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Busy-wait techniques are heavily used for mutual exclusion and barrier synchronization in 
shared-memory parallel programs Unfortunately, typical implementations of busy-waiting tend 
to produce large amounts of memory and interconnect contention, introducing performance 
bottlenecks that become markedly more pronounced as applications scale. We argue that this 
problem is not fundamental, and that one can in fact construct busy-wait synchronization 
algorithms that induce no memory or interconnect contention. The key to these algorithms is for 
every processor to spin on separate locally-accessible flag variables, and for some other processor 
to terminate the spin with a single remote write operation at  an appropriate time. Flag variables 
may be locally-accessible as a result of coherent caching, or by virtue of allocation in the local 
portion of physically distributed shared memory 

We present a new scalable algorithm for spin locks that generates O ( 1 )  remote references per 
lock acquisition, independent of the number of processors attempting to acquire the lock. Our 
algorithm provides reasonable latency in the absence of contention, requires only a constant 
amount of space per lock, and requires no hardware support other than a swap-with-memory 
instruction. We also present a new scalable barrier algorithm that generates O ( 1 )  remote 
references per processor reaching the barrier, and observe that two previously-known barriers 
can likewise be cast in a form that spins only on locally-accessible flag variables. None of these 
barrier algorithms requires hardware support beyond the usual atomicity of memory reads and 
writes. 

We compare the performance of our scalable algorithms with other software approaches to 
busy-wait synchronization on both a Sequent Symmetry and a BBN Butterfly. Our principal 
conclusion is that contention due to synchronization need not be a problem in large-scale 
shared-memory multiprocessors. The existence of scalable algorithms greatly weakens the case 
for costly special-purpose hardware support for synchronization, and provides a case against 
so-called "dance hall" architectures, in which shared memory locations are equally far from all 
processors 
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Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles-cache memo- 
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(Multiprocessors)-interconnection architectures, parallel processors; C 4 [Computer Systems 
Organization]: Performance o f  Systems-design studies; D.4 1 [Operating Systems]: Process 
Management-mutual exclusion, synchronization; D.4.2 [Operating Systems]: Storage Manage- 
ment-storage hierarchies: D.4.8 [Operating Systemsl: Performance-measurements 

General Terms: Algorithms, Performance 

Additional Key Words and Phrases: Atomic operations, barrier synchronization, contention, 
fetch-and-phi, locality, spin locks 

1. INTRODUCTION 

Techniques for efficiently coordinating parallel computation on MIMD, 
shared-memory multiprocessors are of growing interest and importance as 
the scale of parallel machines increases. On shared-memory machines, pro- 
cessors communicate by sharing data structures. To ensure the consistency of 
shared data structures, processors perform simple operations by using hard- 
ware-supported atomic primitives and coordinate complex operations by us- 
ing synchronization constructs and conventions to protect against overlap of 
conflicting operations. 

Synchronization constructs can be divided into two classes: blocking con- 
structs that deschedule waiting processes and busy-wait constructs in which 
processes repeatedly test shared variables to determine when they may 
proceed. Busy-wait synchronization is fundamental to parallel programming 
on shared-memory multiprocessors and is preferred over scheduler-based 
blocking when scheduling overhead exceeds expected wait time, when proces- 
sor resources are not needed for other tasks (so that the lower wake-up 
latency of busy waiting need not be balanced against an opportunity cost), or 
when scheduler-based blocking is inappropriate or impossible (for example in 
the kernel of an operating system). 

Two of the most widely used busy-wait synchronization constructs are spin 
locks and barriers. Spin locks provide a means for achieving mutual exclu- 
sion (ensuring that only one processor can access a particular shared data 
structure at  a time) and are a basic building block for synchronization 
constructs with richer semantics, such as semaphores and monitors. Spin 
locks are ubiquitously used in the implementation of parallel operating 
systems and application programs. Barriers provide a means of ensuring that 
no processes advance beyond a particular point in a computation until all 
have arrived at  that point. They are typically used to separate "phases" of an 
application program. A barrier might guarantee, for example, that all pro- 
cesses have finished updating the values in a shared matrix in step t before 
any processes use the values as input in step t + 1. 

The performance of locks and barriers is a topic of great importance. Spin 
locks are generally employed to protect very small critical sections, and may 
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be executed an enormous number of times in the course of a computation. 
Barriers, likewise, are frequently used between brief phases of data-parallel 
algorithms (e.g., successive relaxation), and may be a major contributor to 
run time. Unfortunately, typical implementations of busy-waiting tend to 
produce large amounts of memory and interconnection network contention, 
which causes performance bottlenecks that become markedly more pro- 
nounced in larger machines and applications. As a consequence, the overhead 
of busy-wait synchronization is widely regarded as a serious performance 
problem [2, 6, 11, 14, 38, 49, 511. 

When many processors busy-wait on a single synchronization variable, 
they create a hot spot that is the target of a disproportionate share of the 
network traffic. Pfister and Norton [381 showed that the presence of hot spots 
can severely degrade performance for all traffic in multistage interconnection 
networks, not just traffic due to synchronizing processors. As part of a larger 
study, Agarwal and Cherian [2] investigated the impact of synchronization on 
overall program performance. Their simulations of benchmarks on a cache- 
coherent multiprocessor indicate that memory references due to synchroniza- 
tion cause cache line invalidations much more often than nonsynchronization 
references. In simulations of the benchmarks on a 64-processor "dance hall" 
machine (in which each access to a shared variable traverses the processor- 
memory interconnection network), they observed that synchronization ac- 
counted for as much as 49 percent of total network traffic. 

In response to performance concerns, the history of synchronization tech- 
niques has displayed a trend toward increasing hardware support. Early 
algorithms assumed only the ability to read and write individual memory 
locations atomically. They tended to be subtle, and costly in time and space, 
requiring both a large number of shared variables and a large number of 
operations to coordinate concurrent invocations of synchronization primitives 
[12, 25, 26, 36, 401. Modern multiprocessors generally include more sophisti- 
cated atomic operations, permitting simpler and faster coordination strate- 
gies. Particularly common are various f etch-and_@ operations [221 which 
atomically read, modify, and write a memory location. Fetch-and_$ opera- 
tions include test-and-set, fetch-and-store (swap), fetch-and-add, and 
c~m~are_and_swa~.~  

More recently, there have been proposals for multistage interconnection 
networks that combine concurrent accesses to the same memory location [17, 
37, 421, multistage networks that have special synchronization variables 
embedded in each stage of the network [211, and special-purpose cache 
hardware to maintain a queue of processors waiting for the same lock [14, 28, 
351. The principal purpose of these hardware primitives is to reduce the 
impact of busy waiting. Before adopting them it is worth considering the 
extent to which software techniques can achieve a similar result. 

-- 

 etcha and-store exchanges a register with memory. Compareandswap compares the contents of 
a memory location against a given value, and sets a condition code to indicate whether they are 
equal. If so, it  replaces the contents of the memory with a second given value. 
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For a wide range of shared-memory multiprocessor architectures, we con- 
tend that appropriate design of spin locks and barriers can eliminate all 
busy-wait contention. Specifically, by distributing data structures appropri- 
ately, we can ensure that each processor spins only on locally-accessible 
locations, locations that are not the target of spinning references by any 
other processor. All that is required in the way of hardware support is a 
simple set of f etch_and_$ operations and a memory hierarchy in which each 
processor is able to read some portion of shared memory without using the 
interconnection network. On a machine with coherent caches, processors spin 
on locations in their caches. On a machine in which shared memory is 
distributed (e.g., the BBN Butterfly [8],  the IBM RP3 [371, or a shared- 
memory hypercube [lo]), processors spin only on locations in the local portion 
of shared memory. 

The implication of our work is that efficient synchronization algorithms 
can be constructed in software for shared-memory multiprocessors of arbi- 
trary size. Special-purpose synchronization hardware can offer only a small 
constant factor of additional performance for mutual exclusion, and at best a 
logarithmic factor for barrier synchronization. In addition, the feasibility 
and performance of busy-waiting algorithms with local-only spinning pro- 
vides a case against "dance hall" architectures in which shared memory 
locations are equally far from all processors. 

We discuss the implementation of spin locks in Section 2, presenting both 
existing approaches and a new algorithm of our own design. In Section 3 we 
turn to the issue of barrier synchronization, explaining how existing ap- 
proaches can be adapted to eliminate spinning on remote locations, and 
introducing a new design that achieves both a short critical path and the 
theoretical minimum total number of network transactions. We present 
performance results in Section 4 for a variety of spin lock and barrier 
implementations, and discuss the implications of these results for software 
and hardware designers. Our conclusions are summarized in Section 5. 

2 .  SPIN LOCKS 

In this section we describe a series of five implementations for a mutual-ex- 
elusion spin lock. The first four appear in the literature in one form or 
another. The fifth is a novel lock of our own design. Each lock can be seen as 
an attempt to eliminate some deficiency in the previous design. Each as- 
sumes a shared-memory environment that includes certain fetch-and_$ 
operations. As noted above, a substantial body of work has also addressed 
mutual exclusion using more primitive read and write atomicity; the com- 
plexity of the resulting solutions is the principal motivation for the develop- 
ment of f etch_and_@ primitives. Other researchers have considered mutual 
exclusion in the context of distributed systems [31, 39, 43, 45, 461 but the 

' ~ a r d w a r e  combining can  reduce t h e  t i m e  t o  achieve a barrier f rom O(1og P )  t o  O(1) steps if 
processors happen  t o  arrive a t  t h e  barrier s imultaneously 
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characteristics of message passing are different enough from shared memory 
operations that solutions do not transfer from one environment to the other. 

Our pseudo-code notation is meant to be more or less self explanatory. We 
have used line breaks to terminate statements, and indentation to indicate 
nesting in control constructs. The keyword shared indicates that a declared 
variable is to be shared among all processors. The declaration implies no 
particular physical location for the variable, but we often specify locations in 
comments and/or accompanying text. The keywords processor private indi- 
cate that each processor is to have a separate, independent copy of a declared 
variable. All of our atomic operations are written to take as their first 
argument the address of the memory location to be modified. All but com- 
pare-and-swap take the obvious one additional operand and return the old 
contents of the memory location. Compare-and-swap (addr, old, new) is de- 
fined as i f  addr " ! = old return false;  addr - := new; return true. In one 
case (Figure 3) we have used an atomic-add operation whose behavior is the 
same as calling f etch-and-add and discarding the result. 

2.1. The Simple Test-and-Set Lock 

The simplest mutual exclusion lock, found in all operating system textbooks 
and widely used in practice, employs a polling loop to access a Boolean flag 
that indicates whether the lock is held. Each processor repeatedly executes a 
test-and-set instruction in an attempt to change the flag from false to true, 
thereby acquiring the lock. A processor releases the lock by setting it to false. 

The principal shortcoming of the test-and-set lock is contention for the 
flag. Each waiting processor accesses the single shared flag as frequently as 
possible, using relatively expensive read-modify-write (f etch-and_$) instruc- 
tions. The result is degraded performance not only of the memory bank in 
which the lock resides but also of the processor/memory interconnection 
network and, in a distributed shared-memory machine, the processor that 
owns the memory bank (as a result of stolen bus cycles). 

Fetch_and_$ instructions can be particularly expensive on cache-coherent 
multiprocessors since each execution of such an instruction may cause many 
remote invalidations. To reduce this overhead, the test-and-set lock can be 
modified to use a test-and-set instruction only when a previous read indi- 
cates that the test-and-set might succeed. This so-called test-and- 
test-and-set technique [441 ensures that waiting processors poll with read 
requests during the time that a lock is held. Once the lock becomes available, 
some fraction of the waiting processors detect that the lock is free and 
perform a test-and-set operation, exactly one of which succeeds, but each of 
which causes remote invalidations on a cache-coherent machine. 

The total amount of network traffic caused by busy-waiting on a 
test-and-set lock can be reduced further by introducing delay on each 
processor between consecutive probes of the lock. The simplest approach 
employs a constant delay; more elaborate schemes use some sort of backoff on 
unsuccessful probes. Anderson [5] reports the best performance with exponen- 
tial backoff; our experiments confirm this result. Pseudo-code for a 
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t y p e  l o c k  = (unlocked,  locked)  

p rocedure  acqui re - lock  (L : " lock)  
d e l a y  : i n t e g e r  :=  1 
whi le  t e s t a n d - s e t  (L) = locked  // r e t u r n s  o l d  v a l u e  

pause (de lay)  // consume t h i s  many u n i t s  of t ime  
d e l a y  :=  d e l a y  * 2 

procedure r e l e a s e - l o c k  ( L  : ' lock)  
lock*  :=  unlocked 

Fig. 1. Simple tes t -and-se t  lock with exponential backoff. 

test-and-set lock with exponential backoff appears in Figure 1. Test-and-set 
suffices when using a backoff scheme; test-and-test-and-set is not necessary. 

2 2 .  The Ticket Lock 

In a test-and-test-ad-set lock, the number of read-modify-write operations 
is substantially less than for a simple test-and-set lock but still potentially 
large. Specifically, it is possible for every waiting processor to perform a 
test-and-set operation every time the lock becomes available, even though 
only one can actually acquire the lock. We can reduce the number of 
f etch-and_$ operations to one per lock acquisition with what we call a ticket 
lock. At the same time, we can ensure FIFO service by granting the lock to 
processors in the same order in which they first requested it. A ticket lock is 
fair in a strong sense; it eliminates the possibility of starvation. 

A ticket lock consists of two counters, one containing the number of 
requests to acquire the lock, and the other the number of times the lock has 
been released. A processor acquires the lock by performing a fetch-and-in- 
crement operation on the request counter and waiting until the result (its 
ticket) is equal to the value of the release counter. It releases the lock by 
incrementing the release counter. In the terminology of Reed and Kanodia 
[411, a ticket lock corresponds to the busy-wait implementation of a semaphore 
using an eventcount and a sequencer. It can also be thought of as an 
optimization of a Lamport's bakery lock [24], which was designed for fault- 
tolerance rather than performance. Instead of spinning on the release counter, 
processors using a bakery lock repeatedly examine the tickets of their peers. 

Though it probes with read operations only (and thus avoids the overhead 
of unnecessary invalidations in coherent cache machines), the ticket lock still 
causes substantial memory and network contention through polling of a 
common location. As with the test-and-set lock, this contention can be 
reduced by introducing delay on each processor between consecutive probes of 
the lock. In this case, however, exponential backoff is clearly a bad idea. 
Since processors acquire the lock in FIFO order, overshoot in backoff by the 
first processor in line will delay all others as well, causing them to back off 
even farther. Our experiments suggest that a reasonable delay can be 
determined by using information not available with a test-and-set lock: 
namely, the number of processors already waiting for the lock. The delay can 
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type lock = record 
next-ticket : unsigned integer := 0 
now-serving : unsigned integer :=  0 

procedure acquire-lock (L : "lock) 
my-ticket : unsigned integer := fetch-and-increment (&L->next_ticket) 

// returns old value; arithmetic overflow is harmless 
loop 

pause (my-ticket - L->now_serving) 
// consume this many units of time 
// on most machines, subtraction works correctly despite overflou 

if L->now_serving = my-ticket 
return 

procedure release-lock (L : "lock) 
L->now_serving := L->now_serving t 1 

Fig. 2. Ticket lock with proportional backoff. 

be computed as the difference between a newly-obtained ticket and the 
current value of the release counter. 

Delaying for an appropriate amount of time requires an estimate of how 
long it will take each processor to execute its critical section and pass the 
lock to its successor. If this time is known exactly, it is in principle possible to 
acquire the lock with only two probes, one to determine the number of 
processors already in line (if any), and another (if necessary) to verify that 
one's predecessor in line has finished with the lock. This sort of accuracy is 
not likely in practice, however, since critical sections do not in general take 
identical, constant amounts of time. Moreover, delaying proportional to the 
expected average time to hold the lock is risky: if the processors already in 
line average less than the expected amount, the waiting processor will delay 
too long and slow the entire system. A more appropriate constant of propor- 
tionality for the delay is the minimum time that a processor can hold the 
lock. Pseudo-code for a ticket lock with proportional backoff appears in 
Figure 2. It assumes that the new-ticket and now-serving counters are large 
enough to accommodate the maximum number of simultaneous requests for 
the lock. 

2.3. Array-Based Queuing Locks 

Even using a ticket lock with porportional backoff, it is not possible to obtain 
a lock with an expected constant number of network transactions, due to the 
unpredictability of the length of critical sections. Anderson [51 and Graunke 
and Thakkar [18] have proposed locking algorithms that achieve the constant 
bound on cache-coherent multiprocessors that support atomic fetch-and-in- 
crement or fetch-and-store, respectively. The trick is for each processor to 
use the atomic operation to obtain the address of a location on which to spin. 
Each processor spins on a different location, in a different cache line. Ander- 
son's experiments indicate that his queuing lock outperforms a test-and-set 
lock with exponential backoff on the Sequent Symmetry when more than six 
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t y p e  l o c k  = r e c o r d  
s l o t s  : a r r a y  [O..numprocs -11 of (has-lock,  must-wait) 

: ( h a s l o c k .  must-wait, m u s t w a i t ,  . . . .  must-wait) 
// each element of s l o t s  should l i e  i n  a  d i f f e r e n t  memory module 
// o r  cache l i n e  

n e x t - s l o t  : i n t e g e r  := 0 

// parameter  my-place, below, p o i n t s  t o  a  p r i v a t e  v a r i a b l e  
// i n  an e n c l o s i n g  scope 

procedure acqui re - lock  (L : " lock ,  my-place : " i n t e g e r )  
my-place" := fetch-and-increment ( & L - > n e x t s l o t )  

// r e t u r n s  o l d  va lue  
i f  my-place- mod numprocs = 0 

atomic-add (&L->next_slot ,  -numprocs) 
// avoid  problems wi th  overflow; r e t u r n  va lue  ignored 

m y p l a c e " "  := my-place- mod numprocs 
r e p e a t  whi le  L->slotsCmy-place'] = must-wait // s p i n  
L->slots[my_place"] :=  must-wait // i n i t  f o r  nex t  t ime  

procedure r e l e a s e - l o c k  (L : ' lock,  my-place : " i n t e g e r )  
L->slots[(my-place" + 1) mod numprocs] := has-lock 

Fig 3. Anderson's array-based queuing lock. 

processors are competing for access. Graunke and Thakkar's experiments 
indicate that their lock outperforms a test-and-set lock on the same ma- 
chine when more than three processors are competing. 

Pseudo-code for Anderson's lock appears in Figure 3;3 Graunke and 
Thakkar's lock appears in Figure 4. The likely explanation for the better 
performance of Graunke and Thakkar's lock is that fetch-and-store is 
supported directly in hardware on the Symmetry; fetch-and-add is not. To 
simulate fetch-and-add, Anderson protected his queue-based lock with an 
outer test-and-set lock. This outer lock (not shown in Figure 3) introduces 
additional overhead and can cause contention when the critical section 
protected by the queue-based lock is shorter than the time required to acquire 
and release the outer lock. In this case competing processors spend their time 
spinning on the outer test-and-set lock rather than the queue-based lock. 

Neither Anderson nor Graunke and Thakkar included the ticket lock in 
their experiments. In qualitative terms both the ticket lock (with propor- 
tional backoff) and the array-based queuing locks guarantee FIFO ordering of 
requests. Both the ticket lock and Anderson's lock use an atomic 
f etch-and-increment instruction. The ticket lock with porportional backoff is 
likely to require more network transactions on a cache-coherent multiproces- 
sor but fewer on a multiprocessor without coherently cached shared vari- 
ables. The array-based queuing locks require space per lock linear in the 
number of processors whereas the ticket lock requires only a small constant 

-- 

'~nderson 's  original pseudo-code did not address the issue of overflow, which causes his algo- 
rithm to fail unless numprocs = 2'. Our variant of his algorithm addresses this problem. 
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type lock = record 
s l o t s  : array  [O..numprocs -11 of Boolean := t r u e  

// each element of s l o t s  should l i e  i n  a d i f f e r e n t  memory module 
// o r  cache l i n e  

t a i l  : record 
w h o w a s l a s t  : 'Boolean := 0 
this-means-locked : Boolean := f a l s e  
// this-means-locked i s  a one-bit quant i ty .  
// who_was_last po in t s  t o  an element of s l o t s .  
// i f  a l l  elements l i e  a t  even addresses,  t h i s  t a i l  "record" 
// can be made t o  f i t  i n  one word 

processor p r i v a t e  vpid : i n t ege r  // a unique v i r t u a l  processor index 

procedure acquire-lock (L : "lock) 
(who_is_ahead_of_me : "Boolean, w h a t i s l o c k e d  : Boolean) 

:= f etch-and-store (&L->ta i l ,  (&s lo t s  [vpidl , s l o t s  [vpidl ) )  
repeat  while who_is_ahead_of_me" = what_is_locked 

procedure release-lock (L : ' lock) 
L->slots [vpid] : = not L->slots [vpid] 

Fig. 4. Graunke and Thakkar's array-based queuing lock 

amount of space.4 We provide quantitative comparisons of the locks' perfor- 
mance in Section 4.3.  

2.4. A New List-Based Queuing Lock 

We have devised a new mechanism called the MCS lock (after out initials) 
that 

-guarantees FIFO ordering of lock acquisitions; 
-spins on locally-accessible flag variables only; 
-requires a small constant amount of space per lock; and 
-works equally well (requiring only O(1)  network transactions per lock 

acquisition) on machines with and without coherent caches. 

The first of these advantages is shared with the ticket lock and the 
array-based queuing locks, but not with the test-and-set lock. The third is 
shared with the test-and-set and ticket locks, but not with the array-based 
queuing locks. The fourth advantage is in large part a consequence of the 
second and is unique to the MCS lock. 

Our lock was inspired by the Queue On Lock Bit (QOLB) primitive 
proposed for the cache controllers of the Wisconsin Multicube [141, but is 
implemented entirely in software. It requires an atomic fetch-and-store 
(swap) instruction and benefits from the availability of compare-and-swap. 
Without compare-and-swap, we lose the guarantee of FIFO ordering and 

^ ~ t  first glance, one might suspect t ha t  the  flag bits of the  Graunke and Thakkar lock could be 
allocated on a per-processor basis, rather t han  a per-lock basis. Once a processor releases a lock, 
however, i t  cannot use i ts  bit for anything else until some other processor has  acquired the  lock 
i t  released. 
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type qnode = record 
next : "qnode 
locked : Boolean 

type lock = 'qnode 

// parameter I, below, points to a qnode record allocated 
// (in an enclosing scope) in shared memory locally-accessible 
// to the invoking processor 

procedure acquire-lock (L : "lock, I : qnode) 
I->next := nil 
predecessor : "qnode := fetch-and-store (L, I) 
if predecessor ! =  nil // queue was non-empty 

I->locked := true 
predecessor->next := I 
repeat while I->locked // spin 

procedure release-lock (L : 'lock, I: "qnode) 
if I->next = nil // no known successor 

if compare_and_swap (L, I, nil) 
return 
// compare-and-swap returns true iff it swapped 

repeat while I->next = nil / /  spin 
I->next->locked := false 

Fig 5 The MCS list-based queuing lock. 

introduce the theoretical possibility of starvation, though lock acquisitions 
are likely to remain very nearly FIFO in practice. 

Pseudo-code for our lock appears in Figure 5. Every processor using the 
lock allocates a qnode record containing a queue link and a Boolean flag. 
Each processor employs one additional temporary variable during the ac- 
quire-lock operation. Processors holding or waiting for the lock are chained 
together by the links. Each processor spins on its own locally-accessible flag. 
The lock itself contains a pointer to the qnode record for the processor at the 
tail of the queue, or a n i l  if the lock is not held. Each processor in the queue 
holds the address of the record for the processor behind it-the processor it 
should resume after acquiring and releasing the lock. Compare-and-swap 
enables a processor to determine whether it is the only processor in the 
queue, and if so remove itself correctly, as a single atomic action. The spin in 
acquire-lock waits for the lock to become free. The spin in release-lock 
compensates for the timing window between the fetch-and-store and the 
assignment to predecessor - >next i n  acquire-lock. Both spins are local. 

Figure 6, parts (a) through (e), illustrates a series of acquire-lock and 
release-lock operations. The lock itself is represented by a box containing 
an 'L.' The other rectangles are qnode records. A box with a slash through it 
represents a n i l  pointer. Non-nil pointers are directed arcs. In (a), the lock is 
free. In (b), processor 1 has acquired the lock. It is running (indicated by the 
'R'), thus its locked flag is irrelevant (indicated by putting the 'R' in 
parentheses). In (c), two more processors have entered the queue while the 
lock is still held by processor 1. They are blocked spinning on their locked 
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Fig. 6. Pictorial example of MCS locking protocol in the presence of competition 

flags (indicated by the 'B's.). In (d), processor 1 has completed and has 
changed the locked flag of processor 2 so that it is now running. In (e), 
processor 2 has completed, and has similarly unblocked processor 3. If no 
more processors enter the queue in the immediate future, the lock will return 
to the situation in (a) when processor 3 completes its critical section. 

Alternative code for the release-lock operation, without compare-and-swap, 
appears in Figure 7. Like the code in Figure 5, it spins on processor-specific, 
locally-accessible memory locations only, requires constant space per lock, 
and requires only O(1) network transactions regardless of whether the ma- 
chine provides coherent caches. Its disadvantages are extra complexity and 
the loss of strict FIFO ordering. 

Parts (e) through (h) of Figure 6 illustrate the subtleties of the alternative 
code for release-lock. In the original version of the lock, compare-and-swap 
ensures that updates to the tail of the queue happen atomically. There are no 
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procedure release-lock (L : ' lock, I : 'qnode) 
1f I->next = ml // no known successor 

o l d - t a i l  : q n o d e  := fetch-and-store (L, n i l )  
i f  o l d - t a i l  = 1 // I r e a l l y  had no successor 

r e t u r n  
// we have accidenta l ly  removed some processor(s)  from t h e  queue; 
// we need t o  put them back 
usurper := fetch-and-store (L, o l d - t a i l )  
r epea t  while I->next = n i l  // wait f o r  po in t e r  t o  victim l i s t  
i f  usurper I =  n i l  

/ /  somebody got i n t o  t h e  queue ahead of our v ic t ims 
usurper->next : =  I->next // l i n k  victims a f t e r  t h e  l a s t  usurper 

e l s e  
I->next->locked := f a l s e  

e l s e  
I->next->locked := f a l s e  

Fig. 7 Code for release-lock, without compare-ad-swap. 

processors waiting in line if and only if the tail pointer of the queue points to 
the processor releasing the lock. Inspecting the processor's next pointer is 
solely an optimization to avoid unnecessary use of a comparatively expensive 
atomic instruction. Without compare-and-swap, inspection and update of the 
tail pointer cannot occur atomically. When processor 3 is ready to release its 
lock, it assumes that no other processor is in line if its next pointer is n i l .  In 
other words, it assumes that the queue looks the way it does in (e). (It could 
equally well make this assumption after inspecting the tail pointer and 
finding that it points to itself, but the next pointer is local and the tail 
pointer is probably not.) This assumption may be incorrect because other 
processors may have linked themselves into the queue between processor 3's 
inspection and its subsequent update of the tail. The queue may actually be 
in the state shown in (e'), with one or more processors in line behind 
processor 3,  the first of which has yet to update 3's next pointer. (The 'E' in 
parentheses on processor 3 indicates that it is exiting its critical section; the 
value of its locked flag is irrelevant.) 

When new processors enter the queue during this timing window, the data 
structure temporarily takes on the form shown in (0. The return value of 
processor 3's first fetch-and-store in release-lock (shown in the extra 
dotted box) is the tail pointer for a list of processors that have accidentally 
been linked out of the queue. By waiting for its next pointer to become 
non-nil, processor 3 obtains a head pointer for this "victim" list. It can patch 
the victim processors back into the queue, but before it does so additional 
processors ("usurpers") may enter the queue with the first of them acquiring 
the lock, as shown in (g). Processor 3 puts the tail of the victim list back into 
the tail pointer of the queue with a fetch-and-store. If the return value of 
this f etch-and-store is n i l ,  processor 3 unblocks its successor. Otherwise, as 
shown in (h), processor 3 inserts the victim list behind the usurpers by 
writing its next pointer (the head of the victim list) into the next pointer of 
the tail of the usurper list. In either case, the structure of the queue is 
restored. 
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To demonstrate formal correctness of the MCS lock, we can prove mutual 
exclusion, deadlock freedom, and fairness for a version of the algorithm in 
which the entire acquire-lock and release-lock procedures comprise atomic 
actions that are broken only when a processor waits (in acquire-lock) for the 
lock to become available. We can then refine this algorithm through a series 
of correctness-preserving transformations into the code in Figure 5 .  The first 
transformation breaks the atomic action of acquire-lock in two and intro- 
duces auxiliary variables that indicate when a processor has modified the tail 
pointer of the queue to point at its qnode record, but has not yet modified its 
predecessor's next pointer. To preserve the correctness proof in the face of 
this transformation, we (1) relax the invariants on queue structure to permit 
a non-tail processor to have a n i l  next pointer, so long as the auxiliary 
variables indicate that its successor is in the timing window, and (2) intro- 
duce a spin in release-lock to force the processor to wait for its next pointer 
to be updated before using it. The second transformation uses proofs of 
interference freedom to move statements outside of the three atomic actions. 
The action containing the assignment to a predecessor's next pointer can 
then be executed without explicit atomicity; it inspects or modifies only one 
variable that is modified or inspected in any other process. The other two 
actions are reduced to the functionality of fetch-and-store and 
compare-and-swap. The details of this argument are straightforward but 
lengthy (they appear as an appendix to the technical report version of this 
paper [33]); we find the informal description and pictures above more intu- 
itively convincing. 

3. BARRIERS 

Barriers have received a great deal of attention in the literature, more so 
even than spin locks, and the many published algorithms differ significantly 
in notational conventions and architectural assumptions. We present five 
different barriers in this section: four from the literature and one of our own 
design. We have modified some of the existing barriers to increase their 
locality of reference or otherwise improve their performance; we note where 
we have done so. 

3.1 . Centralized Barriers 

In a centralized implementation of barrier synchronization, each processor 
updates a small amount of shared state to indicate its arrival and then polls 
that state to determine when all of the processors have arrived. Once all of 
the processors have arrived, each processor is permitted to continue past the 
barrier. Like the test-and-set spin lock, centralized barriers are of uncertain 
origin. Essentially equivalent algorithms have undoubtedly been invented by 
numerous individuals. 

Most barriers are designed to be used repeatedly (to separate phases of a 
many-phase algorithm, for example). In the most obvious formulation, each 
instance of a centralized barrier begins and ends with identical values for the 
shared state variables. Each processor must spin twice per instance; once to 
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shared count : integer := P 
shared sense : Boolean := true 
processor private local-sense : Boolean : =  true 

procedure central-barrier 
local-sense :=  not local-sense // each processor toggles its own sense 
if fetch-anddecrement (&count) = 1 

count := P 
sense := localsense // last processor toggles global sense 

else 
repeat until sense = local-sense 

Fig. 8.  A sense-reversing centralized barrier 

ensure that all processors have left the previous barrier and again to ensure 
that all processors have arrived at  the current barrier. Without the first spin, 
it is possible for a processor to mistakenly pass through the current barrier 
because of state information being used by processors still leaving the 
previous barrier. Two barrier algorithms proposed by Tang and Yew (the 
first algorithm appears in [48, Algorithm 3.11 and [49, p. 31; the second 
algorithm appears in [49, Algorithm 3.11) suffer from this type of flaw. 

We can reduce the number of references to the shared state variables and 
simultaneously eliminate one of the two spinning episodes by "reversing the 
sense" of the variables (and leaving them with different values) between 
consecutive barriers [191.5 The resulting code is shown in Figure 8. Arriving 
processors decrement count and then wait until sense has a different value 
than it did in the previous barrier. The last arriving processor resets count 
and reverses sense. Consecutive barriers cannot interfere with each other 
because all operations on count occur before sense is toggled to release the 
waiting processors. 

Lubachevsky [29] presents a similar barrier algorithm that uses two shared 
counters and a processor private two-state flag. The private flag selects which 
counter to use; consecutive barriers use alternate counters. Another similar 
barrier can be found in library packages distributed by Sequent Corporation 
for the Symmetry multiprocessor. Arriving processors read the current value 
of a shared epoch number, update a shared counter, and spin until the epoch 
number changes. The last arriving processor reinitializes the counter and 
advances the epoch number. 

The potential drawback of centralized barriers is the spinning that occurs 
on a single, shared location. Because processors do not in practice arrive at a 
barrier simultaneously, the number of busy-wait accesses will in general be 
far above the r n i n i m ~ m . ~  On broadcast-based cache-coherent multiprocessors, 

'A similar technique appears in [4, p. 4451, where it is credited to Isaac Dimitrovsky. 
'commenting on Tang and Yew's barrier algorithm (Algorithm 3.1 in [481), Agarwal and 
Cherian [2] show that on a machine in which contention causes memory accesses to be aborted 
and retried, the expected number of memory accesses initiated by each processor to achieve a 
single barrier is linear in the number of processors participating, even if processors arrive at  the 
barrier a t  approximately the same time. 
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these accesses may not be a problem. The shared flag or sense variable is 
replicated into the cache of every waiting processor, so subsequent busy-wait 
accesses can be satisfied without any network traffic. This shared variable is 
written only when the barrier is achieved, causing a single broadcast invali- 
dation of all cached copies.7 All busy-waiting processors then acquire the new 
value of the variable and are able to proceed. On machines without coherent 
caches, however, or on machines with directory-based caches without broad- 
cast, busy-wait references to a shared location may generate unacceptable 
levels of memory and interconnect contention. 

To reduce the interconnection network traffic caused by busy waiting on a 
barrier flag, Agarwal and Cherian [21 investigated the utility of adaptive 
backoff schemes. They arranged for processors to delay between successive 
polling operations for geometrically-increasing amounts of time. Their re- 
sults indicate that in many cases such exponential backoff can substantially 
reduce the amount of network traffic required to achieve a barrier. However, 
with this reduction in network traffic often comes an increase in latency at 
the barrier. Processors in the midst of a long delay do not immediately notice 
when all other processors have arrived. Their departure from the barrier is 
therefore delayed, which in turn delays their arrival at  subsequent barriers. 

Agarwal and Cherian also note that for systems with more than 256 
processors, for a range of arrival intervals and delay ratios, backoff strategies 
are of limited utility for barriers that spin on a single flag [2]. In such 
large-scale systems, the number of network accesses per processor increases 
sharply as collisions in the interconnection network cause processors to 
repeat accesses. These observations imply that centralized barrier algorithms 
will not scale well to large numbers of processors even when using adaptive 
backoff strategies. Our experiments (see Section 4.4) confirm this conclusion. 

3.2. The Software Combining Tree Barrier 

To reduce hot-spot contention for synchronization variables, Yew, Tzeng, and 
Lawrie [511 have devised a data structure known as a software combining 
tree. Like hardware combining in a multistage interconnection network [171, 
a software combining tree serves to collect multiple references to the same 
shared variable into a single reference whose effect is the same as the 
combined effect of the individual references. A shared variable that is 
expected to be the target of multiple concurrent accesses is represented as a 
tree of variables, with each node in the tree assigned to a different memory 
module. Processors are divided into groups, with one group assigned to each 
leaf of the tree. Each processor updates the state in its leaf. If it discovers 
that it is the last processor in its group to do so, it continues up the tree and 
updates its parent to reflect the collective updates to the child. Proceeding in 
this fashion, late-coming processors eventually propagate updates to the root 
of the tree. 

7 ~ h i s  differs from the situation in simple spin locks, where a waiting processor can expect to 
suffer an invalidation for every contending processor that acquires the lock before it. 
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type node = record 
k : integer // fan-in of this node 
count : integer / /  initialized to k 
locksense : Boolean // initially false 
parent : "node // pointer to parent node; nil if root 

shared nodes : array [O. .P-11 of node 
// each element of nodes allocated in a different memory module or cache line 

processor private sense : Boolean :=  true 
processor private mynode : "node // my group's leaf in the combining tree 

procedure combining-barrier 
combining-barrier-aux (mynode) // join the barrier 
sense :=  not sense // for next barrier 

procedure combining-barrier-aux (nodepointer: 'node) 
with nodepointer' do 

if fetch-and-decrement (&count) = 1 // last one to reach this node 
if parent != nil 

combining-barrier-aux (parent) 
count := k // prepare for next barrier 
locksense := not locksense // release waiting processors 

repeat until locksense = sense 

Fig. 9. A software combining tree barrier with optimized wakeup. 

Combining trees are presented as a general technique that can be used for 
several purposes. At every level of the tree, atomic instructions are used to 
combine the arguments to write operations or to split the results of read 
operations. In the context of this general framework, Tang and Yew [49] 
describe how software combining trees can be used to implement a barrier. 
Writes into one tree are used to determine that all processors have reached 
the barrier; reads out of a second are used to allow them to continue. Figure 9 
shows an optimized version of the combining tree barrier. We have used the 
sense-reversing technique to avoid overlap of successive barriers without 
requiring two spinning episodes per barrier, and have replaced the atomic 
instructions of the second combining tree with simple reads, since no real 
information is returned. 

Each processor begins at  a leaf of the combining tree and decrements its 
leafs count variable. The last processor to reach each node in the tree 
continues up to the next level. The processor that reaches the root of the tree 
begins a reverse wave of updates to locksense flags. As soon as it awakes, 
each processor retraces its path through the tree unblocking its siblings at 
each node along the path. Simulations by Yew, Tzeng, and Lawrie [51] show 
that a software combining tree can significantly decrease memory contention 
and prevent tree saturation (a form of network congestion that delays the 
response of the network to large numbers of references [38]) in multistage 
interconnection networks by distributing accesses across the memory mod- 
ules of the machine. 
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From our point of view, the principal shortcoming of the combining tree 
barrier is that it requires processors to spin on memory locations that cannot 
be statically determined, and on which other processors also spin. On broad- 
cast-based cache-coherent machines, processors may obtain local copies of the 
tree nodes 011 which they spin but on other machines (including the Cedar 
machine which Yew, Tzeng, and Lawrie simulated) processors will spin on 
remote locations, leading to unnecessary contention for interconnection net- 
work bandwidth. In Section 3.5 we present a new tree-based barrier algo- 
rithm in which each processor spins on its own unique location, statically 
determined and thus presumably locally accessible. Our algorithm uses no 
atomic instructions other than read and write, and performs the minimum 
possible number of oprations across the processor-memory interconnect. 

3.3. The Dissemination Barrier 

Brooks [9] has proposed a symmetric "butterfly barrier," in which processors 
participate as equals, performing the same operations at each step. Each 
processor in a butterfly barrier participates in a sequence of - logo P 
pairwise synchronizations. In round k (counting from zero), processor i 
synchronizes with processor i <a 2 where CB is the exclusive or operator. If 
the number of processors is not a power of 2, then existing processors stand in 
for the missing ones, thereby participating in as many as 2 Hog9 P1 pair- 
wise synchronizations. 

Hensgen, Finkel, and Manber [I91 describe a "dissemination barrier7' that 
improves on Brooks's algorithm by employing a more efficient pattern of 
synchronizations and by reducing the cost of each synchronization. Their 
barrier takes its name from an algorithm developed to disseminate informa- 
tion among a set of processes. In round k, processor i signals processor 
( i  + 2 )  mod P (synchronization is no longer pairwise). This pattern does not 
require existing processes to stand in for missing ones, and therefore requires 
only [logn PI synchronization operations on its critical path regardless of 
P. Reference [I91 contains a more detailed description of the synchronization 
pattern and a proof of its correctness. 

For each signalling operation of the dissemination barrier, Hensgen, Finkel, 
and Manber use alternating sets of variables in consecutive barrier episodes, 
avoiding interference without requiring two separate spins in each operation. 
They also use sense reversal to avoid resetting variables after every barrier. 
The first change also serves to eliminate remote spinning. The authors 
motivate their algorithmic improvements in terms of reducing the number of 
instructions executed in the course of a signalling operation, but we consider 
the elimination of remote spinning to be an even more important benefit. The 
flags on which each processor spins are statically determined, and no two 
processors spin on the same flag. Each flag can therefore be located near the 
processor that reads it, leading to local-only spinning on any machine with 
local shared memory or coherent caches. 

Figure 10 presents the dissemination barrier. The p a r i t y  variable controls 
the use of alternating sets of flags in successive barrier episodes. On a 
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type flags = record 
myflags : array KO. .I] of array LO. .LogP-11 of Boolean 
partnerflags : array [0..11 of array [O..LogP-11 of 'Boolean 

processor private parity : integer := 0 
processor private sense : Boolean := true 
processor private localflags : "flags 
shared allnodes : array [O..P-11 of flags 

// allnodes[il is allocated in shared memory 
// locally accessible to processor i 

// on processor i, localflags points to allnodes[i] 
// initially allnodes [il .myf lags [rl [kl is false for all 1, r, k 
// if j = (i+2"k) mod P, then for r = 0, 1: 
// allnodes [i] .partnerf lags [r] [k] points to allnodes [j] .myf lags [r] [k] 

procedure dissemination-barrier 
for instance : integer := 0 to LogP-1 

localflags".partnerflags[parityl[instancel' := sense 
repeat until localflags-.myflags[parityl [instance] = sense 

if parity = 1 
sense := not sense 

parity := 1 - parity 

Fig 10 The scalable, distributed dissemination barrier with only local spinning. 

machine with distributed shared memory and without coherent caches, the 
shared allnodes array would be scattered statically across the memory banks 
of the machine, or replaced by a scattered set of variables. 

3.4. Tournament Barriers 

Hensgen, Finkel, and Manber [19] and Lubachevsky [301 have also devised 
tree-style "tournament" barriers. The processors involved in a tournament 
barrier begin at the leaves of a binary tree much as they would in a 
combining tree of fan-in two. One processor from each node continues up the 
tree to the next "round" of the tournament. At each stage, however, the 
"winning" processor is statically determined and there is no need for 
f e t  ch_and_$ instructions. 

In round k (counting from zero) of Hensgen, Finkel, and Manber's barrier, 
processor i sets a flag awaited by processor j, where i = 2 k  (mod 2&+') and 
j = 1 - 2 '. Processor i then drops out of the tournament and busy waits on a 
global flag for notice that the barrier has been achieved. Processor j partici- 
pates in the next round of the tournament. A complete tournament consists 
of [logy PI rounds. Processor 0 sets a global flag when the tournament is 
over. 

Lubachevsky [30] presents a concurrent read, exclusive write (CREW) 
tournament barrier that uses a global flag for wakeup similar to that of 
Hensgen, Finkel, and Manber. He also presents an exclusive read, exclusive 
write (EREW) tournament barrier in which each processor spins on separate 
flags in a binary wakeup tree, similar to wakeup in a binary combining tree 
using Figure 9. 
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Because all processors busy wait on a single global flag, Hensgen, Finkel, 
and Manber's tournament barrier and Lubachevsky's CREW barrier are 
appropriate for multiprocessors that use broadcast to maintain cache consis- 
tency. They will cause heavy interconnect traffic, however, on machines that 
lack coherent caches or that limit the degree of cache line replication. 
Lubachevsky7s EREW tournament could be used on any multiprocessor with 
coherent caches, including those that use limited-replication directory-based 
caching without broadcast. Unfortunately, in Lubachevsky's EREW barrier 
algorithm, each processor spins on a non-contiguous set of elements in an 
array, and no simple scattering of these elements will suffice to eliminate 
spinning-related network traffic on a machine without coherent caches. 

By modifying Hensgen, Finkel, and Manber's tournament barrier to use a 
wakeup tree, we have constructed an algorithm in which each processor spins 
on its own set of contiguous, statically allocated flags (see Figure 11). The 
resulting code is able to avoid spinning across the interconnection network 
both on cache-coherent machines and on distributed shared memory multi- 
processors. In addition to employing a wakeup tree, we have modified Hens- 
gen, Finkel, and Manber's algorithm to use sense reversal to avoid reinitial- 
izing flag variables in each round. These same modifications have been 
discovered independently by Craig Lee of Aerospace Corporation [27]. 

Hensgen, Finkel, and Manber provide performance figures for the Sequent 
Balance (a bus-based, cache-coherent multiprocessor), comparing their tour- 
nament algorithm against the dissemination barrier as well as Brooks's 
butterfly barrier. They report that the tournament barrier outperforms the 
dissemination barrier when P > 16. The dissemination barrier requires O(P 
log P )  network transactions, while the tournament barrier requires only 
O(P). Beyond 16 processors, the additional factor of log P in bus traffic for 
the dissemination barrier dominates the higher constant of the tournament 
barrier. However, on scalable multiprocessors with multistage interconnec- 
tion networks, many of the network transactions required by the dissemina- 
tion barrier algorithm can proceed in parallel without interference. 

3.5. A New Tree-Based Barrier 

We have devised a new barrier algorithm that 

-spins on locally-accessible flag variables only; 
-requires only 0(P)  space for P processors; 
-performs the theoretical minimum number of network transactions (2 P-2) 

on machines without broadcast; and 
-performs O(log P) network transactions on its critical path. 

To synchronize P processors, our barrier employs a pair of P-node trees. 
Each processor is assigned a unique tree node which is linked into an arrival 
tree by a parent link and into a wakeup tree by a set of child links. It is 
useful to think of these as separate trees because the fan-in in the arrival 
tree differs from the fan-out in the wakeup tree. We use a fan-in of 4 (1) 
because it produced the best performance in Yew, Tzeng, and Lawrie's 
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t y p e  round-t  = r e c o r d  
r o l e  : (winner ,  l o s e r ,  bye,  champion, d ropout )  
opponent : 'Boolean 
f l a g  : Boolean 

s h a r e d  rounds : a r r a y  [O..P-l][O..LogP] of round-t 
/ /  row vpid  of rounds is a l l o c a t e d  i n  shared  memory 
/ /  l o c a l l y  a c c e s s i b l e  t o  p r o c e s s o r  vpid 

p r o c e s s o r  p r i v a t e  s e n s e  . Boolean : -  t r u e  
p r o c e s s o r  p r i v a t e  vp id  i n t e g e r  // a unique v i r t u a l  p r o c e s s o r  index 

/ /  i n i t i a l l y  
/ /  rounds [il [kl . f l a g  = f a l s e  f o r  a l l  i ,  k  
// rounds [i] [kl . r o l e  = 
/ /  winner i f  k  > 0 ,  i mod 2"k = 0 .  i t 2'(k-1) < P ,  and 2-k < P 
/ /  bye i f  k  > 0 ,  i mod 2-k = 0 ,  and i + 2"(k-1) >= P 
/ /  l o s e r  i f  k  > 0 and i mod 2'k = 2-(k-1)  
/ /  champion i f  k  > 0 ,  i = 0 ,  and 2-k >= P 
/ /  dropout  i f  k  = 0 

/ /  unused o t h e r w i s e ;  v a l u e  immater ia l  
/ /  rounds [i] [kl .opponent p o i n t s  t o  
// rounds [1-2'(k-1)1 [k] . f l a g  i f  rounds [i] [kl . r o l e  = l o s e r  
/ /  rounds [1+2"(k-1)1 [kl . f l a g  i f  rounds [il [kl . r o l e  = winner o r  champion 
/ /  unused o t h e r w i s e ;  v a l u e  immater ia l  

procedure tournament -bar r ie r  
round : i n t e g e r  : =  1 
loop  // a r r i v a l  

c a s e  rounds [vpid] [roundl . r o l e  of 
l o s e r :  

rounds [vpidl [roundl . opponent' : = s e n s e  
r e p e a t  u n t i l  roundsCvpid1 [round] . f l a g  = s e n s e  
e x i t  l o o p  

winner:  
r e p e a t  u n t i l  rounds [vpidl [round] . f l a g  = s e n s e  

bye:  / /  do no th ing  
champion: 

r e p e a t  un t  il rounds [vpidl [roundl . f l a g  = s e n s e  
rounds [vpid] [round] .opponent'  : = sense  
e x i t  l o o p  

dropout :  // imposs ib le  
round : =  round + 1 

loop  / /  wakeup 
round :=  round - 1 
c a s e  rounds [vpid] [round] . r o l e  of 

l o s e r .  // imposs ib le  
winner : 

rounds [vpidl [roundl . o p p o n e n t  : = sense  
bye:  // do n o t h i n g  
champion: // imposs ib le  
dropout  : 

e x i t  l o o p  
s e n s e  : =  not  sense  

Fig 11. A scalable, dis tr ibuted tournament  bar r ie r  wi th  only local spinning 
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experiments with software combining, and (2) because the ability to pack 4 
bytes in a word permits an optimization on many machines in which a parent 
can inspect status information for all of its children simultaneously at the 
same cost as inspecting the status of only one. We use a fan-out of 2 because 
it results in the shortest critical path to resume P spinning processors for a 
tree of uniform degree. To see this, note that in a p-node tree with fan-out k 
(and approximately logk p levels) the last processor to awaken will be the 
kth child of the kth child. . . of the root. Because k - 1 other children are 
awoken first at  each level, the last processor awakes at the end of a serial 
chain of approximately k logi, p awakenings, and this expression is mini- 
mized for k = 2.' A processor does not examine or modify the state of any 
other nodes except to signal its arrival at the barrier by setting a flag in its 
parent's node and, when notified by its parent that the barrier has been 
achieved, to notify each of its children by setting a flag in each of their nodes. 
Each processor spins only on state information in its own tree mode. To 
achieve a barrier, each processor executes the code shown in Figure 12. 

Data structures for the tree barrier are initialized to that each node's 
parentpointer variable points to the appropriate childnotready flag in the 
node's parent and the childpointers variables point to the parentsense 
variables in each of the node's children. Child pointers of leaves and the 
parent pointer of the root are initialized to reference pseudo-data. The 
havechild flags indicate whether a parent has a particular child or not. 
Initially, and after each barrier episode, each node's childnotready flags are 
set to the value of the node's respective havechild flags. 

Upon arrival at a barrier, a processor tests to see if the childnotready flag 
is clear for each of its children. For leaf nodes, these flags are always clear, so 
deadlock cannot result. After a node's associated processor sees that its 
childnotready flags are clear, it immediately reinitializes them for the next 
barrier. Since a node's children do not modify its childnotready flags again 
until they arrive at the next barrier, there is no potential for conflicting 
updates. After all of a node's children have arrived, the node's associated 
processor clears its childnotready flag in the node's parent. All processors 
other than the root then spin on their locally-accessible parentsense flag. 
When the root node's associated processor arrives at  the barrier and notices 
that all of the root node's childnotready flags are clear, then all of the 
processors are waiting at the barrier. The processor at  the root node toggles 
the parentsense flag in each of its children to release them from the barrier. 

%lex Schaffer and Paul Dietz have pointed out that better performance could be obtained in the 
wakeup tree by assigning more children to processors near the root. For example, if after 
processor a awakens processor b it takes them the same amount of time to prepare to awaken 
others, then we can cut the critical path roughly in half by having each processor i awaken 
processors i t 2', i + 2 J + 1 ,  i + 2/+', etc., where j = Llogg i J . Then with processor 0 acting as 
the root, after a serial chain of t awakenings there are 2' processors active. Unfortunately, the 
obvious way to have a processor awaken more than a constant number of children involves a loop 
whose additional overhead partially negates the reduction in tree height. Experiments with this 
option (not presented in Section 4.4), resulted in only about a 3 percent performance improve- 
ment for p < 80. 
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type treenode = record 
parentsense : Boolean 
parentpointer : "Boolean 
childpointers : array [0..1] of 'Boolean 
havechild : array [0..3] of Boolean 
childnotready : array [0..3] of Boolean 
dummy : Boolean // pseudo-data 

shared nodes : array [O..P-I] of treenode 
// nodes [vpid] is allocated in shared memory 
// locally accessible to processor vpid 

processor private vpid : integer // a unique virtual processor index 
processor private sense : Boolean 

// on processor i, sense is initially true 
// in nodes [i] : 
// havechild[j] = true if 4*i+j < P; otherwise false 
// parentpointer = &nodes [f loor((i-I )/4)1 . childnotready [d-I) mod 41 , 
/ / or &dummy if i = 0 
// childpointers[O] = &nodes[2*i+l].parentsense, or &dummy if 2*i+l >= P 
// childpointers[l] = &nodes[2*1+2].parentsense, or &dummy if 2*1+2 >= P 
// initially childnotready = havechild and parentsense = false 

procedure tree-barrier 
with nodes [vpid] do 

repeat until childnotready = {false, false, false, false} 
childnotready := havechild // prepare for next barrier 
parentpointer' := false // let parent know I'm ready 
// if not root, wait until my parent signals wakeup 
if vpid != 0 

repeat until parentsense = sense 
// signal children in wakeup tree 
childpointers [O] " := sense 
childpointers [I] - := sense 
sense :=  not sense 

Fig. 12. A scalable, distributed, tree-based barrier with only local spinning 

At each level in the tree, newly released processors release all of their 
children before leaving the barrier, thus ensuring that all processors are 
eventually released. As described earlier, consecutive barrier episodes do not 
interfere, since the childnotready flags used during arrival are reinitialized 
before wakeup occurs. 

Our tree barrier achieves the theoretical lower bound on the number of 
network transactions needed to achieve a barrier on machines that lack 
broadcast and that distinguish between local and remote memory. At least 
P - 1 processors must signal their arrival to some other processor, requiring 
P - 1 network transactions, and then must be informed of wakeup, requiring 
another P - 1 network transactions. The length of the critical path in our 
algorithm is proportional to [logA P I  + [log, PI  . The first term is the 
time to propagate arrival up to the root and the second term is the time to 
propagate wakeup back down to all of the leaves. On a machine with 
coherent caches and unlimited replication, we could replace the wakeup 
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Fig. 13. The BBN Butterfly 1 

phase of our algorithm with a spin on a global flag. We explore this 
alternative on the Sequent Symmetry in Section 4.4. 

4. PERFORMANCE MEASUREMENTS 

We have measured the performance of various spin lock and barrier algo- 
rithms on the BBN Butterfly 1, a distributed shared memory multiprocessor, 
and the Sequent Symmetry Model B, a cache-coherent, shared-bus multipro- 
cessor. Anyone wishing to reproduce our results or extend our work to other 
machines can obtain copies of our source code (assembler for the spin locks, C 
for the barriers) via anonymous ftp from titan.rice.edu (directory /public/sca- 
lable-synch). 

4.1 . Hardware Description 

BBN Butterfly 

The BBN Butterfly 1 is a shared-memory multiprocessor that can support up 
to 256 processor nodes. Each processor node contains an 8 MHz MC68000 
that uses 24-bit virtual addresses and 1 to 4 megabytes of memory (one on 
our machine). Each processor can access its own memory directly, and can 
access the memory of any node through a log4-depth switching network (see 
Figure 13). Transactions on the network are packet-switched and nonblock- 
ing. If collisions occur at  a switch node, one transaction succeeds and all of 
the others are aborted to be retried at  a later time (in hardware) by the 
processors that initiated them. In the absence of contention, a remote mem- 
ory reference (read) takes about 4ps, roughly five times as long as a local 
reference. 

The Butterfly 1 supports two 16-bit atomic operations: f etch-and- 
clear-then-add and f etch_and_clear_then_xor. Each operation takes three 
arguments: the address of the 16-bit destination operand, a 16-bit mask, and 
the value of the 16-bit source operand. The value of the destination operand 
is anded with the one's complement of the mask and then added or xored with 
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B E E  kl 

Fig. 14. The Sequent Symmetry Model B 

the source operand. The resulting value replaces the original value of the 
destination operand. The previous value of the destination operand is the 
return value for the atomic operation. Using these two primitives, one can 
perform a variety of atomic operations, including fetch-and-add, 
f etch-and-store (swap) , and fetch-and-or (which, like swap, can be used 
to perform a test-and-set). 

Sequent Symmetry 

The Sequent Symmetry Model B is a shared-bus multiprocessor that supports 
up to 30 processor nodes. Each processor node consists of a 16 MHz Intel 
80386 processor equipped with a 64 KB two-way set-associative cache. All 
caches in the system are kept coherent by snooping on the bus (see Figure 
14). Each cache line is accompanied by a tag that indicates whether the data 
is replicated in any other cache. Writes are passed through to the bus only for 
replicated cache lines, invalidating all other copies. Otherwise the caches are 
write-back. 

The Symmetry provides an atomic f etch-and-store operation and allows 
various logical and arithmetic operations to be applied atomically as well. 
Each of these operations can be applied to any 1, 2, or 4 byte quantity. The 
logical and arithmetic operations do not return the previous value of the 
modified location; they merely update the value in place and set the proces- 
sor's condition codes. The condition codes suffice in certain limited circum- 
stances to determine the state of the memory prior to the atomic operation 
(e.g., to determine when the counter has reached zero in Figure 8) but the 
lack of a genuine return value generally makes the Symmetry's atomic 
instructions significantly less useful than the f etch-and_$ operations of the 
Butterfly. Neither the Symmetry nor the Butterfly supports 
compare-and-swap. 

4.2. Measurement Technique 

Our results were obtained by embedding lock acquisitions or barrier episodes 
inside a loop and averaging over a large number of operations. In the spin 
lock graphs, each data point ( P , T )  represents the average time T to acquire 
and release the lock with P processors competing for access. On the Butter- 
fly, the average is over lo5  lock acquisitions. On the Symmetry, the average 
is over l o 6  lock acquisitions. For an individual test of P processors 
collectively executing K lock acquisitions, we required that each processor 
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acquire and release the lock ] K I P ]  times. In the barrier graphs, each data 
point ( P , T )  represents the average time T  for P processors to achieve a 
barrier. On both the Symmetry and the Butterfly, the average is over lo5  
barriers. 

When P  = 1 in the spin lock graphs, T  represents the latency on one 
processor of the acquire-lock and release-lock operations in the absence of 
competition. When P is moderately large, T  represents the time between 
successive lock acquisitions on competing processors. This passing time is 
smaller than the single-processor latency in almost all cases, because signifi- 
cant amounts of computation in acquire-lock prior to actual acquisition and 
in release-lock after actual release may be overlapped with work on other 
processors. When P  is 2 or 3, T  may represent either latency or passing time, 
depending on the relative amounts of overlapped and non-overlapped compu- 
tation. In some cases (Anderson's lock, the MCS lock, and the locks incorpo- 
rating backoff), the value of T  for small values of P may also vary due to 
differences in the actual series of executed instructions, since code paths may 
depend on how many other processors are competing for the lock and on 
which operations they have so far performed. In all cases, however, the times 
plotted in the spin lock graphs are the numbers that "matter" for each of the 
values of P. Passing time is meaningless on one processor, and latency is 
swamped by wait time as soon as P is moderately large.' 

Unless otherwise noted, all measurements on the Butterfly were performed 
with interrupts disabled. Similarly on the Symmetry, the tmp-af f in i ty  0 
system call was used to bind processes to processors for the duration of our 
experiments. These measures were taken to provide repeatable timing 
results. 

4.3. Spin Locks 

Figure 15 shows the performance on the Butterfly of the spin lock algorithms 
described in Section 2.'' The top curve is a simple test-and-set lock, which 
displays the poorest scaling behavior.'' As expected, a ticket lock without 
backoff is slightly faster, due to polling with a read instead of a f etch-and_@. 
We would expect a test-and-test-and-set lock to perform similarly. A linear 
least squares regression on the timings shows that the time to acquire and 
release the test-and-set lock increases 7.4 ps per additional processor. The 
time for a ticket lock without backoff increases 7.0 u s  per processor. 

s i n c e  T may represent either latency or passing time when more than one processor is 
competing for a lock, it is difficult to factor out overhead due to the timing loop for timing tests 
with more than one processor. For consistency, we included loop overhead in all of the average 
times reported (both spin locks and barriers). 
1Â°~easurement were made for all numbers of processors; the tick marks simply differentiate 
between line types. Graunke and Thakkar's array-based queuing lock had not yet appeared at  
the time we conducted our experiments. Performance of their lock should be qualitatively 
identical to Anderson's lock, but with a smaller constant. 
w e  implement test-and-set using the hardware primitive fetch-and-clear-then-add with a 

mask that specifies to clear the lowest bit, and an addend of 1. This operation returns the old 
value of the lock and leaves the lowest bit in  the lock set. 
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Fig. 15. Performance of spin locks on the Butterfly (empty critical section) 

By analogy with the exponential backoff scheme described in Section 2, we 
investigated the effect of having each processor delay between polling opera- 
tions for a period of time directly proportional to the number of unsuccessful 
test-and-set operations. This change reduces the slope of the test-and-set 
lock graph to 5.0 us  per processor, but performance degradation is still linear 
in the number of competing processors. 

The time to acquire and release the test-and-set lock, the ticket lock 
without backoff, and the t e s t a n d - s e t  lock with linear backoff does not 
actually increase linearly as more processors compete for the lock, but rather 
in a piecewise linear fashion. This behavior is a function of the interconnec- 
tion network topology and the order in which we add processors to the test. 
For the tests shown in Figure 15, our Butterfly was configured as an 80 
processor machine with five switch cards in the first column of the in t e r con -  
nection network, supporting 16 processors each. Processors were added to the 
test in a round robin fashion, one from each card. The breaks in the 
performance graph occur as each group of 20 processors is added to the test. 
These are the points at  which we have included four more processors from 
each switch card, thereby filling the inputs of a 4-input, 4-output switch node 
on each card. Adding more processors involves a set of previously unused 
switch nodes. What we see in the performance graphs is that involving new 
switch nodes causes behavior that is qualitatively different from that 
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Fig. 16. Performance of selected spin locks on the Butterfly (empty critical section) 

0 

obtained by including another processor attached to a switch node already in 
use. This difference is likely related to the fact that additional processors 
attached to a switch node already in use add contention in the first level of 
the interconnection network, while involving new switch nodes adds con- 
tention in the second level of the network. In a fully configured machine with 
256 processors attached to 16 switch cards in the first column of the intercon- 
nection network, we would expect the breaks in spin lock performance to 
occur every 64 processors. 

Figure 16 provides an expanded view of performance results for the more 
scalable algorithms, whose curves are grouped together near the bottom of 
Figure 15. In this expanded graph, it is apparent that the time to acquire and 
release the lock in the single processor case is often much larger than the 
time required when multiple processors are competing for the lock. As noted 
above, parts of each acquirelrelease protocol can execute in parallel when 
multiple processors compete. What we are measuring in our trials with many 
processors is not the time to execute an acquirelrelease pair from start to 
finish but rather than length of time between a pair of lock acquisitions. 
Complicating matters is that the time required to release an MCS lock 
depends on whether another processor is waiting. 

The top curve in Figure 16 shows the performance of Anderson's array-based 
queuing algorithm, modified to scatter the slots of the queue across the 

I I I I I I I I 
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Fig. 17. Performance of spin locks on the Symmetry (empty critical section). 

available processor nodes. This modification distributes traffic evenly in the 
interconnection network by causing each processor to spin on a location in a 
different memory bank. Because the Butterfly lacks coherent caches, how- 
ever, and because processors spin on statically unpredictable locations, it is 
not in general possible with the array-based queuing locks to spin on local 
locations. Linear regression yields a slope for the performance graph of 0.4 ps  
per processor. 

Three algorithms-the test-and-set lock with exponential backoff, the 
ticket lock with proportional backoff, and the MCS lock-all scale extremely 
well. Ignoring the data points below 10 processors (which helps us separate 
throughput under heavy competition from latency under light competition), 
we find slopes for these graphs of 0.025, 0.021, and 0.00025 ps per processor, 
respectively. Since performance does not degrade appreciably for any of these 
locks within the range of our tests, we would expect them to perform well 
even with thousands of processors competing. 

Figure 17 shows performance results for several spin lock algorithms on 
the Symmetry. We adjusted data structures in minor ways to avoid the 
unnecessary invalidations that would result from placing unrelated data 
items in the same cache line. The test-and-test-and-set algorithm showed 
the poorest scaling behavior, with the time to acquire and release the lock 
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Fig. 18. Performance of spin locks on the Symmetry (small critical section) 

increasing dramatically even over this small range of processors. A simple 
test-and-set would perform even worse. 

Because the atomic add instruction on the Symmetry does not return the 
old value of its target location, implementation of the ticket lock is not 
possible on the Symmetry, nor is it possible to implement Anderson's lock 
directly. In his implementation [ 5 ] ,  Anderson (who worked on a Symmetry) 
introduced an outer test-and-set lock with randomized backoff to protect the 
state of his queue.12 This strategy is reasonable when the critical section 
protected by the outer lock (namely, acquisition or release of the inner lock) 
is substantially smaller than the critical section protected by the inner lock. 
This was not the case in our initial test, so the graph in Figure 17 actually 
results from processors contending for the outer lock, instead of the inner, 
queue-based lock. To eliminate this anomaly, we repeated our tests with a 
nonempty critical section, as shown in Figure 18. With a sufficiently long 
critical section (6.48 ps  in our tests), processors have a chance to queue up 
on the inner lock, thereby eliminating competition for the outer lock and 

12 Given that he required the outer lock in any case, Anderson also replaced the nextslot index 
variable with a pointer, to save time on address arithmetic. 
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allowing the inner lock to eliminate bus transactions due to spinning. The 
time spent in the critical section has been factored out of the plotted timings. 

In addition to Anderson's lock, our experiments indicate that the MCS lock 
and the test-and-set lock with exponential backoff also scale extremely 
well. All three of the scalable algorithms have comparable absolute perfor- 
mance. Anderson's lock has a small edge for nonempty critical sections 
(Graunke and Thakkar's lock would have a larger edge) but requires stati- 
cally-allocated space per lock linear in the number of processors. The other 
two algorithms need only constant space and do not require coherent caches 
to work well. The test-and-set lock with exponential backoff shows a slight 
increasing trend and would not be expected to do as well as the others on a 
very large machine since it causes more network traffic. 

The peak in the cost of the MCS lock on two processors reflects the lack of 
compare-and-swap. Some fraction of the time, a processor releasing the lock 
finds that its next variable is n i l  but then discovers that it has a successor 
after all when it performs its fetch-and-store on the lock's tail pointer. 
Entering this timing window necessitates an  additional fetch-and-store to 
restore the state of the queue, with a consequent drop in performance. The 
non-empty critical sections of Figure 18 reduce the likelihood of hitting the 
window, thereby reducing the size of the two-processor peak. With 
compare-and-swap that peak would disappear altogether. 

Latency and Impact on Other Operations 

In addition to performance in the presence of many competing processors, an  
important criterion for any lock is the time it takes to acquire and release it 
in the absence of competition. Table I shows this measure for representative 
locks on the Butterfly and the Symmetry. The times for the test-and-set 
lock are with code in place for exponential backoff; the time for the ticket 
lock is with code in place for proportional backoff. The test-and-set lock is 
cheapest on both machines in the single processor case; it has the shortest 
code path. On the Butterfly, the ticket lock, Anderson's lock, and the MCS 
lock are 1.11, 1.88, and 2.04 times as costly, respectively. On the Symmetry, 
Anderson's lock and the MCS lock are 1.51 and 1.31 times as costly as the 
t e s t a n d s e t  lock. 

Two factors skew the absolute numbers on the Butterfly, making them 
somewhat misleading. First, the atomic operations on the Butterfly are 
inordinately expensive in comparison to their non-atomic counterparts. Most 
of the latency of each of the locks is due to the cost of setting up a parameter 
block and executing an  atomic operation. (We reuse partially-initialized 
parameter blocks as much as possible to minimize this cost.) The expense of 
atomic operations affects the performance of the MCS lock in particular since 
it requires a t  least two f etch-and-store operations (one to acquire the lock 
and another to release it) and possibly a third (if we hit the timing window). 
Second, the 16-bit atomic primitives on the Butterfly cannot manipulate 
24-bit pointers atomically. To implement the MCS algorithm, we were forced 
to replace the pointers with indices into a replicated, statically-allocated 
array of pointers to qnode records. 
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Table I. Time for an AcquireIRelease Pair in the Single Processor Case. 

t e s t - a n d s e t  ticket Anderson MCS 

Butterfly 34.9 p s  38.7 p s  65.7 bs 71.3 p s  
Symmetry 7.0 us  N A 10.6 us  9.2 us 

Table 11. Increase in Network Latency (relative to that of an idle machine) 
on the Butterfly Caused by 60 Processors Competing for a Busy-Wait Lock. 

Increase in network latency 
measured from 

Busy-wait Lock 
- .. . . .. -. 

Lock node (%) Idle node (%) 

t e s t a n d s e t  
test-and-set wllinear backoff 
test-and-set w/exp. backoff 
ticket 
ticket w/prop. backoff 
Anderson 
MCS 

Absolute performance for all of the algorithms is much better on the 
Symmetry than on the Butterfly. The Symmetry's clock runs twice as fast 
and its caches make memory in general appear significantly faster. The 
differences between algorithms are also smaller on the Symmetry, mainly 
because of the lower difference in cost between atomic and non-atomic 
instructions, and also because the Symmetry's 32-bit fetch-and-store in- 
struction allows the MCS lock to use pointers. We believe the numbers on the 
Symmetry to be representative of actual lock costs on modern machines. 
Recent experience with the BBN TC2000 machine confirms this belief: 
single-processor latencies on this machine (a newer Butterfly architecture 
based on the Motorola 88000 chipset) vary from 8.1 ps for the simple 
test-and-set lock to 12.2 ps  for the MCS lock. The single-processor latency 
of the MCS lock on the Symmetry is only 31 percent higher than that of the 
simple test-and-set lock; on the TC2000 it is 50 percent higher. 

A final important measure of spin lock performance is the amount of 
interconnection network traffic caused by busy-waiting processors, and the 
impact of this traffic on other activity on the machine. In an attempt to 
measure these quantitites, we obtained an estimate of average network 
latency on the Butterfly by measuring the total time required to probe the 
network interface controller on each of the processor nodes during a spin lock 
test. Table I1 presents our results in the form of percentage increases over the 
value measured on an idle machine. In the Lock Node column, probes were 
made from the processor on which the lock itself resided (this processor was 
otherwise idle in all our tests); in the Idle Node column, probes were made 
from another processor not participating in the spin lock test. Values in the 
two columns differ markedly for both the test-and-set and ticket locks 
(particularly without backoff) because competition for access to the lock is 
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focused on a central hot spot and steals network interface bandwidth from 
the process attempting to perform the latency measurement on the lock node. 
Values in the two columns are similar for Anderson's lock because its data 
structure (and hence its induced contention) is distributed throughout the 
machine. Values are both similar and low for the MCS lock because its data 
structure is distributed and because each processor refrains from spinning on 
the remote portions of that data structure. 

Discussion and Recommendations 

Spin lock algorithms can be evaluated on the basis of several criteria: 

-scalability and induced network load, 
-one-processor latency, 
-space requirements, 
-fairness/sensitivity to preemption, and 
-implementability with given atomic operations. 

The MCS lock and, on cache-coherent machines, the array-based queuing 
locks are the most scalable algorithms we studied. The test-and-set and 
ticket locks also scale well with appropriate backoff but induce more network 
load. The test-and-set and ticket locks have the lowest single-processor 
latency, but with good implementations of f etch_and_@ instructions the MCS 
and Anderson locks are reasonable as well. The space needs of Anderson's 
lock and of the Graunke and Thakkar lock are likely to be prohibitive when a 
large number of locks is needed-in the internals of an  operating system, for 
example-or when locks are being acquired and released by processes signifi- 
cantly more numerous than the physical processors. If the number of pro- 
cesses can change dynamically, then the data structures of an array-based 
lock must be made large enough to accommodate the maximum number of 
processes that may ever compete simultaneously. For the Graunke and 
Thakkar lock, the set of process ids must also remain fairly dense. If the 
maximum number of processes is underestimated the system will not work; if 
it is overestimated then space will be needlessly wasted. 

The ticket lock, the array-based queuing locks, and the MCS lock all 
guarantee that processors attempting to acquire a lock will succeed in FIFO 
order. This guarantee of fairness is likely to be considered an advantage in 
many environments, but is likely to waste CPU resources if spinning pro- 
cesses may be preempted. (Busy-wait barriers may also waste cycles in the 
presence of preemption.) We can avoid this problem by coscheduling pro- 
cesses that share locks [341. Alternatively (for mutual exclusion), a 
test-and-set lock with exponential backoff will allow latecomers t o  acquire 
the lock when processes that arrived earlier are not running. In this situa- 
tion the test-and-set lock may be preferred to the FIFO alternatives. 
Additional mechanisms can ensure that a process is not preempted while 
actually holding a lock [47, 521. 

All of the spin lock algorithms we have considered require some sort of 
fetchwand_@ instructions. The test-and-set lock of course requires 
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test-and-set. The ticket lock requires fetch-and-increment. The MCS lock 
requires fetch_and_store3, and benefits from compare_and_swap. Anderson's 
lock benefits from fetch-and-add. Graunke and Thakkar's lock requires 
fe tchands tore .  

For cases in which competition is expected, the MCS lock is clearly the 
implementation of choice. It provides a very short passing time, ensures 
FIFO ordering, scales almost perfectly, and requires only a small, constant 
amount of space per lock. It also induces the least amount of interconnect 
contention. On a machine with fast f etch_and_$ operations (particularly if 
compare-and-swap is available), its one-processor latency will be competitive 
with all the other algorithms. 

The ticket lock with proportional backoff is an attractive alternative if 
one-processor latency is an overriding concern, or if fetch-and-store is not 
available. Although our experience with it is limited to a distributed-memory 
multiprocessor without cache coherence, our expectation is that the ticket 
lock with proportional backoff would perform well on cache-coherent multi- 
processors as well. The test-and-set lock with exponential backoff is an 
attractive alternative if preemption is possible while spinning or if neither 
f etch-and-store nor f etch-ad-increment is available. It is significantly 
slower than the ticket lock with proportional backoff in the presence of heavy 
competition, and results in significantly more network load. 

4.4. Barriers 

Figure 19 shows the performance on the Butterfly of the barrier algorithms 
described in Section 3. The top three curves are all sense-reversing, counter- 
based barriers as in Figure 8, with various backoff strategies. The slowest 
performs no backoff. The next uses exponential backoff. We obtained the best 
performance with an initial delay of 10 iterations through an empty loop 
with a backoff base of 2. Our results suggest that it may be necessary to limit 
the maximum backoff in order to maintain stability. When many barriers are 
executed in sequence, the skew of processors arriving at the barriers appears 
to be magnified by the exponential backoff strategy. As the skew between 
arriving processors increases, processors back off farther. With a backoff base 
larger than 2, we had to cap the maximum delay in order for our experiments 
to finish. Even with a backoff base of 2, a delay cap improved performance. 
Our best results were obtained with a cap of 8 P delay loop iterations. 

In our final experiment with a centralized, counter-based barrier, we used 
a variant of the proportional delay idea employed in the ticket lock. After 
incrementing the barrier count to signal its arrival, each processor participat- 
ing in the barrier delays a period of time proportional to the total number of 
participants (not  the number yet to arrive), prior to testing the sense 
variable for the first time. The rationale for this strategy is to timeslice 
available interconnect bandwidth between the barrier participants. Since the 

131t could conceivably be used with only compare-and-swap, simulating fetch-and-store in a 
loop, but a t  a significant loss in scalability. 
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Fig. 19 Performance of barriers on the Butterfly 

Butterfly network does not provide hardware combining, at  least 2 P - 1 
accesses to the barrier state are required (P to signal processor arrivals, and 
P - 1 to discover that all have arrived). Each processor delays long enough 
for later processors to indicate their arrival and for earlier processors to 
notice that all have arrived. As shown in Figure 19, this strategy outper- 
forms both the naive central barrier and the central barrier with exponential 
backoff. At the same time, all three counter-based algorithms lead to curves 
of similar shape. The time to achieve a barrier appears to increase more than 
linearly in the number of participants. The best of these purely centralized 
algorithms (the proportional backoff strategy) requires over 1.4 ms for an 80 
processor barrier. 

The fourth curve in Figure 19 is the combining tree barrier of Algorithm 8. 
Though this algorithm scales better than the centralized approaches (in fact, 
it scales roughly logarithmically with P,  although the constant is large), it 
still spins on remote locations and encounters increasing interconnect con- 
tention as the number of processors grows. 

Figure 20 provides an expanded view of performance results for the algo- 
rithms with the best performance, whose curves are grouped together near 
the bottom of Figure 19. The code for the upper curve uses a central counter 
to tally arrivals at  the barrier, but employs a binary tree for wakeup, as in 
ACM Transactions on Computer Systems, Vol 9, No. 1, February 1991 
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Fig. 20 Performance of selected barriers on the Butterfly. 

Algorithm 11. The processor at the root of the tree spins on the central 
counter. Other processors spin on flags in their respective nodes of the tree. 
All spins are local but the tallying of arrivals is serialized. We see two 
distinct sections in the resulting performance curve. With fewer than 10 
processors, the time for wakeup dominates and the time to achieve the 
barrier is roughly logarithmic in the number of participants. With more than 
10 processors, the time to access the central counter dominates and the time 
to achieve the barrier is roughly linear in the number of participants. 

The three remaining curves in Figure 20 are for the bidirectional tourna- 
ment barrier, our tree barrier, and the dissemination barrier. The time to 
achieve a barrier with each of these algorithms scales logarithmically with 
the number of processors participating. The tournament and dissemination 
barriers proceed through 0( rlog P1 ) rounds of synchronization that lead to a 
stair-step curve. Since the Butterfly does not provide coherent caches, the 
tournament barrier employs a binary wakeup tree, as shown in Figure 11. It 
requires 2 [logn P1 rounds of synchronization, compared to only [log2 PI  
rounds in the dissemination barrier, resulting in a roughly two-fold differ- 
ence in performance. Our tree-based barrier lies between the other two; its 
critical path passes information from one processor to another approximately 
log4 P + log2 P times. The lack of clear-cut rounds in our barrier explains its 
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Fig. 21. Performance of barriers on the Symmetry 

smoother performance curve: each additional processor adds another level to 
some path through the tree, or becomes the second child of some node in the 
wakeup tree that is delayed slightly longer than its sibling. 

Figure 21 shows the performance on the Sequent Symmetry of several 
different barriers. Results differ sharply from those on the Butterfly for two 
principal reasons. First, it is acceptable on the Symmetry for more than one 
processor to spin on the same location; each obtains a copy in its cache. 
Second, no significant advantage arises from distributing writes across the 
memory modules of the machine; the shared bus enforces an  overall serializa- 
tion. The dissemination barrier requires O(P1og P) bus transactions to 
achieve a P-processor barrier. The other four algorithms require 0 ( P )  trans- 
actions, and all perform better than the dissemination barrier for P > 8.  

Below the maximum number of processors in our tests, the fastest barrier 
on the Symmetry used a centralized counter with a sense-reversing wakeup 
flag (from Figure 8). P bus transactions are required to tally arrivals, 1 to 
toggle the sense-reversing flag (invalidating all the cached copies), and P - 1 
to effect the subsequent reloads. Our tree barrier generates 2 P - 2 writes to 
flag variables on which other processors are waiting, necessitating an addi- 
tional 2 P - 2 reloads. By using a central sense-reversing flag for wakeup 
(instead of the wakeup tree), we can eliminate half of this overhead. The 
resulting algorithm is identified as "arrival tree" in Figure 21. Though the 
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arrival tree barrier has a larger startup cost, its P - 1 writes are cheaper 
than the P read-modify-write operations of the centralized barrier, so its 
slope is lower. For large values of P ,  the arrival tree with wakeup flag is the 
best performaning barrier and should become clearly so on larger machines. 

The tournament barrier on the Symmetry uses a central wakeup flag. It 
roughly matches the performance of the arrival tree barrier for P = 2' but is 
limited by the length of the execution path of the tournament champion, 
which grows suddenly by one each time that P exceeds a power of 2. 

Discussion and Recommendations 

Evaluation criteria for barriers include: 

-length of critical path, 
-total number of network transactions, 
-space requirements, and 
-implementability with given atomic operations. 

Space needs are constant for the centralized barrier, linear for our tree- 
based barrier and for the combining tree barrier, and O(P log P )  for the 
dissemination barrier and for all variants of Hensgen, Finkel, and Manber's 
tournament barrier. (Lubachevsky's EREW version of the tournament bar- 
rier is O(P)). With appropriate distribution of data structures, the dissemina- 
tion barrier requires a total of O(P log P )  network transactions. The tourna- 
ment barrier and our tree-based barrier require O(P). The centralized and 
combining tree barriers require 0(P)  on machines with broadcast-based 
coherent caches and a potentially unbounded number on other machines. 

On a machine in which independent network transactions can proceed in 
parallel, the critical path length is O(log P)  for all but the centralized 
barrier, which is 0(P) .  On a machine that serializes network transactions 
(e.g., on a shared bus), this logarithmic factor will be dominated asymptoti- 
cally by the linear (or greater) total number of network transactions. The 
centralized and combining tree barriers require an atomic increment or 
decrement instruction with at  least a limited mechanism for determining the 
value of memory prior to modifications. The other barriers depend only on 
the atomicity of ordinary reads and writes. 

The dissemination barrier appears to be the most suitable algorithm for 
distributed memory machines without broadcast. It has a shorter critical 
path than the tree and tournament barriers (by a constant factor) and is 
therefore faster. The class of machines for which the dissemination barrier 
should outperform all other algorithms includes the BBN Butterfly [$I, the 
IBM RP3 [371, Cedar [50], the BBN Monarch [42], the NYU Ultracomputer 
[171, and proposed large-scale multiprocessors with directory-based cache 
coherence [3]. Our tree-based barrier will also perform well on these ma- 
chines. It induces less network load and requires total space proportional to 
P rather than P log P ,  but its critical path is longer by a factor of about 1.5. 
It might conceivably be preferred over the dissemination barrier when 

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991. 



58 J. M .  Mellor-Crurnmey and M. L Scott 

sharing the processors of the machine among more than one application, if 
network load proves to be a problem. 

Our tree-based barrier with wakeup flag should be the fastest algorithm on 
large-scale multiprocessors that use broadcast to maintain cache coherence 
(either in snoopy cache protocols [I51 or in directory-based protocols with 
broadcast [7] ) .  It requires only 0(P)  updates to shared variables in order to 
tally arrivals compared to O ( P  log P) for the dissemination barrier. Its 
updates are simple writes, which are cheaper than the read-modify-write 
operations of a centralized counter-based barrier. (Note, however, that the 
centralized barrier outperforms all others for modest numbers of processors.) 
The space needs of the tree-based barrier are lower than those of the 
tournament barrier (O(P) instead of 0 ( P  log P)), its code is simpler, and it 
performs slightly less local work when P is not a power of 2. Our results are 
consistent with those of Hensgen, Finkel, and Manber [I91 who showed their 
tournament barrier to be faster than their dissemination barrier on the 
Sequent Balance multiprocessor. They did not compare their algorithms 
against a centralized barrier because the lack of an atomic increment instruc- 
tion on the Balance precludes efficient atomic update of a counter. 

The centralized barrier enjoys one additional advantage over all of the 
other alternatives: it adapts easily to differing numbers of processors. In an 
application in which the number of processors participating in a barrier 
changes from one barrier episode to another, the log-depth barriers will all 
require internal reorganization, possibly swamping any performance advan- 
tage obtained in the barrier itself. Changing the number of processors in a 
centralized barrier entails no more than changing a single constant. 

4.5. Architectural Implications 

Many different shared memory architectures have been proposed. From the 
point of view of synchronization, the two relevant issues seem to be (1) 
whether each processor can access some portion of shared memory locally 
(instead of through the interconnection network), and (2) whether broadcast 
is available for cache coherency. The first issue is crucial; it determines 
whether busy waiting can be eliminated as a cause of memory and intercon- 
nect contention. The second issue determines whether barrier algorithms can 
efficiently employ a centralized flag for wakeup. 

The most scalable synchronization algorithms (the MCS spin lock and the 
tree, bidirectional tournament, and dissemination barriers) are designed in 
such a way that each processor spins on statically-determined flag variable(s) 
on which no other processor spins. On a distributed shared memory machine, 
flag variables can be allocated in the portion of the shared memory co-located 
with the processor that spins on them. On a cache-coherent machine, they 
migrate to the spinning processor's cache automatically. Provided that flag 
variables used for busy-waiting by different processors are in separate cache 
lines, network transactions are used only to update a location on which some 
processor is waiting (or for initial cache line loads). For the MCS spin lock, 
the number of network transctions per lock acquisition is constant. For the 
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tree and tournament barriers, the number of network transactions per bar- 
rier is linear in the number of processors involved. For the dissemination 
barrier, the number of network transactions is O(P log P), but still O(log P) 
on the critical path. No network transactions are due to spinning, so inter- 
connect contention is not a problem. 

On "dance hall" machines, in which shared memory must always be 
accessed through a shared processor-memory interconnect, there is no way to 
eliminate synchronization-related interconnect contention in software. Nev- 
ertheless, the algorithms we have described are useful since they minimize 
memory contention and hot spots caused by synchronization. The structure of 
these algorithms makes it easy to assign each processor's busy-wait flag 
variables to a different memory bank so that the load induced by spinning 
will be distributed evenly throughout memory and the interconnect, rather 
than being concentrated in a single spot. Unfortunately, on dance hall 
machines the load will still consume interconnect bandwidth, degrading the 
performance not only of synchronization operations but also of all other 
activity on the machine, severely constraining scalability. 

Dance hall machines include bus-based multiprocessors without coherent 
caches, and multistage network architectures such as Cedar [50], the BBN 
Monarch [42], and the NYU Ultracomputer [17]. Both Cedar and the Ultra- 
computer include processor-local memory, but only for private code and data. 
The Monarch provides a small amount of local memory as a "poor man's 
instruction cache." In none of these machines can local memory be modifed 
remotely. We consider the lack of local shared memory to be a significant 
architectural shortcoming; the inability to take full advantage of techniques 
such as those described in this paper is a strong argument against the 
construction of dance hall machines. 

To assess the importance of local shared memory, we used our Butterfly 1 
to simulate a machine in which all shared memory is accessed through the 
interconnection network. By flipping a bit in the segment register for the 
synchronization variables on which a processor spins, we can cause the 
processor to go out through the network to reach these variables (even 
though they are in its own memory), without going through the network to 
reach code and private data. This trick effectively flattens the two-level 
shared memory hierarchy of the Butterfly into a single level organization 
similar to that of Cedar, the Monarch, or the Ultracomputer. 

Figure 22 compares the performance of the dissemination and tree barrier 
algorithms for one and two level memory hierarchies. All timing mesure- 
ments in the graph were made with interrupts disabled, t o  eliminate any 
effects due to timer interrupts or scheduler activity. The bottom two curves 
are the same as in Figures 19 and 20. The top two curves show the 
corresponding performance of the barrier algorithms when all accesses to 
shared memory are forced to go through the interconnection network. When 
busy-waiting accesses traverse the interconnect, the time to achieve a barrier 
using the tree and dissemination algorithms increases linearly with the 
number of processors participating. A least squares fit shows the additional 
cost per processor to be 27.8 p s  and 9.4 us,  respectively. For an 84-processor 
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Fig. 22. Performance of tree and dissemination barriers with and without local access to shared 
memory. 

barrier, the lack of local spinning increases the cost of the tree and dissemi- 
nation barriers by factors of 11.8 and 6.8, respectively. 

In a related experiment, we measured the impact on network latency of 
executing the dissemination or tree barriers with and without local access to 
shared memory. The results appear in Table 111. As in Table 11, we probed 
the network interface controller on each processor to compare network la- 
tency of an idle machine with the latency observed during a 60 processor 
barrier. Table 111 shows that when processors are able to spin on shared 
locations locally, average network latency increases only slightly. With only 
network access to shared memory, latency more than doubles. 

Studies by Pfister and Norton [381 show that hot-spot contention can lead to 
tree saturation in multistage interconnection networks with blocking switch 
nodes and distributed routing control, independent of the network topology. 
A study by Kumar and Pfister [231 shows the onset of hot-spot contention to 
be rapid. Pfister and Norton argue for hardware message combining in 
interconnection networks to reduce the impact of hot spots. They base their 
argument primarily on anticipated contention for locks, noting that they 
know of no quantitative evidence to support or deny the value of combining 
for general memory traffic. Our results indicate that the cost of synchroniza- 
tion in a system without combining, and the impact that synchronization 
activity will have on overall system performance, is much less than previ- 
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Table 111. Increase in Network Latency (relative to that of an idle machine) 
on the Butterfly Caused by 60 Processor Barriers Using Local and Network Polling Strategies 

Barrier Local polling (%) Network polling (%) 

Tree 
Dissemination 

ously thought (provided that the architecture incorporates a shared memory 
hierarchy of two or more levels). Although the scalable algorithms presented 
in this paper are unlikely to match the performance of hardware combining, 
they will come close enough to provide an extremely attractive alternative to 
complex, expensive hardware. l4 

Other researchers have suggested building special-purpose hardware mech- 
anisms solely for synchronization, including synchronization variables in the 
switching nodes of multistage interconnection networks [21] and lock queu- 
ing mechanisms in the cache controllers of cache-coherent multiprocessors 
[14, 28, 351. Our results suggest that simple exploitation of a multilevel 
memory hierarchy, in software, may provide a more cost-effective means of 
avoiding lock-based contention. 

The algorithms we present in this paper require no hardware support for 
synchronization other than commonly-available atomic instructions. The 
scalable barrier algorithms rely only on atomic read and write. The MCS 
spin lock algorithm uses fetch-and-store and maybe compare-and-swap. 
Graunke and Thakkar's lock requires fetch-and-store. Anderson's lock 
benefits from fetch-and-increment, and the ticket lock requires it. All of 
these instructions have uses other than the construction of busy-wait locks. 
Fetch-and-store and compare-and-swap, for example, are essential for manip- 
ulating pointers to build concurrent data structures [20, 321. Because of their 
general utility, fetch_and_?> instructions are substantially more attractive 
than special-purpose synchronization primitives. Future designs for shared 
memory machines should include a full set of f etch-and-% operations, includ- 
ing compare-and-swap. 

Our measurements on the Sequent Symmetry indicate that special-purpose 
synchronization mechanisms such as the QOLB instruction [I41 are unlikely 
to outperform our MCS lock by more than 30 percent. A QOLB lock will have 
higher single-processor latency than a test..and_set lock [14, p.681, and its 
performance should be essentially the same as the MCS lock when competi- 
tion for a lock is high. Goodman, Vernon, and Woest suggest that a QOLB-like 
mechanism can be implemented at very little incremental cost (given that 
they are already constructing large coherent caches with multidimensional 
snooping). We believe that this cost must be extremely low to make it worth 
the effort. 

14 Pfister and Norton estimate that message combining will increase the size and possibly the 
cost of an interconnection network 6- to 32-fold. Gottlieb [I61 indicates that combining networks 
are difficult to bit-slice. 
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Of course, increasing the performance of busy-wait locks and barriers is not 
the only possible rationale for implementing synchronization mechanisms in 
hardware. Recent work on weakly-consistent shared memory [I,  13, 281 has 
suggested the need for synchronization "fences" that provide clean points for 
memory semantics. Combining networks, likewise, may improve the perfor- 
mance of memory with bursty access patterns (caused, for example, by 
sharing after a barrier). We do not claim that hardware support for synchro- 
nization is unnecessary, merely that the most commonly cited rationale 
for it-that it is essential to reduce contention due to synchronization- 
is invalid. 

5. SUMMARY OF RECOMMENDATIONS 

We have presented a detailed comparison of new and existing algorithms for 
busy-wait synchronization on shared-memory multiprocessors, with a particu- 
lar eye toward minimizing the network transactions that lead to contention. 
We introduced the MCS lock, the new tree-based barrier, and the notion of 
proportional backoff for the ticket lock and the centralized barrier. We 
demonstrated how to eliminate fetch_and_@ operations from the wakeup 
phase of the combining tree barrier, presented a wakeup mechanism for the 
tournament barrier that uses contiguous, statically allocated flags to ensure 
local-only spinning, and observed that the data structures of the dissemina- 
tion barrier can be distributed for local-only spinning. 

The principal conclusion of our work is that memory and interconnect 
contention due to busy-wait synchronization in shared-memory multiproces- 
sors need not be a problem. This conclusion runs counter to widely-held 
beliefs. We have presented empirical performance results for a wide variety 
of busy-wait algorithms on both a cache-coherent multiprocessor and a multi- 
processor with distributed shared memory. These results demonstrate that 
appropriate algorithms using simple and widely-available atomic instruc- 
tions can reduce synchronization contention effectively to zero. 

For spin locks on a shared-memory multiprocessor, regardless of architec- 
tural details, we suggest: 

1. If the hardware provides an efficient fetchand-store instruction (and 
maybe compare-and-swap), then use the MCS lock. One-processor latency 
will be reasonable, and scalability will be excellent. 

2. If fetch-and-store is not available, or if atomic opertions are very expen- 
sive relative to non-atomic instructions and one-processor latency is an 
overwhelming concern, then use the ticket lock with proportional backoff 
(assuming the hardware supports f etch-and-increment). The code for such 
a lock is typically more complicated than code for the MCS lock, and the 
load on the processor-memory interconnect will be higher in the presence 
of competition for the lock, but speed on a single processor will be slightly 
better and scalability will still be reasonable. 

3. Use the simple lock with exponential backoff (with a cap on the maximum 
delay) if processes might be prompted while spinning, or if one-processor 
latency is an overwhelming concern and the hardware does not support 
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fetch-and-increment (assuming of course that it does support 
test-and-set). 

For barrier synchronization we suggest: 

On a broadcast-based cache-coherent multiprocessor (with unlimited repli- 
cation), use either a centralized counter-based barrier (for modest numbers 
of processors), or a barrier based on our 4-ary arrival tree and a central 
sense-reversing wakeup flag. 
On a multiprocessor without coherent caches, or with directory-based 
coherency without broadcast, use either the dissemination barrier (with 
data structures distributed to respect locality) or our tree-based barrier 
with tree wakeup. The critical path through the dissemination barrier 
algorithm is about a third shorter than that of the tree barrier, but the 
total amount of interconnect traffic is 0 (P  log P )  instead of O(P).  The 
dissemination barrier will outperform the tree barrier on machines such 
as the Butterfly, which allow noninterfering network transactions from 
many different processors to proceed in parallel. 

For the designers of large-scale shared-memory multiprocessors, our results 
argue in favor of providing distributed memory or coherent caches, rather 
than dance-hall memory without coherent caches (as in Cedar, the Monarch, 
or the Ultracomputer). Our results also indicate that combining networks for 
such machines must be justified on grounds other than the reduction of 
synchronization overhead. We strongly suggest that future multiprocessors 
include a full set of f etch-and_$ operations (especially fetch-and-store and 
compare-and-swap). 
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