e l a s t usurper

e l s e
I->next->locked := f a l s e

e l s e
I->next->locked := f a l s e

Fig. 7 Code for release-lock, without compare-ad-swap.

processors waiting in line if and only if the tail pointer of the queue points to
the processor releasing the lock. Inspecting the processor's next pointer is
solely an optimization to avoid unnecessary use of a comparatively expensive
atomic instruction. Without compare-and-swap, inspection and update of the
tail pointer cannot occur atomically. When processor 3 is ready to release its
lock, it assumes that no other processor is in line if its next pointer is n i l . In
other words, it assumes that the queue looks the way it does in (e). (It could
equally well make this assumption after inspecting the tail pointer and
finding that it points to itself, but the next pointer is local and the tail
pointer is probably not.) This assumption may be incorrect because other
processors may have linked themselves into the queue between processor 3's
inspection and its subsequent update of the tail. The queue may actually be
in the state shown in (e'), with one or more processors in line behind
processor 3, the first of which has yet to update 3's next pointer. (The 'E' in
parentheses on processor 3 indicates that it is exiting its critical section; the
value of its locked flag is irrelevant.)

When new processors enter the queue during this timing window, the data
structure temporarily takes on the form shown in (0. The return value of
processor 3's first fetch-and-store in release-lock (shown in the extra
dotted box) is the tail pointer for a list of processors that have accidentally
been linked out of the queue. By waiting for its next pointer to become
non-nil, processor 3 obtains a head pointer for this "victim" list. It can patch
the victim processors back into the queue, but before it does so additional
processors ("usurpers") may enter the queue with the first of them acquiring
the lock, as shown in (g). Processor 3 puts the tail of the victim list back into
the tail pointer of the queue with a fetch-and-store. If the return value of
this f etch-and-store is n i l , processor 3 unblocks its successor. Otherwise, as
shown in (h), processor 3 inserts the victim list behind the usurpers by
writing its next pointer (the head of the victim list) into the next pointer of
the tail of the usurper list. In either case, the structure of the queue is
restored.

ACM Transactions on Computer Systems, Vol. 9, No 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors 33

To demonstrate formal correctness of the MCS lock, we can prove mutual
exclusion, deadlock freedom, and fairness for a version of the algorithm in
which the entire acquire-lock and release-lock procedures comprise atomic
actions that are broken only when a processor waits (in acquire-lock) for the
lock to become available. We can then refine this algorithm through a series
of correctness-preserving transformations into the code in Figure 5 . The first
transformation breaks the atomic action of acquire-lock in two and intro-
duces auxiliary variables that indicate when a processor has modified the tail
pointer of the queue to point at its qnode record, but has not yet modified its
predecessor's next pointer. To preserve the correctness proof in the face of
this transformation, we (1) relax the invariants on queue structure to permit
a non-tail processor to have a n i l next pointer, so long as the auxiliary
variables indicate that its successor is in the timing window, and (2) intro-
duce a spin in release-lock to force the processor to wait for its next pointer
to be updated before using it. The second transformation uses proofs of
interference freedom to move statements outside of the three atomic actions.
The action containing the assignment to a predecessor's next pointer can
then be executed without explicit atomicity; it inspects or modifies only one
variable that is modified or inspected in any other process. The other two
actions are reduced to the functionality of fetch-and-store and
compare-and-swap. The details of this argument are straightforward but
lengthy (they appear as an appendix to the technical report version of this
paper [33]); we find the informal description and pictures above more intu-
itively convincing.

3. BARRIERS

Barriers have received a great deal of attention in the literature, more so
even than spin locks, and the many published algorithms differ significantly
in notational conventions and architectural assumptions. We present five
different barriers in this section: four from the literature and one of our own
design. We have modified some of the existing barriers to increase their
locality of reference or otherwise improve their performance; we note where
we have done so.

3.1 . Centralized Barriers

In a centralized implementation of barrier synchronization, each processor
updates a small amount of shared state to indicate its arrival and then polls
that state to determine when all of the processors have arrived. Once all of
the processors have arrived, each processor is permitted to continue past the
barrier. Like the test-and-set spin lock, centralized barriers are of uncertain
origin. Essentially equivalent algorithms have undoubtedly been invented by
numerous individuals.

Most barriers are designed to be used repeatedly (to separate phases of a
many-phase algorithm, for example). In the most obvious formulation, each
instance of a centralized barrier begins and ends with identical values for the
shared state variables. Each processor must spin twice per instance; once to

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

34 J. M . Mellor-Crummey and M. L. Scott

shared count : integer := P
shared sense : Boolean := true
processor private local-sense : Boolean : = true

procedure central-barrier
local-sense := not local-sense // each processor toggles its own sense
if fetch-anddecrement (&count) = 1

count := P
sense := localsense // last processor toggles global sense

else
repeat until sense = local-sense

Fig. 8. A sense-reversing centralized barrier

ensure that all processors have left the previous barrier and again to ensure
that all processors have arrived at the current barrier. Without the first spin,
it is possible for a processor to mistakenly pass through the current barrier
because of state information being used by processors still leaving the
previous barrier. Two barrier algorithms proposed by Tang and Yew (the
first algorithm appears in [48, Algorithm 3.11 and [49, p. 31; the second
algorithm appears in [49, Algorithm 3.11) suffer from this type of flaw.

We can reduce the number of references to the shared state variables and
simultaneously eliminate one of the two spinning episodes by "reversing the
sense" of the variables (and leaving them with different values) between
consecutive barriers [191.5 The resulting code is shown in Figure 8. Arriving
processors decrement count and then wait until sense has a different value
than it did in the previous barrier. The last arriving processor resets count
and reverses sense. Consecutive barriers cannot interfere with each other
because all operations on count occur before sense is toggled to release the
waiting processors.

Lubachevsky [29] presents a similar barrier algorithm that uses two shared
counters and a processor private two-state flag. The private flag selects which
counter to use; consecutive barriers use alternate counters. Another similar
barrier can be found in library packages distributed by Sequent Corporation
for the Symmetry multiprocessor. Arriving processors read the current value
of a shared epoch number, update a shared counter, and spin until the epoch
number changes. The last arriving processor reinitializes the counter and
advances the epoch number.

The potential drawback of centralized barriers is the spinning that occurs
on a single, shared location. Because processors do not in practice arrive at a
barrier simultaneously, the number of busy-wait accesses will in general be
far above the r n i n i m ~ m . ~ On broadcast-based cache-coherent multiprocessors,

'A similar technique appears in [4, p. 4451, where it is credited to Isaac Dimitrovsky.
'commenting on Tang and Yew's barrier algorithm (Algorithm 3.1 in [481), Agarwal and
Cherian [2] show that on a machine in which contention causes memory accesses to be aborted
and retried, the expected number of memory accesses initiated by each processor to achieve a
single barrier is linear in the number of processors participating, even if processors arrive at the
barrier a t approximately the same time.

A C M Transactions on Computer Systems, Vol. 9, No. 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors - 35

these accesses may not be a problem. The shared flag or sense variable is
replicated into the cache of every waiting processor, so subsequent busy-wait
accesses can be satisfied without any network traffic. This shared variable is
written only when the barrier is achieved, causing a single broadcast invali-
dation of all cached copies.7 All busy-waiting processors then acquire the new
value of the variable and are able to proceed. On machines without coherent
caches, however, or on machines with directory-based caches without broad-
cast, busy-wait references to a shared location may generate unacceptable
levels of memory and interconnect contention.

To reduce the interconnection network traffic caused by busy waiting on a
barrier flag, Agarwal and Cherian [21 investigated the utility of adaptive
backoff schemes. They arranged for processors to delay between successive
polling operations for geometrically-increasing amounts of time. Their re-
sults indicate that in many cases such exponential backoff can substantially
reduce the amount of network traffic required to achieve a barrier. However,
with this reduction in network traffic often comes an increase in latency at
the barrier. Processors in the midst of a long delay do not immediately notice
when all other processors have arrived. Their departure from the barrier is
therefore delayed, which in turn delays their arrival at subsequent barriers.

Agarwal and Cherian also note that for systems with more than 256
processors, for a range of arrival intervals and delay ratios, backoff strategies
are of limited utility for barriers that spin on a single flag [2]. In such
large-scale systems, the number of network accesses per processor increases
sharply as collisions in the interconnection network cause processors to
repeat accesses. These observations imply that centralized barrier algorithms
will not scale well to large numbers of processors even when using adaptive
backoff strategies. Our experiments (see Section 4.4) confirm this conclusion.

3.2. The Software Combining Tree Barrier

To reduce hot-spot contention for synchronization variables, Yew, Tzeng, and
Lawrie [511 have devised a data structure known as a software combining
tree. Like hardware combining in a multistage interconnection network [171,
a software combining tree serves to collect multiple references to the same
shared variable into a single reference whose effect is the same as the
combined effect of the individual references. A shared variable that is
expected to be the target of multiple concurrent accesses is represented as a
tree of variables, with each node in the tree assigned to a different memory
module. Processors are divided into groups, with one group assigned to each
leaf of the tree. Each processor updates the state in its leaf. If it discovers
that it is the last processor in its group to do so, it continues up the tree and
updates its parent to reflect the collective updates to the child. Proceeding in
this fashion, late-coming processors eventually propagate updates to the root
of the tree.

7 ~ h i s differs from the situation in simple spin locks, where a waiting processor can expect to
suffer an invalidation for every contending processor that acquires the lock before it.

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

36 J M . Mellor-Crummey and M. L. Scott

type node = record
k : integer // fan-in of this node
count : integer / / initialized to k
locksense : Boolean // initially false
parent : "node // pointer to parent node; nil if root

shared nodes : array [O. .P-11 of node
// each element of nodes allocated in a different memory module or cache line

processor private sense : Boolean := true
processor private mynode : "node // my group's leaf in the combining tree

procedure combining-barrier
combining-barrier-aux (mynode) // join the barrier
sense := not sense // for next barrier

procedure combining-barrier-aux (nodepointer: 'node)
with nodepointer' do

if fetch-and-decrement (&count) = 1 // last one to reach this node
if parent != nil

combining-barrier-aux (parent)
count := k // prepare for next barrier
locksense := not locksense // release waiting processors

repeat until locksense = sense

Fig. 9. A software combining tree barrier with optimized wakeup.

Combining trees are presented as a general technique that can be used for
several purposes. At every level of the tree, atomic instructions are used to
combine the arguments to write operations or to split the results of read
operations. In the context of this general framework, Tang and Yew [49]
describe how software combining trees can be used to implement a barrier.
Writes into one tree are used to determine that all processors have reached
the barrier; reads out of a second are used to allow them to continue. Figure 9
shows an optimized version of the combining tree barrier. We have used the
sense-reversing technique to avoid overlap of successive barriers without
requiring two spinning episodes per barrier, and have replaced the atomic
instructions of the second combining tree with simple reads, since no real
information is returned.

Each processor begins at a leaf of the combining tree and decrements its
leafs count variable. The last processor to reach each node in the tree
continues up to the next level. The processor that reaches the root of the tree
begins a reverse wave of updates to locksense flags. As soon as it awakes,
each processor retraces its path through the tree unblocking its siblings at
each node along the path. Simulations by Yew, Tzeng, and Lawrie [51] show
that a software combining tree can significantly decrease memory contention
and prevent tree saturation (a form of network congestion that delays the
response of the network to large numbers of references [38]) in multistage
interconnection networks by distributing accesses across the memory mod-
ules of the machine.
ACM Transactions on Computer Systems, Vol 9, No. 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Mult~processors 37

From our point of view, the principal shortcoming of the combining tree
barrier is that it requires processors to spin on memory locations that cannot
be statically determined, and on which other processors also spin. On broad-
cast-based cache-coherent machines, processors may obtain local copies of the
tree nodes 011 which they spin but on other machines (including the Cedar
machine which Yew, Tzeng, and Lawrie simulated) processors will spin on
remote locations, leading to unnecessary contention for interconnection net-
work bandwidth. In Section 3.5 we present a new tree-based barrier algo-
rithm in which each processor spins on its own unique location, statically
determined and thus presumably locally accessible. Our algorithm uses no
atomic instructions other than read and write, and performs the minimum
possible number of oprations across the processor-memory interconnect.

3.3. The Dissemination Barrier

Brooks [9] has proposed a symmetric "butterfly barrier," in which processors
participate as equals, performing the same operations at each step. Each
processor in a butterfly barrier participates in a sequence of - logo P
pairwise synchronizations. In round k (counting from zero), processor i
synchronizes with processor i <a 2 where CB is the exclusive or operator. If
the number of processors is not a power of 2, then existing processors stand in
for the missing ones, thereby participating in as many as 2 Hog9 P1 pair-
wise synchronizations.

Hensgen, Finkel, and Manber [I91 describe a "dissemination barrier7' that
improves on Brooks's algorithm by employing a more efficient pattern of
synchronizations and by reducing the cost of each synchronization. Their
barrier takes its name from an algorithm developed to disseminate informa-
tion among a set of processes. In round k, processor i signals processor
(i + 2) mod P (synchronization is no longer pairwise). This pattern does not
require existing processes to stand in for missing ones, and therefore requires
only [logn PI synchronization operations on its critical path regardless of
P. Reference [I91 contains a more detailed description of the synchronization
pattern and a proof of its correctness.

For each signalling operation of the dissemination barrier, Hensgen, Finkel,
and Manber use alternating sets of variables in consecutive barrier episodes,
avoiding interference without requiring two separate spins in each operation.
They also use sense reversal to avoid resetting variables after every barrier.
The first change also serves to eliminate remote spinning. The authors
motivate their algorithmic improvements in terms of reducing the number of
instructions executed in the course of a signalling operation, but we consider
the elimination of remote spinning to be an even more important benefit. The
flags on which each processor spins are statically determined, and no two
processors spin on the same flag. Each flag can therefore be located near the
processor that reads it, leading to local-only spinning on any machine with
local shared memory or coherent caches.

Figure 10 presents the dissemination barrier. The p a r i t y variable controls
the use of alternating sets of flags in successive barrier episodes. On a

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991

38 J. M. Mellor-Crummey and M L Scott

type flags = record
myflags : array KO. .I] of array LO. .LogP-11 of Boolean
partnerflags : array [0..11 of array [O..LogP-11 of 'Boolean

processor private parity : integer := 0
processor private sense : Boolean := true
processor private localflags : "flags
shared allnodes : array [O..P-11 of flags

// allnodes[il is allocated in shared memory
// locally accessible to processor i

// on processor i, localflags points to allnodes[i]
// initially allnodes [il .myf lags [rl [kl is false for all 1, r, k
// if j = (i+2"k) mod P, then for r = 0, 1:
// allnodes [i] .partnerf lags [r] [k] points to allnodes [j] .myf lags [r] [k]

procedure dissemination-barrier
for instance : integer := 0 to LogP-1

localflags".partnerflags[parityl[instancel' := sense
repeat until localflags-.myflags[parityl [instance] = sense

if parity = 1
sense := not sense

parity := 1 - parity

Fig 10 The scalable, distributed dissemination barrier with only local spinning.

machine with distributed shared memory and without coherent caches, the
shared allnodes array would be scattered statically across the memory banks
of the machine, or replaced by a scattered set of variables.

3.4. Tournament Barriers

Hensgen, Finkel, and Manber [19] and Lubachevsky [301 have also devised
tree-style "tournament" barriers. The processors involved in a tournament
barrier begin at the leaves of a binary tree much as they would in a
combining tree of fan-in two. One processor from each node continues up the
tree to the next "round" of the tournament. At each stage, however, the
"winning" processor is statically determined and there is no need for
f e t ch_and_$ instructions.

In round k (counting from zero) of Hensgen, Finkel, and Manber's barrier,
processor i sets a flag awaited by processor j, where i = 2 k (mod 2&+') and
j = 1 - 2 '. Processor i then drops out of the tournament and busy waits on a
global flag for notice that the barrier has been achieved. Processor j partici-
pates in the next round of the tournament. A complete tournament consists
of [logy PI rounds. Processor 0 sets a global flag when the tournament is
over.

Lubachevsky [30] presents a concurrent read, exclusive write (CREW)
tournament barrier that uses a global flag for wakeup similar to that of
Hensgen, Finkel, and Manber. He also presents an exclusive read, exclusive
write (EREW) tournament barrier in which each processor spins on separate
flags in a binary wakeup tree, similar to wakeup in a binary combining tree
using Figure 9.

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors 39

Because all processors busy wait on a single global flag, Hensgen, Finkel,
and Manber's tournament barrier and Lubachevsky's CREW barrier are
appropriate for multiprocessors that use broadcast to maintain cache consis-
tency. They will cause heavy interconnect traffic, however, on machines that
lack coherent caches or that limit the degree of cache line replication.
Lubachevsky7s EREW tournament could be used on any multiprocessor with
coherent caches, including those that use limited-replication directory-based
caching without broadcast. Unfortunately, in Lubachevsky's EREW barrier
algorithm, each processor spins on a non-contiguous set of elements in an
array, and no simple scattering of these elements will suffice to eliminate
spinning-related network traffic on a machine without coherent caches.

By modifying Hensgen, Finkel, and Manber's tournament barrier to use a
wakeup tree, we have constructed an algorithm in which each processor spins
on its own set of contiguous, statically allocated flags (see Figure 11). The
resulting code is able to avoid spinning across the interconnection network
both on cache-coherent machines and on distributed shared memory multi-
processors. In addition to employing a wakeup tree, we have modified Hens-
gen, Finkel, and Manber's algorithm to use sense reversal to avoid reinitial-
izing flag variables in each round. These same modifications have been
discovered independently by Craig Lee of Aerospace Corporation [27].

Hensgen, Finkel, and Manber provide performance figures for the Sequent
Balance (a bus-based, cache-coherent multiprocessor), comparing their tour-
nament algorithm against the dissemination barrier as well as Brooks's
butterfly barrier. They report that the tournament barrier outperforms the
dissemination barrier when P > 16. The dissemination barrier requires O(P
log P) network transactions, while the tournament barrier requires only
O(P). Beyond 16 processors, the additional factor of log P in bus traffic for
the dissemination barrier dominates the higher constant of the tournament
barrier. However, on scalable multiprocessors with multistage interconnec-
tion networks, many of the network transactions required by the dissemina-
tion barrier algorithm can proceed in parallel without interference.

3.5. A New Tree-Based Barrier

We have devised a new barrier algorithm that

-spins on locally-accessible flag variables only;
-requires only 0(P) space for P processors;
-performs the theoretical minimum number of network transactions (2 P-2)

on machines without broadcast; and
-performs O(log P) network transactions on its critical path.

To synchronize P processors, our barrier employs a pair of P-node trees.
Each processor is assigned a unique tree node which is linked into an arrival
tree by a parent link and into a wakeup tree by a set of child links. It is
useful to think of these as separate trees because the fan-in in the arrival
tree differs from the fan-out in the wakeup tree. We use a fan-in of 4 (1)
because it produced the best performance in Yew, Tzeng, and Lawrie's

ACM Transactions on Computer Systems, Val. 9, No. 1, February 1991.

40 . J M. Mellor-Crummey and M L. Scott

t y p e round-t = r e c o r d
r o l e : (winner , l o s e r , bye, champion, d ropout)
opponent : 'Boolean
f l a g : Boolean

s h a r e d rounds : a r r a y [O..P-l][O..LogP] of round-t
/ / row vpid of rounds is a l l o c a t e d i n shared memory
/ / l o c a l l y a c c e s s i b l e t o p r o c e s s o r vpid

p r o c e s s o r p r i v a t e s e n s e . Boolean : - t r u e
p r o c e s s o r p r i v a t e vp id i n t e g e r // a unique v i r t u a l p r o c e s s o r index

/ / i n i t i a l l y
/ / rounds [il [kl . f l a g = f a l s e f o r a l l i , k
// rounds [i] [kl . r o l e =
/ / winner i f k > 0 , i mod 2"k = 0 . i t 2'(k-1) < P , and 2-k < P
/ / bye i f k > 0 , i mod 2-k = 0 , and i + 2"(k-1) >= P
/ / l o s e r i f k > 0 and i mod 2'k = 2-(k-1)
/ / champion i f k > 0 , i = 0 , and 2-k >= P
/ / dropout i f k = 0

/ / unused o t h e r w i s e ; v a l u e immater ia l
/ / rounds [i] [kl .opponent p o i n t s t o
// rounds [1-2'(k-1)1 [k] . f l a g i f rounds [i] [kl . r o l e = l o s e r
/ / rounds [1+2"(k-1)1 [kl . f l a g i f rounds [il [kl . r o l e = winner o r champion
/ / unused o t h e r w i s e ; v a l u e immater ia l

procedure tournament -bar r ie r
round : i n t e g e r : = 1
loop // a r r i v a l

c a s e rounds [vpid] [roundl . r o l e of
l o s e r :

rounds [vpidl [roundl . opponent' : = s e n s e
r e p e a t u n t i l roundsCvpid1 [round] . f l a g = s e n s e
e x i t l o o p

winner:
r e p e a t u n t i l rounds [vpidl [round] . f l a g = s e n s e

bye: / / do no th ing
champion:

r e p e a t un t il rounds [vpidl [roundl . f l a g = s e n s e
rounds [vpid] [round] .opponent' : = sense
e x i t l o o p

dropout : // imposs ib le
round : = round + 1

loop / / wakeup
round := round - 1
c a s e rounds [vpid] [round] . r o l e of

l o s e r . // imposs ib le
winner :

rounds [vpidl [roundl . o p p o n e n t : = sense
bye: // do n o t h i n g
champion: // imposs ib le
dropout :

e x i t l o o p
s e n s e : = not sense

Fig 11. A scalable, dis tr ibuted tournament bar r ie r wi th only local spinning

ACM Transactions on Computer Systems, Vol 9, No. 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Mult~processors . 41

experiments with software combining, and (2) because the ability to pack 4
bytes in a word permits an optimization on many machines in which a parent
can inspect status information for all of its children simultaneously at the
same cost as inspecting the status of only one. We use a fan-out of 2 because
it results in the shortest critical path to resume P spinning processors for a
tree of uniform degree. To see this, note that in a p-node tree with fan-out k
(and approximately logk p levels) the last processor to awaken will be the
kth child of the kth child. . . of the root. Because k - 1 other children are
awoken first at each level, the last processor awakes at the end of a serial
chain of approximately k logi, p awakenings, and this expression is mini-
mized for k = 2.' A processor does not examine or modify the state of any
other nodes except to signal its arrival at the barrier by setting a flag in its
parent's node and, when notified by its parent that the barrier has been
achieved, to notify each of its children by setting a flag in each of their nodes.
Each processor spins only on state information in its own tree mode. To
achieve a barrier, each processor executes the code shown in Figure 12.

Data structures for the tree barrier are initialized to that each node's
parentpointer variable points to the appropriate childnotready flag in the
node's parent and the childpointers variables point to the parentsense
variables in each of the node's children. Child pointers of leaves and the
parent pointer of the root are initialized to reference pseudo-data. The
havechild flags indicate whether a parent has a particular child or not.
Initially, and after each barrier episode, each node's childnotready flags are
set to the value of the node's respective havechild flags.

Upon arrival at a barrier, a processor tests to see if the childnotready flag
is clear for each of its children. For leaf nodes, these flags are always clear, so
deadlock cannot result. After a node's associated processor sees that its
childnotready flags are clear, it immediately reinitializes them for the next
barrier. Since a node's children do not modify its childnotready flags again
until they arrive at the next barrier, there is no potential for conflicting
updates. After all of a node's children have arrived, the node's associated
processor clears its childnotready flag in the node's parent. All processors
other than the root then spin on their locally-accessible parentsense flag.
When the root node's associated processor arrives at the barrier and notices
that all of the root node's childnotready flags are clear, then all of the
processors are waiting at the barrier. The processor at the root node toggles
the parentsense flag in each of its children to release them from the barrier.

%lex Schaffer and Paul Dietz have pointed out that better performance could be obtained in the
wakeup tree by assigning more children to processors near the root. For example, if after
processor a awakens processor b it takes them the same amount of time to prepare to awaken
others, then we can cut the critical path roughly in half by having each processor i awaken
processors i t 2', i + 2 J + 1 , i + 2/+', etc., where j = Llogg i J . Then with processor 0 acting as
the root, after a serial chain of t awakenings there are 2' processors active. Unfortunately, the
obvious way to have a processor awaken more than a constant number of children involves a loop
whose additional overhead partially negates the reduction in tree height. Experiments with this
option (not presented in Section 4.4), resulted in only about a 3 percent performance improve-
ment for p < 80.

ACM Transactions on Computer Systems, Vol 9, No. 1, February 1991

42 J M. Mellor-Crummey and M. L Scott

type treenode = record
parentsense : Boolean
parentpointer : "Boolean
childpointers : array [0..1] of 'Boolean
havechild : array [0..3] of Boolean
childnotready : array [0..3] of Boolean
dummy : Boolean // pseudo-data

shared nodes : array [O..P-I] of treenode
// nodes [vpid] is allocated in shared memory
// locally accessible to processor vpid

processor private vpid : integer // a unique virtual processor index
processor private sense : Boolean

// on processor i, sense is initially true
// in nodes [i] :
// havechild[j] = true if 4*i+j < P; otherwise false
// parentpointer = &nodes [f loor((i-I)/4)1 . childnotready [d-I) mod 41 ,
/ / or &dummy if i = 0
// childpointers[O] = &nodes[2*i+l].parentsense, or &dummy if 2*i+l >= P
// childpointers[l] = &nodes[2*1+2].parentsense, or &dummy if 2*1+2 >= P
// initially childnotready = havechild and parentsense = false

procedure tree-barrier
with nodes [vpid] do

repeat until childnotready = {false, false, false, false}
childnotready := havechild // prepare for next barrier
parentpointer' := false // let parent know I'm ready
// if not root, wait until my parent signals wakeup
if vpid != 0

repeat until parentsense = sense
// signal children in wakeup tree
childpointers [O] " := sense
childpointers [I] - := sense
sense := not sense

Fig. 12. A scalable, distributed, tree-based barrier with only local spinning

At each level in the tree, newly released processors release all of their
children before leaving the barrier, thus ensuring that all processors are
eventually released. As described earlier, consecutive barrier episodes do not
interfere, since the childnotready flags used during arrival are reinitialized
before wakeup occurs.

Our tree barrier achieves the theoretical lower bound on the number of
network transactions needed to achieve a barrier on machines that lack
broadcast and that distinguish between local and remote memory. At least
P - 1 processors must signal their arrival to some other processor, requiring
P - 1 network transactions, and then must be informed of wakeup, requiring
another P - 1 network transactions. The length of the critical path in our
algorithm is proportional to [logA P I + [log, PI . The first term is the
time to propagate arrival up to the root and the second term is the time to
propagate wakeup back down to all of the leaves. On a machine with
coherent caches and unlimited replication, we could replace the wakeup

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991

scott
Highlight
This should be 4*i+j+1 < P.Thanks to Kishore Ramachandran for catching the error.

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors . 43

Fig. 13. The BBN Butterfly 1

phase of our algorithm with a spin on a global flag. We explore this
alternative on the Sequent Symmetry in Section 4.4.

4. PERFORMANCE MEASUREMENTS

We have measured the performance of various spin lock and barrier algo-
rithms on the BBN Butterfly 1, a distributed shared memory multiprocessor,
and the Sequent Symmetry Model B, a cache-coherent, shared-bus multipro-
cessor. Anyone wishing to reproduce our results or extend our work to other
machines can obtain copies of our source code (assembler for the spin locks, C
for the barriers) via anonymous ftp from titan.rice.edu (directory /public/sca-
lable-synch).

4.1 . Hardware Description

BBN Butterfly

The BBN Butterfly 1 is a shared-memory multiprocessor that can support up
to 256 processor nodes. Each processor node contains an 8 MHz MC68000
that uses 24-bit virtual addresses and 1 to 4 megabytes of memory (one on
our machine). Each processor can access its own memory directly, and can
access the memory of any node through a log4-depth switching network (see
Figure 13). Transactions on the network are packet-switched and nonblock-
ing. If collisions occur at a switch node, one transaction succeeds and all of
the others are aborted to be retried at a later time (in hardware) by the
processors that initiated them. In the absence of contention, a remote mem-
ory reference (read) takes about 4ps, roughly five times as long as a local
reference.

The Butterfly 1 supports two 16-bit atomic operations: f etch-and-
clear-then-add and f etch_and_clear_then_xor. Each operation takes three
arguments: the address of the 16-bit destination operand, a 16-bit mask, and
the value of the 16-bit source operand. The value of the destination operand
is anded with the one's complement of the mask and then added or xored with

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

44 J. M Mellor-Crurnmey and M. L. Scott

B E E kl

Fig. 14. The Sequent Symmetry Model B

the source operand. The resulting value replaces the original value of the
destination operand. The previous value of the destination operand is the
return value for the atomic operation. Using these two primitives, one can
perform a variety of atomic operations, including fetch-and-add,
f etch-and-store (swap) , and fetch-and-or (which, like swap, can be used
to perform a test-and-set).

Sequent Symmetry

The Sequent Symmetry Model B is a shared-bus multiprocessor that supports
up to 30 processor nodes. Each processor node consists of a 16 MHz Intel
80386 processor equipped with a 64 KB two-way set-associative cache. All
caches in the system are kept coherent by snooping on the bus (see Figure
14). Each cache line is accompanied by a tag that indicates whether the data
is replicated in any other cache. Writes are passed through to the bus only for
replicated cache lines, invalidating all other copies. Otherwise the caches are
write-back.

The Symmetry provides an atomic f etch-and-store operation and allows
various logical and arithmetic operations to be applied atomically as well.
Each of these operations can be applied to any 1, 2, or 4 byte quantity. The
logical and arithmetic operations do not return the previous value of the
modified location; they merely update the value in place and set the proces-
sor's condition codes. The condition codes suffice in certain limited circum-
stances to determine the state of the memory prior to the atomic operation
(e.g., to determine when the counter has reached zero in Figure 8) but the
lack of a genuine return value generally makes the Symmetry's atomic
instructions significantly less useful than the f etch-and_$ operations of the
Butterfly. Neither the Symmetry nor the Butterfly supports
compare-and-swap.

4.2. Measurement Technique

Our results were obtained by embedding lock acquisitions or barrier episodes
inside a loop and averaging over a large number of operations. In the spin
lock graphs, each data point (P , T) represents the average time T to acquire
and release the lock with P processors competing for access. On the Butter-
fly, the average is over lo5 lock acquisitions. On the Symmetry, the average
is over l o 6 lock acquisitions. For an individual test of P processors
collectively executing K lock acquisitions, we required that each processor
ACM Transactions on Computer Systems, Vol. 9, No 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors = 45

acquire and release the lock] K I P] times. In the barrier graphs, each data
point (P , T) represents the average time T for P processors to achieve a
barrier. On both the Symmetry and the Butterfly, the average is over lo5
barriers.

When P = 1 in the spin lock graphs, T represents the latency on one
processor of the acquire-lock and release-lock operations in the absence of
competition. When P is moderately large, T represents the time between
successive lock acquisitions on competing processors. This passing time is
smaller than the single-processor latency in almost all cases, because signifi-
cant amounts of computation in acquire-lock prior to actual acquisition and
in release-lock after actual release may be overlapped with work on other
processors. When P is 2 or 3, T may represent either latency or passing time,
depending on the relative amounts of overlapped and non-overlapped compu-
tation. In some cases (Anderson's lock, the MCS lock, and the locks incorpo-
rating backoff), the value of T for small values of P may also vary due to
differences in the actual series of executed instructions, since code paths may
depend on how many other processors are competing for the lock and on
which operations they have so far performed. In all cases, however, the times
plotted in the spin lock graphs are the numbers that "matter" for each of the
values of P. Passing time is meaningless on one processor, and latency is
swamped by wait time as soon as P is moderately large.'

Unless otherwise noted, all measurements on the Butterfly were performed
with interrupts disabled. Similarly on the Symmetry, the tmp-af f in i ty 0
system call was used to bind processes to processors for the duration of our
experiments. These measures were taken to provide repeatable timing
results.

4.3. Spin Locks

Figure 15 shows the performance on the Butterfly of the spin lock algorithms
described in Section 2.'' The top curve is a simple test-and-set lock, which
displays the poorest scaling behavior.'' As expected, a ticket lock without
backoff is slightly faster, due to polling with a read instead of a f etch-and_@.
We would expect a test-and-test-and-set lock to perform similarly. A linear
least squares regression on the timings shows that the time to acquire and
release the test-and-set lock increases 7.4 ps per additional processor. The
time for a ticket lock without backoff increases 7.0 u s per processor.

s i n c e T may represent either latency or passing time when more than one processor is
competing for a lock, it is difficult to factor out overhead due to the timing loop for timing tests
with more than one processor. For consistency, we included loop overhead in all of the average
times reported (both spin locks and barriers).
1Â°~easurement were made for all numbers of processors; the tick marks simply differentiate
between line types. Graunke and Thakkar's array-based queuing lock had not yet appeared at
the time we conducted our experiments. Performance of their lock should be qualitatively
identical to Anderson's lock, but with a smaller constant.
w e implement test-and-set using the hardware primitive fetch-and-clear-then-add with a

mask that specifies to clear the lowest bit, and an addend of 1. This operation returns the old
value of the lock and leaves the lowest bit in the lock set.

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

46 J. M Mellor-Crurnmey and M. L. Scott

- test & set

a Q test & set, linear backoff

- ticket, prop. backoff

Time - mcs

(/"I

0 10 20 30 40 50 60 70 80
Processors

Fig. 15. Performance of spin locks on the Butterfly (empty critical section)

By analogy with the exponential backoff scheme described in Section 2, we
investigated the effect of having each processor delay between polling opera-
tions for a period of time directly proportional to the number of unsuccessful
test-and-set operations. This change reduces the slope of the test-and-set
lock graph to 5.0 us per processor, but performance degradation is still linear
in the number of competing processors.

The time to acquire and release the test-and-set lock, the ticket lock
without backoff, and the t e s t a n d - s e t lock with linear backoff does not
actually increase linearly as more processors compete for the lock, but rather
in a piecewise linear fashion. This behavior is a function of the interconnec-
tion network topology and the order in which we add processors to the test.
For the tests shown in Figure 15, our Butterfly was configured as an 80
processor machine with five switch cards in the first column of the in t e r con -
nection network, supporting 16 processors each. Processors were added to the
test in a round robin fashion, one from each card. The breaks in the
performance graph occur as each group of 20 processors is added to the test.
These are the points at which we have included four more processors from
each switch card, thereby filling the inputs of a 4-input, 4-output switch node
on each card. Adding more processors involves a set of previously unused
switch nodes. What we see in the performance graphs is that involving new
switch nodes causes behavior that is qualitatively different from that
ACM Transactions on Computer Systems, Vol 9, No. 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors

Time
(PSI

- anderson

* test & set, exp. backoff

ticket, prop. backoff 1, - rn

Fig. 16. Performance of selected spin locks on the Butterfly (empty critical section)

0

obtained by including another processor attached to a switch node already in
use. This difference is likely related to the fact that additional processors
attached to a switch node already in use add contention in the first level of
the interconnection network, while involving new switch nodes adds con-
tention in the second level of the network. In a fully configured machine with
256 processors attached to 16 switch cards in the first column of the intercon-
nection network, we would expect the breaks in spin lock performance to
occur every 64 processors.

Figure 16 provides an expanded view of performance results for the more
scalable algorithms, whose curves are grouped together near the bottom of
Figure 15. In this expanded graph, it is apparent that the time to acquire and
release the lock in the single processor case is often much larger than the
time required when multiple processors are competing for the lock. As noted
above, parts of each acquirelrelease protocol can execute in parallel when
multiple processors compete. What we are measuring in our trials with many
processors is not the time to execute an acquirelrelease pair from start to
finish but rather than length of time between a pair of lock acquisitions.
Complicating matters is that the time required to release an MCS lock
depends on whether another processor is waiting.

The top curve in Figure 16 shows the performance of Anderson's array-based
queuing algorithm, modified to scatter the slots of the queue across the

I I I I I I I I

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

0 10 20 30 40 50 60 70 80
Processors

48 J M . Mellor-Crurnrney and M . L. Scott

anderson

Â¥Ã‘ mcs

0 2 4 6 8 10 12 14 16 18
Processors

Fig. 17. Performance of spin locks on the Symmetry (empty critical section).

available processor nodes. This modification distributes traffic evenly in the
interconnection network by causing each processor to spin on a location in a
different memory bank. Because the Butterfly lacks coherent caches, how-
ever, and because processors spin on statically unpredictable locations, it is
not in general possible with the array-based queuing locks to spin on local
locations. Linear regression yields a slope for the performance graph of 0.4 ps
per processor.

Three algorithms-the test-and-set lock with exponential backoff, the
ticket lock with proportional backoff, and the MCS lock-all scale extremely
well. Ignoring the data points below 10 processors (which helps us separate
throughput under heavy competition from latency under light competition),
we find slopes for these graphs of 0.025, 0.021, and 0.00025 ps per processor,
respectively. Since performance does not degrade appreciably for any of these
locks within the range of our tests, we would expect them to perform well
even with thousands of processors competing.

Figure 17 shows performance results for several spin lock algorithms on
the Symmetry. We adjusted data structures in minor ways to avoid the
unnecessary invalidations that would result from placing unrelated data
items in the same cache line. The test-and-test-and-set algorithm showed
the poorest scaling behavior, with the time to acquire and release the lock
ACM Transactions on Computer Systems, Vol 9, No 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Mult~processors

30

27

24

2 1

18

Time
(us)

12

9

6

3

0

- test & test & set

0 test & set, exp. backoff - mcs

anderson

0 2 4 6 8 10 12 14 16 18
Processors

Fig. 18. Performance of spin locks on the Symmetry (small critical section)

increasing dramatically even over this small range of processors. A simple
test-and-set would perform even worse.

Because the atomic add instruction on the Symmetry does not return the
old value of its target location, implementation of the ticket lock is not
possible on the Symmetry, nor is it possible to implement Anderson's lock
directly. In his implementation [5] , Anderson (who worked on a Symmetry)
introduced an outer test-and-set lock with randomized backoff to protect the
state of his queue.12 This strategy is reasonable when the critical section
protected by the outer lock (namely, acquisition or release of the inner lock)
is substantially smaller than the critical section protected by the inner lock.
This was not the case in our initial test, so the graph in Figure 17 actually
results from processors contending for the outer lock, instead of the inner,
queue-based lock. To eliminate this anomaly, we repeated our tests with a
nonempty critical section, as shown in Figure 18. With a sufficiently long
critical section (6.48 ps in our tests), processors have a chance to queue up
on the inner lock, thereby eliminating competition for the outer lock and

12 Given that he required the outer lock in any case, Anderson also replaced the nextslot index
variable with a pointer, to save time on address arithmetic.

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

50 J. M . Mellor-Crurnrney and M . L. Scott

allowing the inner lock to eliminate bus transactions due to spinning. The
time spent in the critical section has been factored out of the plotted timings.

In addition to Anderson's lock, our experiments indicate that the MCS lock
and the test-and-set lock with exponential backoff also scale extremely
well. All three of the scalable algorithms have comparable absolute perfor-
mance. Anderson's lock has a small edge for nonempty critical sections
(Graunke and Thakkar's lock would have a larger edge) but requires stati-
cally-allocated space per lock linear in the number of processors. The other
two algorithms need only constant space and do not require coherent caches
to work well. The test-and-set lock with exponential backoff shows a slight
increasing trend and would not be expected to do as well as the others on a
very large machine since it causes more network traffic.

The peak in the cost of the MCS lock on two processors reflects the lack of
compare-and-swap. Some fraction of the time, a processor releasing the lock
finds that its next variable is n i l but then discovers that it has a successor
after all when it performs its fetch-and-store on the lock's tail pointer.
Entering this timing window necessitates an additional fetch-and-store to
restore the state of the queue, with a consequent drop in performance. The
non-empty critical sections of Figure 18 reduce the likelihood of hitting the
window, thereby reducing the size of the two-processor peak. With
compare-and-swap that peak would disappear altogether.

Latency and Impact on Other Operations

In addition to performance in the presence of many competing processors, an
important criterion for any lock is the time it takes to acquire and release it
in the absence of competition. Table I shows this measure for representative
locks on the Butterfly and the Symmetry. The times for the test-and-set
lock are with code in place for exponential backoff; the time for the ticket
lock is with code in place for proportional backoff. The test-and-set lock is
cheapest on both machines in the single processor case; it has the shortest
code path. On the Butterfly, the ticket lock, Anderson's lock, and the MCS
lock are 1.11, 1.88, and 2.04 times as costly, respectively. On the Symmetry,
Anderson's lock and the MCS lock are 1.51 and 1.31 times as costly as the
t e s t a n d s e t lock.

Two factors skew the absolute numbers on the Butterfly, making them
somewhat misleading. First, the atomic operations on the Butterfly are
inordinately expensive in comparison to their non-atomic counterparts. Most
of the latency of each of the locks is due to the cost of setting up a parameter
block and executing an atomic operation. (We reuse partially-initialized
parameter blocks as much as possible to minimize this cost.) The expense of
atomic operations affects the performance of the MCS lock in particular since
it requires a t least two f etch-and-store operations (one to acquire the lock
and another to release it) and possibly a third (if we hit the timing window).
Second, the 16-bit atomic primitives on the Butterfly cannot manipulate
24-bit pointers atomically. To implement the MCS algorithm, we were forced
to replace the pointers with indices into a replicated, statically-allocated
array of pointers to qnode records.

ACM Transactions on Computer Systems, Vol 9, No 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors - 51

Table I. Time for an AcquireIRelease Pair in the Single Processor Case.

t e s t - a n d s e t ticket Anderson MCS

Butterfly 34.9 p s 38.7 p s 65.7 bs 71.3 p s
Symmetry 7.0 us N A 10.6 us 9.2 us

Table 11. Increase in Network Latency (relative to that of an idle machine)
on the Butterfly Caused by 60 Processors Competing for a Busy-Wait Lock.

Increase in network latency
measured from

Busy-wait Lock
- -.

Lock node (%) Idle node (%)

t e s t a n d s e t
test-and-set wllinear backoff
test-and-set w/exp. backoff
ticket
ticket w/prop. backoff
Anderson
MCS

Absolute performance for all of the algorithms is much better on the
Symmetry than on the Butterfly. The Symmetry's clock runs twice as fast
and its caches make memory in general appear significantly faster. The
differences between algorithms are also smaller on the Symmetry, mainly
because of the lower difference in cost between atomic and non-atomic
instructions, and also because the Symmetry's 32-bit fetch-and-store in-
struction allows the MCS lock to use pointers. We believe the numbers on the
Symmetry to be representative of actual lock costs on modern machines.
Recent experience with the BBN TC2000 machine confirms this belief:
single-processor latencies on this machine (a newer Butterfly architecture
based on the Motorola 88000 chipset) vary from 8.1 ps for the simple
test-and-set lock to 12.2 ps for the MCS lock. The single-processor latency
of the MCS lock on the Symmetry is only 31 percent higher than that of the
simple test-and-set lock; on the TC2000 it is 50 percent higher.

A final important measure of spin lock performance is the amount of
interconnection network traffic caused by busy-waiting processors, and the
impact of this traffic on other activity on the machine. In an attempt to
measure these quantitites, we obtained an estimate of average network
latency on the Butterfly by measuring the total time required to probe the
network interface controller on each of the processor nodes during a spin lock
test. Table I1 presents our results in the form of percentage increases over the
value measured on an idle machine. In the Lock Node column, probes were
made from the processor on which the lock itself resided (this processor was
otherwise idle in all our tests); in the Idle Node column, probes were made
from another processor not participating in the spin lock test. Values in the
two columns differ markedly for both the test-and-set and ticket locks
(particularly without backoff) because competition for access to the lock is

ACM Transactions on Computer Systems, Vol 9, No. 1, February 1991

52 - J M . Mellor-Crurnrney and M . L Scott

focused on a central hot spot and steals network interface bandwidth from
the process attempting to perform the latency measurement on the lock node.
Values in the two columns are similar for Anderson's lock because its data
structure (and hence its induced contention) is distributed throughout the
machine. Values are both similar and low for the MCS lock because its data
structure is distributed and because each processor refrains from spinning on
the remote portions of that data structure.

Discussion and Recommendations

Spin lock algorithms can be evaluated on the basis of several criteria:

-scalability and induced network load,
-one-processor latency,
-space requirements,
-fairness/sensitivity to preemption, and
-implementability with given atomic operations.

The MCS lock and, on cache-coherent machines, the array-based queuing
locks are the most scalable algorithms we studied. The test-and-set and
ticket locks also scale well with appropriate backoff but induce more network
load. The test-and-set and ticket locks have the lowest single-processor
latency, but with good implementations of f etch_and_@ instructions the MCS
and Anderson locks are reasonable as well. The space needs of Anderson's
lock and of the Graunke and Thakkar lock are likely to be prohibitive when a
large number of locks is needed-in the internals of an operating system, for
example-or when locks are being acquired and released by processes signifi-
cantly more numerous than the physical processors. If the number of pro-
cesses can change dynamically, then the data structures of an array-based
lock must be made large enough to accommodate the maximum number of
processes that may ever compete simultaneously. For the Graunke and
Thakkar lock, the set of process ids must also remain fairly dense. If the
maximum number of processes is underestimated the system will not work; if
it is overestimated then space will be needlessly wasted.

The ticket lock, the array-based queuing locks, and the MCS lock all
guarantee that processors attempting to acquire a lock will succeed in FIFO
order. This guarantee of fairness is likely to be considered an advantage in
many environments, but is likely to waste CPU resources if spinning pro-
cesses may be preempted. (Busy-wait barriers may also waste cycles in the
presence of preemption.) We can avoid this problem by coscheduling pro-
cesses that share locks [341. Alternatively (for mutual exclusion), a
test-and-set lock with exponential backoff will allow latecomers t o acquire
the lock when processes that arrived earlier are not running. In this situa-
tion the test-and-set lock may be preferred to the FIFO alternatives.
Additional mechanisms can ensure that a process is not preempted while
actually holding a lock [47, 521.

All of the spin lock algorithms we have considered require some sort of
fetchwand_@ instructions. The test-and-set lock of course requires

ACM Transactions on Computer Systems, Vol. 9, No 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors 53

test-and-set. The ticket lock requires fetch-and-increment. The MCS lock
requires fetch_and_store3, and benefits from compare_and_swap. Anderson's
lock benefits from fetch-and-add. Graunke and Thakkar's lock requires
fe tchands tore .

For cases in which competition is expected, the MCS lock is clearly the
implementation of choice. It provides a very short passing time, ensures
FIFO ordering, scales almost perfectly, and requires only a small, constant
amount of space per lock. It also induces the least amount of interconnect
contention. On a machine with fast f etch_and_$ operations (particularly if
compare-and-swap is available), its one-processor latency will be competitive
with all the other algorithms.

The ticket lock with proportional backoff is an attractive alternative if
one-processor latency is an overriding concern, or if fetch-and-store is not
available. Although our experience with it is limited to a distributed-memory
multiprocessor without cache coherence, our expectation is that the ticket
lock with proportional backoff would perform well on cache-coherent multi-
processors as well. The test-and-set lock with exponential backoff is an
attractive alternative if preemption is possible while spinning or if neither
f etch-and-store nor f etch-ad-increment is available. It is significantly
slower than the ticket lock with proportional backoff in the presence of heavy
competition, and results in significantly more network load.

4.4. Barriers

Figure 19 shows the performance on the Butterfly of the barrier algorithms
described in Section 3. The top three curves are all sense-reversing, counter-
based barriers as in Figure 8, with various backoff strategies. The slowest
performs no backoff. The next uses exponential backoff. We obtained the best
performance with an initial delay of 10 iterations through an empty loop
with a backoff base of 2. Our results suggest that it may be necessary to limit
the maximum backoff in order to maintain stability. When many barriers are
executed in sequence, the skew of processors arriving at the barriers appears
to be magnified by the exponential backoff strategy. As the skew between
arriving processors increases, processors back off farther. With a backoff base
larger than 2, we had to cap the maximum delay in order for our experiments
to finish. Even with a backoff base of 2, a delay cap improved performance.
Our best results were obtained with a cap of 8 P delay loop iterations.

In our final experiment with a centralized, counter-based barrier, we used
a variant of the proportional delay idea employed in the ticket lock. After
incrementing the barrier count to signal its arrival, each processor participat-
ing in the barrier delays a period of time proportional to the total number of
participants (not the number yet to arrive), prior to testing the sense
variable for the first time. The rationale for this strategy is to timeslice
available interconnect bandwidth between the barrier participants. Since the

131t could conceivably be used with only compare-and-swap, simulating fetch-and-store in a
loop, but a t a significant loss in scalability.

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

54 J. M Mellor-Crummey and M L. Scott

6000 1
0 counter

. . counter, exp. backoff

A A counter, prop. hackoff

4000 { - counter vi/ tree wakeup

3500 4 +-+ bidirectional tournament

Time 3000 4 tree
(US) - dissemination

0 10 20 30 40 50 60 70 80
Processors

Fig. 19 Performance of barriers on the Butterfly

Butterfly network does not provide hardware combining, at least 2 P - 1
accesses to the barrier state are required (P to signal processor arrivals, and
P - 1 to discover that all have arrived). Each processor delays long enough
for later processors to indicate their arrival and for earlier processors to
notice that all have arrived. As shown in Figure 19, this strategy outper-
forms both the naive central barrier and the central barrier with exponential
backoff. At the same time, all three counter-based algorithms lead to curves
of similar shape. The time to achieve a barrier appears to increase more than
linearly in the number of participants. The best of these purely centralized
algorithms (the proportional backoff strategy) requires over 1.4 ms for an 80
processor barrier.

The fourth curve in Figure 19 is the combining tree barrier of Algorithm 8.
Though this algorithm scales better than the centralized approaches (in fact,
it scales roughly logarithmically with P, although the constant is large), it
still spins on remote locations and encounters increasing interconnect con-
tention as the number of processors grows.

Figure 20 provides an expanded view of performance results for the algo-
rithms with the best performance, whose curves are grouped together near
the bottom of Figure 19. The code for the upper curve uses a central counter
to tally arrivals at the barrier, but employs a binary tree for wakeup, as in
ACM Transactions on Computer Systems, Vol 9, No. 1, February 1991

Algorithms for Scalable Synchronization on Shared -- Memory Multiprocessors

500

450

400

350

300

Time 250
(PSI

200

150

100

5 0

0

0

0 0 counter w/ tree wakeup - bidirectional tournament

A A tree D - dissemination

0 10 20 30 40 50 60 70 80
Processors

Fig. 20 Performance of selected barriers on the Butterfly.

Algorithm 11. The processor at the root of the tree spins on the central
counter. Other processors spin on flags in their respective nodes of the tree.
All spins are local but the tallying of arrivals is serialized. We see two
distinct sections in the resulting performance curve. With fewer than 10
processors, the time for wakeup dominates and the time to achieve the
barrier is roughly logarithmic in the number of participants. With more than
10 processors, the time to access the central counter dominates and the time
to achieve the barrier is roughly linear in the number of participants.

The three remaining curves in Figure 20 are for the bidirectional tourna-
ment barrier, our tree barrier, and the dissemination barrier. The time to
achieve a barrier with each of these algorithms scales logarithmically with
the number of processors participating. The tournament and dissemination
barriers proceed through 0(rlog P1) rounds of synchronization that lead to a
stair-step curve. Since the Butterfly does not provide coherent caches, the
tournament barrier employs a binary wakeup tree, as shown in Figure 11. It
requires 2 [logn P1 rounds of synchronization, compared to only [log2 PI
rounds in the dissemination barrier, resulting in a roughly two-fold differ-
ence in performance. Our tree-based barrier lies between the other two; its
critical path passes information from one processor to another approximately
log4 P + log2 P times. The lack of clear-cut rounds in our barrier explains its

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991

56 . J M. Mellor-Crummey and M. L. Scott

120

100

80

Time
(u.s

60

40

20

0

dissemination

tree

* - -. tournament (flag wakeup)

A A arrival tree

counter

0 2 4 6 8 10 12 14 16 18
Processors

Fig. 21. Performance of barriers on the Symmetry

smoother performance curve: each additional processor adds another level to
some path through the tree, or becomes the second child of some node in the
wakeup tree that is delayed slightly longer than its sibling.

Figure 21 shows the performance on the Sequent Symmetry of several
different barriers. Results differ sharply from those on the Butterfly for two
principal reasons. First, it is acceptable on the Symmetry for more than one
processor to spin on the same location; each obtains a copy in its cache.
Second, no significant advantage arises from distributing writes across the
memory modules of the machine; the shared bus enforces an overall serializa-
tion. The dissemination barrier requires O(P1og P) bus transactions to
achieve a P-processor barrier. The other four algorithms require 0 (P) trans-
actions, and all perform better than the dissemination barrier for P > 8.

Below the maximum number of processors in our tests, the fastest barrier
on the Symmetry used a centralized counter with a sense-reversing wakeup
flag (from Figure 8). P bus transactions are required to tally arrivals, 1 to
toggle the sense-reversing flag (invalidating all the cached copies), and P - 1
to effect the subsequent reloads. Our tree barrier generates 2 P - 2 writes to
flag variables on which other processors are waiting, necessitating an addi-
tional 2 P - 2 reloads. By using a central sense-reversing flag for wakeup
(instead of the wakeup tree), we can eliminate half of this overhead. The
resulting algorithm is identified as "arrival tree" in Figure 21. Though the

ACM Transactions on Computer Systems. Vol 9. No 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors 57

arrival tree barrier has a larger startup cost, its P - 1 writes are cheaper
than the P read-modify-write operations of the centralized barrier, so its
slope is lower. For large values of P , the arrival tree with wakeup flag is the
best performaning barrier and should become clearly so on larger machines.

The tournament barrier on the Symmetry uses a central wakeup flag. It
roughly matches the performance of the arrival tree barrier for P = 2' but is
limited by the length of the execution path of the tournament champion,
which grows suddenly by one each time that P exceeds a power of 2.

Discussion and Recommendations

Evaluation criteria for barriers include:

-length of critical path,
-total number of network transactions,
-space requirements, and
-implementability with given atomic operations.

Space needs are constant for the centralized barrier, linear for our tree-
based barrier and for the combining tree barrier, and O(P log P) for the
dissemination barrier and for all variants of Hensgen, Finkel, and Manber's
tournament barrier. (Lubachevsky's EREW version of the tournament bar-
rier is O(P)). With appropriate distribution of data structures, the dissemina-
tion barrier requires a total of O(P log P) network transactions. The tourna-
ment barrier and our tree-based barrier require O(P). The centralized and
combining tree barriers require 0(P) on machines with broadcast-based
coherent caches and a potentially unbounded number on other machines.

On a machine in which independent network transactions can proceed in
parallel, the critical path length is O(log P) for all but the centralized
barrier, which is 0(P) . On a machine that serializes network transactions
(e.g., on a shared bus), this logarithmic factor will be dominated asymptoti-
cally by the linear (or greater) total number of network transactions. The
centralized and combining tree barriers require an atomic increment or
decrement instruction with at least a limited mechanism for determining the
value of memory prior to modifications. The other barriers depend only on
the atomicity of ordinary reads and writes.

The dissemination barrier appears to be the most suitable algorithm for
distributed memory machines without broadcast. It has a shorter critical
path than the tree and tournament barriers (by a constant factor) and is
therefore faster. The class of machines for which the dissemination barrier
should outperform all other algorithms includes the BBN Butterfly [$I, the
IBM RP3 [371, Cedar [50], the BBN Monarch [42], the NYU Ultracomputer
[171, and proposed large-scale multiprocessors with directory-based cache
coherence [3]. Our tree-based barrier will also perform well on these ma-
chines. It induces less network load and requires total space proportional to
P rather than P log P , but its critical path is longer by a factor of about 1.5.
It might conceivably be preferred over the dissemination barrier when

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

58 J. M . Mellor-Crurnmey and M. L Scott

sharing the processors of the machine among more than one application, if
network load proves to be a problem.

Our tree-based barrier with wakeup flag should be the fastest algorithm on
large-scale multiprocessors that use broadcast to maintain cache coherence
(either in snoopy cache protocols [I51 or in directory-based protocols with
broadcast [7]) . It requires only 0(P) updates to shared variables in order to
tally arrivals compared to O (P log P) for the dissemination barrier. Its
updates are simple writes, which are cheaper than the read-modify-write
operations of a centralized counter-based barrier. (Note, however, that the
centralized barrier outperforms all others for modest numbers of processors.)
The space needs of the tree-based barrier are lower than those of the
tournament barrier (O(P) instead of 0 (P log P)), its code is simpler, and it
performs slightly less local work when P is not a power of 2. Our results are
consistent with those of Hensgen, Finkel, and Manber [I91 who showed their
tournament barrier to be faster than their dissemination barrier on the
Sequent Balance multiprocessor. They did not compare their algorithms
against a centralized barrier because the lack of an atomic increment instruc-
tion on the Balance precludes efficient atomic update of a counter.

The centralized barrier enjoys one additional advantage over all of the
other alternatives: it adapts easily to differing numbers of processors. In an
application in which the number of processors participating in a barrier
changes from one barrier episode to another, the log-depth barriers will all
require internal reorganization, possibly swamping any performance advan-
tage obtained in the barrier itself. Changing the number of processors in a
centralized barrier entails no more than changing a single constant.

4.5. Architectural Implications

Many different shared memory architectures have been proposed. From the
point of view of synchronization, the two relevant issues seem to be (1)
whether each processor can access some portion of shared memory locally
(instead of through the interconnection network), and (2) whether broadcast
is available for cache coherency. The first issue is crucial; it determines
whether busy waiting can be eliminated as a cause of memory and intercon-
nect contention. The second issue determines whether barrier algorithms can
efficiently employ a centralized flag for wakeup.

The most scalable synchronization algorithms (the MCS spin lock and the
tree, bidirectional tournament, and dissemination barriers) are designed in
such a way that each processor spins on statically-determined flag variable(s)
on which no other processor spins. On a distributed shared memory machine,
flag variables can be allocated in the portion of the shared memory co-located
with the processor that spins on them. On a cache-coherent machine, they
migrate to the spinning processor's cache automatically. Provided that flag
variables used for busy-waiting by different processors are in separate cache
lines, network transactions are used only to update a location on which some
processor is waiting (or for initial cache line loads). For the MCS spin lock,
the number of network transctions per lock acquisition is constant. For the

ACM Transactions on Computer Systems, Vol. 9, No 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors 59

tree and tournament barriers, the number of network transactions per bar-
rier is linear in the number of processors involved. For the dissemination
barrier, the number of network transactions is O(P log P), but still O(log P)
on the critical path. No network transactions are due to spinning, so inter-
connect contention is not a problem.

On "dance hall" machines, in which shared memory must always be
accessed through a shared processor-memory interconnect, there is no way to
eliminate synchronization-related interconnect contention in software. Nev-
ertheless, the algorithms we have described are useful since they minimize
memory contention and hot spots caused by synchronization. The structure of
these algorithms makes it easy to assign each processor's busy-wait flag
variables to a different memory bank so that the load induced by spinning
will be distributed evenly throughout memory and the interconnect, rather
than being concentrated in a single spot. Unfortunately, on dance hall
machines the load will still consume interconnect bandwidth, degrading the
performance not only of synchronization operations but also of all other
activity on the machine, severely constraining scalability.

Dance hall machines include bus-based multiprocessors without coherent
caches, and multistage network architectures such as Cedar [50], the BBN
Monarch [42], and the NYU Ultracomputer [17]. Both Cedar and the Ultra-
computer include processor-local memory, but only for private code and data.
The Monarch provides a small amount of local memory as a "poor man's
instruction cache." In none of these machines can local memory be modifed
remotely. We consider the lack of local shared memory to be a significant
architectural shortcoming; the inability to take full advantage of techniques
such as those described in this paper is a strong argument against the
construction of dance hall machines.

To assess the importance of local shared memory, we used our Butterfly 1
to simulate a machine in which all shared memory is accessed through the
interconnection network. By flipping a bit in the segment register for the
synchronization variables on which a processor spins, we can cause the
processor to go out through the network to reach these variables (even
though they are in its own memory), without going through the network to
reach code and private data. This trick effectively flattens the two-level
shared memory hierarchy of the Butterfly into a single level organization
similar to that of Cedar, the Monarch, or the Ultracomputer.

Figure 22 compares the performance of the dissemination and tree barrier
algorithms for one and two level memory hierarchies. All timing mesure-
ments in the graph were made with interrupts disabled, t o eliminate any
effects due to timer interrupts or scheduler activity. The bottom two curves
are the same as in Figures 19 and 20. The top two curves show the
corresponding performance of the barrier algorithms when all accesses to
shared memory are forced to go through the interconnection network. When
busy-waiting accesses traverse the interconnect, the time to achieve a barrier
using the tree and dissemination algorithms increases linearly with the
number of processors participating. A least squares fit shows the additional
cost per processor to be 27.8 p s and 9.4 us, respectively. For an 84-processor

ACM Transactions on Computer Systems, Vol 9, No. 1, February 1991

60 J M. Mellor-Crummey and M L. Scott

Time
(PSI

i A - A tree, remote
22.50

- Â dissemination, remote

2000 4 - tree, local A - dissemination, local
1750 -

1500 - A

A

1250 - A '

-A

1000 -
A

750 -
A

0 10 20 30 40 50 60 70 80
Processors

Fig. 22. Performance of tree and dissemination barriers with and without local access to shared
memory.

barrier, the lack of local spinning increases the cost of the tree and dissemi-
nation barriers by factors of 11.8 and 6.8, respectively.

In a related experiment, we measured the impact on network latency of
executing the dissemination or tree barriers with and without local access to
shared memory. The results appear in Table 111. As in Table 11, we probed
the network interface controller on each processor to compare network la-
tency of an idle machine with the latency observed during a 60 processor
barrier. Table 111 shows that when processors are able to spin on shared
locations locally, average network latency increases only slightly. With only
network access to shared memory, latency more than doubles.

Studies by Pfister and Norton [381 show that hot-spot contention can lead to
tree saturation in multistage interconnection networks with blocking switch
nodes and distributed routing control, independent of the network topology.
A study by Kumar and Pfister [231 shows the onset of hot-spot contention to
be rapid. Pfister and Norton argue for hardware message combining in
interconnection networks to reduce the impact of hot spots. They base their
argument primarily on anticipated contention for locks, noting that they
know of no quantitative evidence to support or deny the value of combining
for general memory traffic. Our results indicate that the cost of synchroniza-
tion in a system without combining, and the impact that synchronization
activity will have on overall system performance, is much less than previ-

ACM Transactions on Computer Systems, Vol. 9, No 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors 61

Table 111. Increase in Network Latency (relative to that of an idle machine)
on the Butterfly Caused by 60 Processor Barriers Using Local and Network Polling Strategies

Barrier Local polling (%) Network polling (%)

Tree
Dissemination

ously thought (provided that the architecture incorporates a shared memory
hierarchy of two or more levels). Although the scalable algorithms presented
in this paper are unlikely to match the performance of hardware combining,
they will come close enough to provide an extremely attractive alternative to
complex, expensive hardware. l4

Other researchers have suggested building special-purpose hardware mech-
anisms solely for synchronization, including synchronization variables in the
switching nodes of multistage interconnection networks [21] and lock queu-
ing mechanisms in the cache controllers of cache-coherent multiprocessors
[14, 28, 351. Our results suggest that simple exploitation of a multilevel
memory hierarchy, in software, may provide a more cost-effective means of
avoiding lock-based contention.

The algorithms we present in this paper require no hardware support for
synchronization other than commonly-available atomic instructions. The
scalable barrier algorithms rely only on atomic read and write. The MCS
spin lock algorithm uses fetch-and-store and maybe compare-and-swap.
Graunke and Thakkar's lock requires fetch-and-store. Anderson's lock
benefits from fetch-and-increment, and the ticket lock requires it. All of
these instructions have uses other than the construction of busy-wait locks.
Fetch-and-store and compare-and-swap, for example, are essential for manip-
ulating pointers to build concurrent data structures [20, 321. Because of their
general utility, fetch_and_?> instructions are substantially more attractive
than special-purpose synchronization primitives. Future designs for shared
memory machines should include a full set of f etch-and-% operations, includ-
ing compare-and-swap.

Our measurements on the Sequent Symmetry indicate that special-purpose
synchronization mechanisms such as the QOLB instruction [I41 are unlikely
to outperform our MCS lock by more than 30 percent. A QOLB lock will have
higher single-processor latency than a test..and_set lock [14, p.681, and its
performance should be essentially the same as the MCS lock when competi-
tion for a lock is high. Goodman, Vernon, and Woest suggest that a QOLB-like
mechanism can be implemented at very little incremental cost (given that
they are already constructing large coherent caches with multidimensional
snooping). We believe that this cost must be extremely low to make it worth
the effort.

14 Pfister and Norton estimate that message combining will increase the size and possibly the
cost of an interconnection network 6- to 32-fold. Gottlieb [I61 indicates that combining networks
are difficult to bit-slice.

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

62 . J. M . Mellor-Crummey and M . L. Scott

Of course, increasing the performance of busy-wait locks and barriers is not
the only possible rationale for implementing synchronization mechanisms in
hardware. Recent work on weakly-consistent shared memory [I, 13, 281 has
suggested the need for synchronization "fences" that provide clean points for
memory semantics. Combining networks, likewise, may improve the perfor-
mance of memory with bursty access patterns (caused, for example, by
sharing after a barrier). We do not claim that hardware support for synchro-
nization is unnecessary, merely that the most commonly cited rationale
for it-that it is essential to reduce contention due to synchronization-
is invalid.

5. SUMMARY OF RECOMMENDATIONS

We have presented a detailed comparison of new and existing algorithms for
busy-wait synchronization on shared-memory multiprocessors, with a particu-
lar eye toward minimizing the network transactions that lead to contention.
We introduced the MCS lock, the new tree-based barrier, and the notion of
proportional backoff for the ticket lock and the centralized barrier. We
demonstrated how to eliminate fetch_and_@ operations from the wakeup
phase of the combining tree barrier, presented a wakeup mechanism for the
tournament barrier that uses contiguous, statically allocated flags to ensure
local-only spinning, and observed that the data structures of the dissemina-
tion barrier can be distributed for local-only spinning.

The principal conclusion of our work is that memory and interconnect
contention due to busy-wait synchronization in shared-memory multiproces-
sors need not be a problem. This conclusion runs counter to widely-held
beliefs. We have presented empirical performance results for a wide variety
of busy-wait algorithms on both a cache-coherent multiprocessor and a multi-
processor with distributed shared memory. These results demonstrate that
appropriate algorithms using simple and widely-available atomic instruc-
tions can reduce synchronization contention effectively to zero.

For spin locks on a shared-memory multiprocessor, regardless of architec-
tural details, we suggest:

1. If the hardware provides an efficient fetchand-store instruction (and
maybe compare-and-swap), then use the MCS lock. One-processor latency
will be reasonable, and scalability will be excellent.

2. If fetch-and-store is not available, or if atomic opertions are very expen-
sive relative to non-atomic instructions and one-processor latency is an
overwhelming concern, then use the ticket lock with proportional backoff
(assuming the hardware supports f etch-and-increment). The code for such
a lock is typically more complicated than code for the MCS lock, and the
load on the processor-memory interconnect will be higher in the presence
of competition for the lock, but speed on a single processor will be slightly
better and scalability will still be reasonable.

3. Use the simple lock with exponential backoff (with a cap on the maximum
delay) if processes might be prompted while spinning, or if one-processor
latency is an overwhelming concern and the hardware does not support

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors 63

fetch-and-increment (assuming of course that it does support
test-and-set).

For barrier synchronization we suggest:

On a broadcast-based cache-coherent multiprocessor (with unlimited repli-
cation), use either a centralized counter-based barrier (for modest numbers
of processors), or a barrier based on our 4-ary arrival tree and a central
sense-reversing wakeup flag.
On a multiprocessor without coherent caches, or with directory-based
coherency without broadcast, use either the dissemination barrier (with
data structures distributed to respect locality) or our tree-based barrier
with tree wakeup. The critical path through the dissemination barrier
algorithm is about a third shorter than that of the tree barrier, but the
total amount of interconnect traffic is 0 (P log P) instead of O(P). The
dissemination barrier will outperform the tree barrier on machines such
as the Butterfly, which allow noninterfering network transactions from
many different processors to proceed in parallel.

For the designers of large-scale shared-memory multiprocessors, our results
argue in favor of providing distributed memory or coherent caches, rather
than dance-hall memory without coherent caches (as in Cedar, the Monarch,
or the Ultracomputer). Our results also indicate that combining networks for
such machines must be justified on grounds other than the reduction of
synchronization overhead. We strongly suggest that future multiprocessors
include a full set of f etch-and_$ operations (especially fetch-and-store and
compare-and-swap).

ACKNOWLEDGMENTS

Tom LeBlanc and Evangelos Markatos provided helpful comments on an
early version of this paper. Comments of the referees were also very helpful.

Some of the experiments described in this paper were performed on a BBN
TC2000 that is part of the Advanced Computing Research Facility, Mathe-
matics and Computer Science Division, Argonne National Laboratory.

REFERENCES

1. ADVE, S. V., AND HILL, M. D. Weak ordering-A new definition. In Proceedings of the
International Symposium on Computer Architecture (May 1990), 2-14.

2. AGARWAL, A,, AND CHERIAN, M. Adaptive backoff synchronization techniques. In Proceed-
ings of the International Symposium on Computer Architecture (May 1989), 396-406.

3. AGARWAL, A., SIMONI, R., HENNESSY, J., AND HOROWITZ, M. An evaluation of directory
schemes for cache coherence. In Proceedings of the International Symposium on Computer
Architecture (June 1988), 280-289.

4. ALMASI, G. S., AND GOTTLIEB, A. Highly Parallel Computing. Benjamin/Cummings, Red-
wood City, Calif., 1989.

5. ANDERSON, T. E. The performance of spin lock alternatives for shared-memory multiproces-
sors. ZEEE Trans. Parallel Distributed Syst. 1, 1 (Jan. 1990), 6-16.

6. ANDERSON, T. E., LAZOWSKA, E. D., AND LEVY, H. M. The performance implications of
thread management alternatives for shared-memory multiprocessors IEEE Trans. Comput.
38, 12 (Dec. 1989), 1631-1644.

ACM Transactions on Computer Systems, Vol. 9, No 1, February 1991.

64 . J. M. Mellor-Crummey and M. L. Scott

7. ARCHIBALD, J. A N D BAER, J.-L. A n economical solution to the cache coherence problem. In
Proceedings of the International Symposium on Computer Architecture (1984), 355-362.

8. BBN Laboratories. Butterfly parallel processor overview. Tech. Rep. 6148, version 1, BBN
Laboratories, Cambridge, Mass, Mar. 1986.

9. BROOKS, E. D., 111. The butterfly barrier Int. J Parallel Program. 15, 4 (1986), 295-307.
10. BROOKS, E. D., 111. The shared memory hypercube. Parallel Comput. 6 (1988), 235-245.
11. DAVIS, H , AND HENNESSY, J. Characterizing the synchronization behavior o f parallel

programs. In Proceedings of the ACM Conference on Parallel Programming: Experience with
Applications, Languages and Systems (July 1988), 198-211.

12. DIJKSTRA, E Solution o f a problem i n concurrent programming and control. Commun.
ACM. 8 , 9 (Sept. 1965), 569.

13. GHARACHORLOO, K., LENOSKI, D., LAUDON, J., GIBBONS, P., GUPTA, A., A N D HENNESSY , J. L.
Memory consistency and event ordering i n scalable shared-memory multiprocessors. In
Proceedings of the International Symposium on Computer Architecture (May 1990), 15-26.

14. GOODMAN, J .R , V E R N O N , M. K., AND WOEST, P. J. Efficient synchronization primitives for
large-scale cache-coherent multiprocessors. In Proceedings o f the Third International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (Apr.
1989), 64-75

15. GOODMAN, J R., A N D WOEST, P. J. The Wisconsin Multicube: A new large-scale cache
coherent multiprocessor. In Proceedings of the International Symposium on Computer Archi-
tecture (May 1988), 422-431.

16. GOTTLIEB, A . Scalability, combining and the NYU ultracomputer. Ohio State University
Parallel Computing Workshop, Mar. 1990. Invited Lecture.

17. GOTTLIEB, A,, GRISHMAN, R., KRUSKAI,, C. P., MCAULIFFE, K. P., RUDOLPH, L., A N D SNIR, M.
The NYU Ultracomputer-Designing an MIMD shared memory parallel computer. IEEE
Trans. Comput. C-32, 2 (Feb. 1983), 175-189,

18. GRAUNKE, G., AND THAKKAR, S . Synchronization algorithms for shared-memory multipro-
cessors. Computer 23, 6 (June 1990), 60-69

19. HENSGEN, D , FINKEL, R , AND MANBER, U . Two algorithms for barrier synchroniztion. Int.
J . Parallel Program. 17, 1 (1988) 1-17.

20. HERLIHY, M. A methodology for implementing highly concurrent data structures. In Pro-
ceedings of the Second ACM Symposium on Principles and Practice of Parallel Programming
(Mar 1990), 197-206.

21. JAYASIMHA, D. N . Distributed synchronizers. In Proceedings of the 1988 International
Conference on Parallel Processing (Aug. 1988), 23-27.

22 KRUSKAL, C.P., RUDOLPH, L., AND SNIR , M. Efficient synchronization on multiprocessors
wi th shared memory. In Proceedings of the Fifth ACM Symposium on Principles of Dis-
tributed Computing (1986), 218-228.

23. KUMAR, M. , A N D PFISTER, G. F. The onset o f hot spot contention In Proceedings of the 1986
International Conference on Parallel Processing (1986), 28-34.

24. LAMPORT, L. A new solution o f Dijkstra's concurrent programming problem. Commun.
ACM 1 7 , s (Aug. 1974), 453-455.

25. LAMPORT, L. T h e mutual exclusion problem: Part I-A theory o f interprocess communica-
tion: Part 11-Statement and solutions. J ACM 33, 2 (Apr. 1986), 313-348.

26. LAMPORT, L. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 5, 1 (Feb.
1987) 1-11.

27. LEE, C . A . Barrier synchronization over multistage interconnection networks. In Proceed-
ings o f the Second IEEE Symposium on Parallel and Distributed Processing (Dallas, Tex ,
Dec 1990), 130-133.

28. LEE, J., AND RAMACHANDRAN, U . Synchronization wi th multiprocessor caches. In Proceed-
ings o f the International Symposium on Computer Architecture (May 1990), 27-37.

29. LUBACHEVSKY, B. A n approach to automating the verification o f compact parallel coordina-
t ion programs. I Acta Znf. 21 (1984), 125-169.

30. LUBACHEVSKY, B. Synchronization barrier and related tools for shared memory parallel
programming. In Proceedings o f the 1989 International Converence on Parallel Processing
(Aug 1989), 11-175-11-179.

ACM Transactions o n Computer Systems, Vol. 9, No 1, February 1991

Algorithms for Scalable Synchronization on Shared - Memory Multiprocessors 65

31. MAEKAWA, M. A v̂ V algorithm for mutual exclusion i n decentralized systems. ACM
Trans. Comput. Syst. 3 , 2 (May 1985), 145-159.

32. MELLOR-CRUMMEY, J. M. Concurrent queues: Practical fetch-and-@ algorithms. Tech. Rep.
229, Computer Science Dept., Univ . o f Rochester, Nov. 1987.

33. MELLOR-CRUMMEY, J. M., AND SCOTT, M. L. Algorithms for scalable synchronization on
shared-memory multiprocessors. Tech. Rep. 342, Computer Science Dept., Univ . o f Rochester,
Apr. 1990. Also COMP TR90-114, Dept. o f Computer Science, Rice Univ. , May 1990

34. OUSTERHOUT, J. K , SCELZA, D. A,, AND S INDHU, P. S . Medusa: A n experiment i n dis-
tributed operating system structure. Commun. ACM 23, 2 (Feb. 1980), 92-105.

35. P1596 Working Group of the IEEE Computer Society Microprocessor Standards Committee.
SCI (scalable coherent interface): A.n overview of extended cache-coherence protocols, Feb 5,
1990. Draft 0.59 P1596/Part 111-D.

36. PETERSON, G . L. A new solution to Lamport's concurrent programming problem using
small shared variables. ACM Trans. Program. Lang. Syst. 5, 1 (Jan. 1983), 56-65.

37. PFISTER, G. , BRANTLEY, W . C., GEORGE, D. A , , HARVEY, S . L., KLEINFELDER, W . J.. MCAVLIFFE,
K . P., MELTON, T . A , , NORTON, V A., AND W E I S S , J. The IBM research parallel processor
prototype (RP3): Introduction and architecture. In Proceedings o f the 1985 International
Conference on Parallel Processing (Aug. 1985), 764-771.

38. PFISTER, G., AND NORTON, V . A . "Hot spot" contention and combining i n multistage
interconnection networks. IEEE Trans. Comput. C-34, 10 (Oct. 1985), 943-948.

39. RAYMOND, K. A tree-based algorithm for distributed mutual exclusion. ACM Trans. Com-
put. Syst . 7 , 1 (Feb. 1989), 61-77.

40. RAYNAL, M. Algorithms for Mutual Exclusion. MIT Press Series i n Scientific Computation.
MIT Press, Cambridge, Mass., 1986. Translated from the French by D. Beeson.

41. REED, D. P., A N D KANODIA, R K. Synchronization wi th eventcounts and sequencers.
Commun. ACM 22, 2 (Feb. 1979), 115-123.

42. RETTBERG, R. D., CROWTHER, W. R., CARVEY, P. P., A N D TOMLINSON, R. S . The Monarch
parallel processor hardware design. Computer 23, 4 (Apr. 1990), 18-30

43. RICART, G., AND AGRAWALA, A .K . A n optimal algorithm for mutual exclusion i n computer
networks. Commun. ACM. 24, 1 (Jan. 1981) 9-17.

44. RUDOLPH, L., AND SEGALL, Z . Dynamic decentralized cache schemes for MIMD parallel
processors. In Proceedings of the International Symposium on Computer Architecture (1984),
340-347.

45. SANDERS, B . A . T h e information structure o f distributed mutual exclusion algorithms.
ACM Trans. Comput. Syst. 5, 3 (Aug. 1987), 284--299

46. SCHNEIDER, F. B. Synchronization i n distributed programs. ACM Trans. Program. Lang.
Syst. 4 , 2 (Apr. 1982), 179-195.

47. SCOTT, M. L. , LEBLANC, T . J . , AND MARSH, B. D. Multi-model parallel programming in
Psyche. In Proceedings of the Second ACM Symposium on Principles and Practice of Parallel
Programming (Mar. 1990), 70-78.

48. TANG, P., AND Y E W , P.-C. Processor self-scheduling for multiple-nested parallel loops. In
Proceedings of the 1986 International Conference on Parallel Processing (Aug. 1986), 528-535.

49. TANG, P., AND Y E W , P.-C. Algorithms for distributing hot-spot addressing CSRD Rep. 617,
Center for Supercomputing Research and Development, Un iv . o f Illinois at Urbana-
Champaign, Jan. 1987.

50. Y E W , P . 4 . Architecture o f the Cedar parallel supercomputer. CSRD Rep 609, Center for
Supercomputing Research and Development, Univ . o f Illinois at Urbana-Champaign, Aug.
1986.

51. Y E W , P.-C., TZENG, N.-F., AND LAWRIE, D. H. Distributing hot-spot addressing i n large-scale
multiprocessors. IEEE Trans. Comput. C-36, 4 (Apr. 1987), 388-395.

52. ZAHORIAN, J., LAZOWSKA, E. D., AND EAGER, D. L. The effect o f scheduling discipline on
spin overhead i n shared memory parallel processors. Tech. Rep. TR-89-07-03, Computer
Science Dept., Univ . o f Washington, July 1989.

Received June 1990; revised January 1991; accepted January 1991

ACM Transactions on Computer Systems, Vol. 9 , No. 1, February 1991.

