
An FPTAS for #Knapsack and Related Counting Problems

Parikshit Gopalan� Adam Klivans† Raghu Meka† Daniel Štefankovič‡ Santosh Vempala§ Eric Vigoda§

Abstract— Given n elements with non-negative integer weights
w1, . . . , wn and an integer capacity C, we consider the counting
version of the classic knapsack problem: find the number of distinct
subsets whose weights add up to at most C. We give the first de-
terministic, fully polynomial-time approximation scheme (FPTAS)
for estimating the number of solutions to any knapsack constraint
(our estimate has relative error 1± ε). Our algorithm is based on
dynamic programming. Previously, randomized polynomial-time
approximation schemes (FPRAS) were known first by Morris and
Sinclair via Markov chain Monte Carlo techniques, and subse-
quently by Dyer via dynamic programming and rejection sampling.

In addition, we present a new method for deterministic approxi-
mate counting using read-once branching programs. Our approach
yields an FPTAS for several other counting problems, including
counting solutions for the multidimensional knapsack problem with
a constant number of constraints, the general integer knapsack
problem, and the contingency tables problem with a constant
number of rows.

1. INTRODUCTION

Randomized algorithms are usually simpler and faster

than their deterministic counterparts. In spite of this, it is

widely believed that P=BPP (see, e. g., [3]), i.e., at least up

to polynomial complexity, randomness is not essential. This

conjecture is supported by the fact that there are relatively

few problems for which exact randomized polynomial-time

algorithms exist but deterministic ones are not known.

Notable among them is the problem of testing whether

a polynomial is identically zero (a special case of this,

primality testing was open for decades but a deterministic

algorithm is now known, [1]).

In approximation algorithms, however, there are many

more such examples. The entire field of approximate count-

ing is based on Markov chain Monte Carlo (MCMC) sam-

pling [13], a technique that is inherently randomized and has

had remarkable success. The problems of counting match-

ings [11], [14], colorings [10], various tilings, partitions

and arrangements [18], estimating partition functions [12],

[24], or volumes [7], [17] are all solved by first designing

a random sampling method and then reducing counting to

�Microsoft Research, Silicon Valley, Mountain View, CA 94043. Email:
parik@microsoft.com.

†Department of Computer Science, UT Austin, Austin TX 78712.
Email:{klivans,raghu}@cs.utexas.edu. Research supported in part by Kli-
vans’ NSF CAREER Award and CCF-0728536.

‡Department of Computer Science, University of Rochester, Rochester,
NY 14627. Email: stefanko@cs.rochester.edu. Research supported in part
by NSF grant CCF-0910415.

§School of Computer Science, Georgia Institute of Technology, Atlanta
GA 30332. Email: {vempala,vigoda}@cc.gatech.edu. Research supported
in part by NSF grants CCF-0830298 and CCF-0910584 and AF-0915903.

repeated sampling. In all of these cases, when the input

is presented explicitly, it is conceivable that deterministic

polynomial-time algorithms exist.

Our interest is in obtaining a deterministic approxima-

tion algorithm or FPTAS (fully polynomial approximation

scheme) for #P-complete counting problems. We desire an

algorithm that for an input instance I and a given approxi-

mation factor ε > 0, estimates the number of solutions for

I within a relative factor 1 ± ε in time polynomial in the

input size |I| and 1/ε.

There are far fewer examples of deterministic approxi-

mation schemes for #P-complete problems. One of the first

examples is due to Ajtai and Wigderson [2] (see also Luby

and Velic̆ković [19, Corollary 13]) who gave an algorithm

for approximating the number of solutions to a DNF formula

where each term has constant length. A notable recent

example of an FPTAS for a #P-complete problem is Weitz’s

algorithm [25] for counting independent sets in graphs of

maximum degree Δ ≤ 5. Similar approaches to Weitz’s

algorithm were later used for counting all matchings of

bounded degree graphs [4], and k-colorings of triangle-free

graphs with maximum degree Δ when k > 2.84Δ [9] .

1.1. An FPTAS for #Knapsack

Here we consider one of the most basic counting prob-

lems, namely approximately counting the number of 0/1
knapsack solutions. More precisely, we are given a list

of non-negative integer weights w1, . . . , wn and an integer

capacity C, and wish to count the number of subsets

of the weights that add up to at most C. (The decision

version of this problem is NP-hard, but has a well-known

pseudo-polynomial algorithm based on dynamic program-

ming.) From a geometric perspective, for the n-dimensional

Boolean hypercube, we are given as input an n-dimensional

hyperplane, and our goal is to determine the number of

vertices of the hypercube that lie on one side of the given

hyperplane. We give an FPTAS for the problem, that is,

a deterministic algorithm that for any ε > 0 estimates the

number of solutions to within relative error 1 ± ε in time

polynomial in n and 1/ε.

Motivation: Our result follows a line of work in the

literature. Dyer et al. [8] gave a randomized sub-exponential

time algorithm for this problem, based on near-uniform

sampling of feasible solutions by a random walk. Morris

and Sinclair [21] improved this, showing a rapidly mixing

Markov chain, and obtained an FPRAS (fully-polynomial

randomized approximation scheme). In a surprising devel-

795817817817

opment, Dyer [6], gave a completely different approach,

combining dynamic programming with simple rejection

sampling to also obtain an FPRAS. Although much simpler,

randomization still appears to be essential in his approach—

without the sampling part, his algorithm only gives a factor√
n approximation.

Additionally, there has been much recent work on con-

structing pseudorandom generators (PRGs) for geometric

concept classes, in particular halfspaces (e.g., [5], [20],

[22]). It is easy to see that pseudorandom generators for

halfspaces imply deterministic approximation schemes for

counting solutions to knapsack constraints by enumerating

over all input seeds to the generator. The estimate obtained,

however, has small additive error, rather than our desired

relative error. Further, the seed-lengths of these generators

are too large to yield an FPTAS. Still, a clear goal of this

line of research has been an FPTAS for counting knapsack

solutions, which we obtain here for the first time.

Techniques: Our algorithm, like Dyer’s algorithm men-

tioned above, is based on dynamic programming and is

inspired by the pseudo-polynomial algorithm for the de-

cision/optimization version of the knapsack problem. The

complexity of the pseudo-polynomial algorithm is O(nC),
where C is the capacity bound. A pseudo-polynomial al-

gorithm for the counting problem can be achieved as well

using the following recurrence:

S(i, j) = S(i− 1, j) + S(i− 1, j − wi),

with appropriate initial conditions. Here S(i, j) is the num-

ber of knapsack solutions that use a subset of the items

{1, . . . , i} and their weights sum to at most j.

Roughly speaking, since we are only interested in approx-

imate counting, Dyer’s idea was the following. He scales

down the capacity to a polynomial in n, and scales down

the weights by the same factor where the new weights are

rounded down if necessary. He then counts the solutions

to the new problem efficiently using the pseudo-polynomial

time dynamic programming algorithm. The new problem

could have more solutions (since we rounded down) but

Dyer showed it has at most a factor of O(n) more for a

suitable choice of scaling. Further, given the exact counting

algorithm for the new problem, one gets an efficient sampler,

then uses rejection sampling to only sample solutions to

the original problem. The sampler leads to a counting

algorithm using standard techniques. Dyer’s algorithm has

running time O(n3 + ε−2n2) using the above approach,

and O(n2.5
√

log(ε−1)+n2ε−2) using a more sophisticated

approach that also utilizes randomized rounding.

To remove the use of randomness, one might attempt to

use a more coarse-grained dynamic program, namely rather

than consider all integer capacities 1, 2, . . . , C, what if we

only consider weights that go up in some geometric series?

This would allow us to reduce the table size to n logC rather

than nC. The problem is that varying the capacity even by

an exponentially small factor (1 + n/2n) can change the

number of solutions by a constant factor! Instead, we index

the table by the prefix of items allowed and the number

of solutions with the entry in the table being the minimum

capacity that allows these indices to be feasible. We can

now consider approximate numbers of solutions and obtain

a small table. Our first result is the following:

Theorem 1.1. Let w1, . . . , wn and C be an instance of a
knapsack problem. Let Z be the number of solutions of the
knapsack problem. There is a deterministic algorithm which
for any ε ∈ (0, 1) outputs Z ′ such that Z ≤ Z ′ ≤ Z(1+ ε).
The algorithm runs in time O(n3ε−1 log(n/ε)).

The running time of our algorithm is competitive with that

of Dyer. One interesting improvement is the dependence on

ε. Our algorithm has a linear dependence on ε−1 (ignoring

the logarithm term), whereas Monte Carlo approaches, in-

cluding Dyer’s algorithm [6] and earlier algorithms for this

problem [21], [8], have running time which depends on ε−2.

1.2. Counting using Branching Programs

Given our counting algorithm for the knapsack problem,

a natural next step is to count solutions to multidimensional

knapsack instances and other related extensions of the

knapsack problem. Unfortunately, the dynamic programming

based approach for knapsack does not generalize for the

multidimensional case. We overcome this hurdle by present-

ing a different, more general FPTAS for counting knapsack

solutions under a much wider class of weighted distributions.

In doing so, we present a general framework for deter-

ministic approximate counting using read-once branching

programs (for a definition of the branching programs we

use see Section 3.1) that we believe to be of independent

interest.

It is not difficult to see that a read-once branching program

of possibly exponential width can compute the set of feasible

solutions of a knapsack instance. Meka and Zuckerman [20]

observed that there exist small-width, read-once branching

programs that approximate the set of feasible solutions for

any knapsack instance to within a small additive error.

We build on this observation and show that there exist

small-width, read-once branching programs for computing

knapsack-type constraints to within a small relative error.

Further, the approximations hold with respect to any small-

space source, which is a large class of (not necessarily

uniform) distributions on {0, 1}n. We then combine these

ideas with the dynamic programming results of Dyer [6] to

obtain an FPTAS for several other related counting prob-

lems, including counting solutions to the multidimensional

knapsack problem, and counting solutions to the contingency

tables problem.

In the multi-dimensional knapsack problem, we are given

k knapsack instances
{(

w
(j)
1 , w

(j)
2 , . . . , w

(j)
n , C(j)

)}k

j=1
,

796818818818

and the goal is to compute the number of solutions satisfying

all constraints; i.e., compute the cardinality of the set of

solutions:

{S ⊂ {1, . . . , n} : for all 1 ≤ j ≤ k,
∑
i∈S

w
(j)
i ≤ C(j)}.

Morris and Sinclair [21] and Dyer [6] showed that their

approaches to #Knapsack extend to the multidimensional

problem, yielding an FPRAS when k is constant. We obtain

an FPTAS for the multi-dimensional knapsack problem also

when k is constant:

Theorem 1.2. Let
{(

w
(j)
1 , w

(j)
2 , . . . , w

(j)
n , C(j)

)}k

j=1
be an

instance of a multidimensional knapsack problem. Let W =∑
i,j w

(j)
i +

∑
j C

(j) and ε > 0. There is an FPTAS which
for any ε > 0 computes a 1 ± ε relative approximation of
the number of solutions to the multidimensional knapsack
instance in time O((n/ε)O(k2) logW).

Our algorithm works via a reduction from counting multi-

dimensional knapsack solutions under the uniform distri-

bution to solving k (one-dimensional) knapsack counting

problems, but under a carefully chosen small-space distri-

bution constructed using Dyer’s results. Thus the fact that

our second algorithm works for all small-space sources is

crucially used.
A yet more sophisticated application of our approach

yields an FPTAS for counting the number of integer-valued

contingency tables. Given row sums r = (r1, . . . , rm) ∈ Z
m
+

and column sums c = (c1, . . . , cn) ∈ Z
n
+, let CT (r, c) ⊆

Z
m×n
+ denote the set of integer-valued contingency tables

with row and column sums given by r, c:

CT (r, c) = {X ∈ Z
m×n
+ :

∑
j

Xij = ri, i ∈ [m],∑
i

Xij = cj , j ∈ [n] }.

Note that, as in the case of knapsack, the magnitude of

the row and column sums could be exponential in n. Dyer

[6] gave an FPRAS for counting solutions to contingency

tables (with a constant number of rows) based on dynamic

programming. We give an FPTAS for this problem.

Theorem 1.3. Given row sums r = (r1, . . . , rm) ∈ Z
m
+

and column sums c = (c1, . . . , cn) ∈ Z
n
+ with R =

maxi ri and ε > 0, there is an FPTAS that computes a
(1 ± ε)-relative error approximation for |CT (r, c)| in time
(nO(m)(logR)/ε)m.

In Section 2 we present the dynamic programming FPTAS
for #Knapsack, proving Theorem 1.1. In Section 3 we

define read-once branching programs and present the FPTAS
for the multidimensional knapsack problem (Theorem 1.2).

We also present an FPTAS for counting solutions to the

general integer knapsack problem in Section 4. The proof

of Theorem 1.3 is deferred to the full version of the paper.

2. SIMPLE DYNAMIC PROGRAMMING ALGORITHM FOR

#KNAPSACK

In this section we present our dynamic programming

algorithm. Fix a knapsack instance and fix an ordering on

the elements and their weights.

We begin by defining the function τ : {0, . . . , n}×R≥0 →
R ∪ {±∞} where τ(i, a) is the smallest C such that there

exist at least a solutions to the knapsack problem with

weights w1, . . . , wi and capacity C. It is not clear how to

compute the function τ efficiently since the second argument

has exponentially many possible values (the number of

solutions is an integer between 0 and 2n). Nevertheless, τ
will be used in the analysis and it is useful for motivating

the definition of our algorithm.

Note that, by definition, τ(i, a) is monotone in a, that is,

a ≤ a′ =⇒ τ(i, a) ≤ τ(i, a′). For i = 0, using standard

conventions, the value of τ is given by:

τ(0, a) =

{ −∞ if a = 0,
0 if 0 < a ≤ 1,
∞ otherwise.

(1)

Note that the number of knapsack solutions satisfies: Z =
max{a : τ(n, a) ≤ C}. We will show that τ(i, a) satisfies

the following recurrence (we explain the recurrence below).

Lemma 2.1. For any i ∈ [n] and any a ∈ R≥0 we have

τ(i, a) =min
α∈[0,1]

max

{
τ
(
i− 1, αa),

τ
(
i− 1, (1− α)a

)
+ wi.

(2)

Intuitively, to obtain a solutions that consider the first i
items, we need to have, for some α ∈ [0, 1], αa solutions

that consider the first i − 1 items, and (1 − α)a solutions

that contain the i-th item and consider the first i− 1 items.

We try all possible values of α and take the one that yields

the smallest (optimal) value for τ(i, a).
Proof of Lemma 2.1: Fix any α ∈ [0, 1]. Let B =

max{τ(i − 1, αa), τ
(
i − 1, (1 − α)a

)
+ wi}. Since B ≥

τ
(
i − 1, αa), there are at least αa solutions with weights

w1, . . . , wi−1 and capacity B. Similarly, since B − wi ≥
τ
(
i−1, (1−α)a), there are at least (1−α)a solutions with

weights w1, . . . , wi−1 and capacity B−wi. Hence, there are

at least a solutions with weights w1, . . . , wi and capacity B,

and thus τ(i, a) ≤ B. To see that we did not double count,

note that the first type of solutions (of which there are at

least αa) has xi = 0 and the second type of solutions (of

which there are at least (1− α)a) has xi = 1.

We established

τ(i, a) ≤ min
α∈[0,1]

max

{
τ
(
i− 1, αa),

τ
(
i− 1, (1− α)a

)
+ wi.

(3)

Consider the solution of the knapsack problem with

weights w1, . . . , wi and capacity C = τ(i, a) that has at

least a solutions. Let β be the fraction of the solutions

797819819819

that do not include item i. Then τ(i − 1, βa) ≤ C,

τ(i− 1, (1− β)a) ≤ C − wi, and hence

max{τ(i− 1, βa), τ(i− 1, (1− β)a) + wi} ≤ C = τ(i, a).

We established

τ(i, a) ≥ min
α∈[0,1]

max

{
τ
(
i− 1, αa),

τ
(
i− 1, (1− α)a

)
+ wi.

(4)

Equations (3) and (4) yield (2).

Now we move to an approximation of τ that we can

compute efficiently. We define a function T which only

considers a small set of values a for the second argument

in the function τ ; these values will form a geometric

progression.

Let Q := 1 + ε
n+1 and let s := �n logQ 2
 = O(n2/ε).

The function T : {0, . . . , n} × {0, . . . , s} → R≥0 ∪ {∞} is

defined using the recurrence (2) that the function τ satisfies.

Namely, T is defined by the following recurrence:

T [i, j] =min
α∈[0,1]

max

{
T
[
i− 1, �j + lnQ α�],

T
[
i− 1, �j + lnQ(1− α)�]+ wi.

The second argument of T is, approximately, the logarithm

(with base Q) of the second argument of τ . (Note that lnQ α
and lnQ(1− α) are negative.)

More precisely, T is defined by the following algorithm

CountKnapsack.

CountKnapsack
Input: Integers w1, w2, . . . , wn, C and ε > 0.

1.Set T [0, 0] = 0 and T [0, j] = ∞ for j > 0.
2.Set Q = (1 + ε/(n+ 1)) and s = �n logQ 2
.
3.For i = 1 → n, for j = 0 → s, set

T [i, j] =min
α∈[0,1]

max

{
T
[
i− 1, �j + lnQ α�],

T
[
i− 1, �j + lnQ(1− α)�]+ wi,

(5)

where, by convention, T [i − 1, k] = 0 for
k < 0.

4. Let j′ := max{j : T [n, j] ≤ C}. Output Z ′ :=
Qj′+1.

Note, the recurrence (5) is over all α ∈ [0, 1]. However,

since the second arguments (namely, �j + lnQ α� and �j +
lnQ(1−α)�) are step functions of α, it suffices to consider

a discrete set S of α which yields all possible values of

the second arguments. For j ∈ {0, 1, . . . , s}, the set S is

S = S1 ∪ S2 where: S1 = {Q−j , . . . , Q0} and S2 = {1 −
Q0, . . . , 1 − Q−j}. The set S1 captures those α pertaining

to the argument �j + lnQ α� in (5), and S2 captures those

for �j + lnQ(1− α)�. By only considering this subset S of

possible α we will be able to compute T efficiently.

The key fact is that T approximates τ in the following

sense.

Lemma 2.2. Let i ≥ 1. Assume that for all j ∈ {0, . . . , s}
we have that T [i − 1, j] satisfy (6). Then for all j ∈
{0, . . . , s} we have that T [i, j] computed using (5) satisfies:

τ(i, Qj−i) ≤ T [i, j] ≤ τ(i, Qj). (6)

Proof: By the assumption of the lemma and the mono-

tonicity of τ we have

T
[
i− 1, �j + lnQ α�] ≥ τ(i− 1, Q�j+lnQ α�−(i−1)) ≥

τ(i− 1, αQj−i), (7)

and

T
[
i−1, �j+lnQ(1−α)�] ≥ τ

(
i− 1, Q�j+lnQ(1−α)�−(i−1)

)
≥ τ(i− 1, (1− α)Qj−i). (8)

Combining (7) and (8) with min and max operators we

obtain(
min

α∈[0,1]
max

{
T
[
i− 1, �j + lnQ α�],

T
[
i− 1, �j + lnQ(1− α)�]+ wi

)
≥(

min
α∈[0,1]

max

{
τ(i− 1, αQj−i),
τ(i− 1, (1− α)Qj−i) + wi

)
= τ(i, Qj−i),

establishing that T [i, j] computed using (5) satisfy the lower

bound in (6).

By the assumption of the lemma and the monotonicity of

τ we have

T
[
i−1, �j+lnQ α�] ≤ τ(i−1, Q�j+lnQ α�) ≤ τ(i−1, αQj),

(9)

T
[
i− 1, �j + lnQ(1− α)�] ≤ τ(i− 1, Q�j+lnQ(1−α)�) ≤

τ(i− 1, (1− α)Qj). (10)

Combining (9) and (10) with min, max operators we obtain(
min

α∈[0,1]
max

{
T
[
i− 1, �j + lnQ α�],

T
[
i− 1, �j + lnQ(1− α)�]+ wi

)
≤(

min
α∈[0,1]

max

{
τ(i− 1, αQj),
τ(i− 1, (1− α)Qj) + wi

)
= τ(i, Qj),

establishing that T [i, j] computed using (5) satisfy the upper

bound in (6).

We can now prove that the output Z ′ of the algorithm

CountKnapsack is a (1 ± ε) multiplicative approximation

of Z. Note that Z ′ is never an underestimate of Z, since,

C < T [n, j′ + 1] ≤ τ(n,Qj′+1),

that is, there are at most Qj′+1 solutions. We also have

τ(n,Qj′−n) ≤ T [n, j′] ≤ C,

798820820820

that is, there are at least Qj′−n solutions. Hence

Z ′

Z
≤ Qj′+1

Qj′−n
= Qn+1 ≤ eε.

This proves that the output Z ′ of CountKnapsack
satisfies the conclusion of Theorem 1.1. It remains to show

that the algorithm can be modified to achieve the claimed

running time.

Running Time: As noted earlier, the minimum over α in

the recurrence (5) only needs to be evaluated at the discrete

subset S = S1∪S2 defined earlier. Since |S| = O(s), T [i, j]
can be computed in O(s) time. Since there are O(ns) entries

of the table and s = O(n2/ε) the algorithm CountKnap-
sack can be implemented in O(ns2) = O(n5/ε2) time.

The running time can further be improved to

O(n3ε−1 log(n/ε)) by observing that we can do binary

search over both S1 and S2 to find the optimal α, see the

full version of the paper for details.

3. APPROXIMATE COUNTING USING BRANCHING

PROGRAMS

In this section we give an FPTAS for the multidimensional

knapsack problem, thereby proving Theorem 1.2. To solve

the multidimensional case, it will be convenient for us to rep-

resent knapsack instances as read-once branching programs

(ROBPs). Here we describe read-once branching programs

and explain their relevance for deterministic, approximate

counting. Using this machinery we also give an FPTAS for

all the problems considered in Dyer’s paper [6].

3.1. Preliminaries

Definition 3.1 (ROBP). An (S, T)-branching program M
is a layered multi-graph with a layer for each 0 ≤ i ≤ T
and at most S vertices (states) in each layer. The first layer
has a single vertex v0 and each vertex in the last layer is
labeled with 0 (rejecting) or 1 (accepting). For 0 ≤ i ≤ T ,
a vertex v in layer i has two outgoing edges labeled 0, 1
and ending at vertices in layer i+ 1.

Note that by definition, an (S, T)-branching program is

read-once and oblivious in the sense that all the vertices

in a layer are labeled by the same variable (these are

also known as Ordered Binary Decision Diagrams in the

literature). We also use the following notation: Let M be

an (S, T)-branching program and v a vertex in layer i of

M .

1. For a string z, M(v, z) denotes the state reached by

starting from v and following edges labeled with z.

2. For z ∈ {0, 1}n, let M(z) = 1 if M(v0, z) is an

accepting state, and M(z) = 0 otherwise.

3. AM (v) = {z : M(v, z) is accepting in M} and PM (v)
is the probability that M(v, z) is an accepting state for

z chosen uniformly at random.

4. L(M, i) denotes the vertices in layer i of M .

5. For a set U , x ∈u U denotes a uniformly random

element of U .

Given an instance of the knapsack problem w1, . . . , wn and

C, let W =
∑

i |wi|. It is easy to see that the set of accepting

strings for this knapsack instance are computed exactly by

a (W,n)-branching program. Intuitively, given an input x,

the jth layer of this branching program keeps track of the

partial sum after reading j bits of input, namely
∑j

i=1 wixi.

Since the partial sum cannot exceed W , a width-W ROBP

suffices to carry out the computation.
Monotone ROBPs: We will also require that the branch-

ing programs we work with satisfy a monotonicity condition

and can be described implicitly. We discuss these two

notions below.

Definition 3.2 (Monotone ROBP). A (W,n)-branching pro-
gram M is monotone if for all i ≤ n, there exists a total
ordering ≺ on the vertices in L(M, i) such that if u ≺ v,
then AM (u) ⊆ AM (v).

Monotone ROBPs were introduced by Meka and Zuck-

erman [20] in their work on pseudorandom generators for

halfspaces. It is easy to see that the branching program for

knapsack satisfies the above monotonicity condition: Given

partial sums vj , vk we say vj ≺ vk if vj > vk, since a larger

partial sum means that fewer suffix strings will be accepted.

Since we deal with monotone ROBPs that potentially have

width exponential in n, we require that the monotone ROBP

M be described implicitly in the following sense (we assume

that the following two operations are of unit cost):

1. Ordering: given two states u, v we can efficiently check

if u ≺ v and if so find a w that is halfway between u, v,

i.e., | |{x : u ≺ x ≺ w}| − |{x : w ≺ x ≺ v}| | ≤ 1.

2. Transitions: Given any vertex of M we can compute the

two neighbors of the vertex.

Small-Space Sources: Let M be a ROBP computing

an instance of knapsack. We are interested in computing the

quantity M̂ = Prx∈{0,1}n [M(x) = 1] deterministically, as

2n · M̂ equals the number of solutions to the knapsack in-

stance. As we will see in the next section, we will also need

to estimate Prx∼D[M(x) = 1] where D is a non-uniform

distribution over {0, 1}n that corresponds to conditioning

on certain events. As such, we will need to use the notion

of a small-space source, which is a small-width branching

program that encodes a distribution on {0, 1}n (we will often

abuse notation and denote the distribution generated by a

branching program and the branching program itself by D).

Small-space sources were introduced by Kamp et al. [15]

in their work on randomness extractors as a generalization of

many commonly studied distributions such as Markov-chain

sources and bit-fixing sources.

Definition 3.3 (small-space sources, Kamp et al. [15]).
A width w small-space source is described by a (w, n)-

799821821821

branching program D and additional probability distribu-
tions pv on the outgoing edges associated with vertices
v ∈ D. Samples from the source are generated by taking
a random walk on D according to the distributions pv and
outputting the labels of the edges traversed.

Several natural distributions such as all symmetric distri-

butions and product distributions can be generated by small-

space sources. We will use the following straightforward

claims:

Claim 3.4. Given a ROBP M of width at most W and a
small-space source D of width at most S, Prx∼D[M(x) = 1]
can be computed exactly via dynamic programming in time
O(n · S ·W).

Claim 3.5. Given a (W,n)-ROBP M , the uniform distribu-
tion over M ’s accepting inputs, {x : M(x) = 1} is a width
W small-space source.

3.2. Main Structural Result and Applications

As mentioned earlier, the set of accepting strings for

a knapsack instance of total weight W can be computed

exactly by a (W,n)-branching program. Unfortunately, this

observation does not help in counting solutions to knapsack

as W can be exponentially large. To handle the large width,

we exploit the fact that the natural ROBP for computing

knapsack solutions is monotone to efficiently compute a

small-width ROBP that approximates the knapsack ROBP

with small relative error. Moreover, we are able to com-

pute such an approximation small-width ROBP with small

relative error under arbitrary small space sources, which is

critical for the multi-dimensional case.

Our main counting results are obtained by proving the

following key structural theorem for monotone ROBPs that

we believe is of independent interest:

Theorem 3.6. Given a (W,n)-monotone ROBP M , δ > 0,
and a small-space distribution D over {0, 1}n of width at
most S, there exists an (O(n2S/δ), n)-monotone ROBP M0

such that for all z, M(z) ≤ M0(z) and

Pr
x∼D

[M(z) = 1] ≤ Pr
x∼D

[M0(z) = 1] ≤ (1+δ) Pr
x∼D

[M(z) = 1] .

Moreover, given an implicit description of M and an explicit
description of D, M0 can be constructed in deterministic
time O(n3S(S + log(W)) log(n/δ)/δ).

We first show how to use Theorem 3.6 to obtain an

FPTAS for the multidimensional knapsack problem. We then

give a proof of Theorem 3.6 in Section 3.3. Notice that an

FPTAS for the (one dimensional) knapsack problem follows

immediately from Theorem 3.6 and the earlier observation

that a weight W knapsack instance is a (W,n)-monotone

ROBP. In fact, we can approximately count knapsack solu-

tions with respect to all symmetric and product distributions,

as each of these can generated by a small-space source.

There are two subtle issues in applying Theorem 3.6

directly for the multidimensional knapsack problem. Firstly,

the natural ROBP for multidimensional knapsack obtained

by taking the intersection of ROBPs for the individual

knapsack constraints need not be monotone. Secondly, even

starting with small-width, low relative-error approximating

ROBPs for each individual knapsack constraint, it is not

clear how to obtain a low relative-error approximating ROBP

for the multidimensional case. This is because taking the

intersection of the approximating ROBPs only preserves

approximation in additive error and not in relative error

which is what we want. We handle these issues by using

the following elegant result due to Dyer, which essentially

helps us reduce the problem of obtaining relative-error

approximations to obtaining additive-error approximations

with respect to small space sources.

Theorem 3.7 (Dyer, [6]). Given knapsack instances{(
w

(i)
1 , . . . , w

(i)
n , C(i)

)}k

i=1
we can deterministically, in

time O(n3), construct a new set of knapsack instances{(
u
(i)
1 , . . . , u

(i)
n , B(i)

)}k

i=1
, each with a total weight of at

most O(n3) such that the following holds. For 1 ≤ i ≤ k,
let Si, S

′
i denote the feasible solutions for the knapsack

instances
(
w

(i)
1 , . . . , w

(i)
n , C(i)

)
,
(
u
(i)
1 , . . . , u

(i)
n , B(i)

)
re-

spectively. Then, Si ⊆ S′
i and∣∣∣ ⋂

i∈[k]

S′
i

∣∣∣ ≤ (n+ 1)k
∣∣∣ ⋂
i∈[k]

Si

∣∣∣.
Proof of Theorem 1.2: We first use Theorem 3.7 to

obtain low-weight knapsack instances. As each instance has

weight at most O(n3), they are each computable exactly

by a (O(n3), n)-ROBP. It is straightforward to check that

the intersection of several ROBPs is a computable by a

ROBP with width at most the product of the widths of

the original ROBPs. Therefore, the intersection U = ∩i S
′
i

is computable by a (O(n3k), n)-ROBP. Thus, if D is the

uniform distribution over U , then by Claim 3.5, D can be

generated by an explicit O(n3k) space source.

For i ∈ [k], let M i be a (W,n)-ROBP exactly com-

puting the feasible set of the i’th original knapsack in-

stance. Recall that we wish to approximate the quantity

Prx∈u{0,1}n [∧iM
i(x) = 1]. We can rewrite this as follows:

Pr
x∈u{0,1}n

[∧iM
i(x) = 1] =

Pr
x∈u{0,1}n

[x ∈ U] · Pr
x∼D

[∧iM
i(x) = 1].

Since the multidimensional knapsack instance output by

Dyer’s algorithm has low-weight, we can apply Claim 3.4 to

compute Prx∈u{0,1}n [x ∈ U] exactly. Theorem 3.6 will give

us a relative-error approximation to Prx∼D[∧iM
i(x) = 1]

and complete the proof. We now proceed more formally.

800822822822

Let δ = O(ε/k(n + 1)k) to be chosen later. For ev-

ery i ∈ [k], by Theorem 3.6 we can explicitly in time

nO(k)(logW)/δ construct a (nO(k)/δ, n)-ROBP N i such

that,

Pr
x∼D

[N i(x) �= M i(x)] ≤ δ.

Let M be the (nO(k2)/δk, n)-ROBP computing the inter-

section of N i for i ∈ [k], i.e., M(x) = ∧iN
i(x). Then by a

union bound we have Prx∼D[M(x) �= ∧iM
i(x)] ≤ kδ. On

the other hand, by Theorem 3.7, Prx∼D[∧iM
i(x) = 1] ≥

1/(n + 1)k. Therefore, from the above two equations and

setting δ = ε/2k(n+ 1)k, we get that

Pr
x∼D

[M(x) = 1] ≤ Pr
x∼D

[∧iM
i(x) = 1]

≤ (1 + ε) Pr
x∼D

[M(x) = 1].

Thus, p = Prx∈u{0,1}n [x ∈ U] · Prx∼D[M(x) = 1] is

an ε-relative error approximation to Prx∈u{0,1}n [x ∈ U] ·
Prx∼D[∧iM

i(x) = 1] = Prx∈u{0,1}n [∧iM
i(x) = 1].

The theorem follows as we can compute p in time

(n/δ)O(k2) using Claim 3.4, as D is a small-space source of

width at most O(n3k) and M has width at most (n/δ)O(k2).

3.3. Proof of Theorem 3.6

We start with some notation. Let D denote the small space

generator of width at most S. For A ⊆ {0, 1}n we use D(A)
to denote the measure of A under D. Let U1, . . . , Un be the

vertices in D with U i being the i’th layer of D. For a vertex

u ∈ U i, let Du be the distribution over {0, 1}n−i induced by

taking a random walk in D starting from u. Given a vertex

v ∈ L(M, i) and u ∈ U i, let PM,u(v) denote the probability

of accepting if we start from v and make transitions in M
according to a suffix sampled from distribution Du.

We will start from the exact branching program M
and work backwards, constructing a sequence of programs

Mn = M, . . . ,M0, where M i is obtained from M i+1 by

“rounding” the (i + 1)st layer. The construction is similar

in spirit to the work of Meka and Zuckerman [20], who

showed how to round a halfspace constraint with respect

to the uniform distribution and obtain small additive error:

partial sums can be grouped together if they result in similar

“suffix acceptance probability.” Here we work with relative

error and small-space sources; we do the rounding in such

a way as to ensure the acceptance probabilities are well

approximated under each of the possible distributions on

suffixes Du. Further, after layer i is rounded, it will be of

small width. Thus, the branching program M0 will be a

small-width program.

The rounding process for creating M i has two steps. First,

we need to create “breakpoints” for the (i + 1)’st layer

of M i+1. Then, we have to round the edges going from

layer i to layer i + 1. We now create our breakpoints. Let

L(M i+1, i + 1) = {v1 ≺ v2 · · · ≺ vW }. Fix a vertex u ∈
U i+1. We define a set Bi+1(u) = {vu(j)} ⊆ L(M i+1, i+1)

of breakpoints for u as follows. We start with vu(1) = vW
and given vu(j) define vu(j+1) by

vu(j+1) = max v s.t.v ≺ vu(j) and

0 < PMi+1,u(v) < PMi+1,u(vu(j))/(1 + ε) (11)

Let Bi+1 = ∪u∈Ui+1Bi+1(u) = {b1 ≺ · · · ≺ bN} be the

union of breakpoints for all u. We set L(M i, i+1) = Bi+1.

The vertices in all other layers stay the same as in M i+1.

Figure 1(a) (page 8) shows the breakpoints (in blue) for a

single vertex u of the small space source, and Figure 1(b)

(page 8) shows the complete set of breakpoints.

Now we describe the edges of M i. All the edges except

those from layer i to i+1 stay the same as in M i+1, and we

round these edges upward as follows: let v′ ∈ L(M i+1, i)
and for z ∈ {0, 1}, let M i+1(v′, z) = v ∈ L(M i+1, i + 1).
Find two consecutive vertices bk, bk+1 ∈ L(M i, i+1) such

that bk ≺ v � bk+1. We set M i(v′, z) = bk+1. Note

that this only increases the number of accepting suffixes

for v′. Figure 1(b) shows the rounding of edges. This

completes the construction of the M is. The following claim

is straightforward:

Claim 3.8. The branching program M i is monotone where
the ordering of vertices in each layer is the same as M .

We also obtain the following simple lemma:

Lemma 3.9. For v ∈ M i, AMi+1(v) ⊆ AMi(v). Thus
PM,u(v) ≤ PMi,u(v) for all u ∈ U i.

Proof: It suffices to prove the claim when v ∈ L(M i, i).
Fix z ∈ {0, 1} and let v′ = M i+1(v, z). We have

M i(v, z) = bk+1 where bk ≺ v′ � bk+1. By Claim 3.8,

we have AMi(v′) ⊆ AMi(bk+1). Thus the set of accepting

suffixes only increases for either value of z.

Further, we claim that M0 can be computed efficiently.We

now show that the number of accepting solutions does not

increase too much.

Lemma 3.10. For v ∈ L(M i, j) and u ∈ U j , we have
PMi,u(v) ≤ PM,u(v)(1 + ε)n−i.

Proof: It suffices to show that PMi,u(v) ≤
PMi+1,u(v)(1 + ε). This claim is trivial for j ≥ i+ 1 since

for such vertices, PMi,u(v) = PMi+1,u(v). The crux of the

argument is when j = i. Since M i+1 and M i are identical

up to layer i, the claim for j < i will follow.

Fix v ∈ L(M i, i) and u ∈ U i. Let u0, u1 denote the

neighbors of u in D. Then we have

PMi,u(v) = pu(0)PMi,u0
(M i(v, 0))+

pu(1)PMi,u1
(M i(v, 1)). (12)

We first bound PMi,u0
(M i(v, 0)). Let b′, b′′′′ be the break-

points in Bi+1(u0) such that b′ ≺ M i+1(v, 0) � b′′′′

and let a2, a3 be the breakpoints in Bi+1 such that b′′ ≺
M i+1(v, 0) � b′′′. Note that M i(v, 0) = b′′′, by the

801823823823

...· · · ...

(1 + ε)PMi+1,u(vu(2)) ≤
PMi+1,u(vu(1))

vW

vu(2)

vu(k−1)

vu(k)

· · ·

Layer i Layer i+ 1

Start

Final Layer

...· · ·
...

· · ·

bN

bN−1

b1

b2

(1 + ε)PMi+1,u(bN) ≤
PMi+1,u(bN−1), ∀u ∈ U i+1

v
v′

Layer i Layer i+ 1

Start

Final Layer

(a) (b)

Figure 1. Rounding M i+1 to M i. (a): Breaking points (blue squares) Bi+1(u) for a fixed u. (b): Edge rounding: the original edge (black solid) from
v′ to v is rounded up (blue dashed) to b3 - the next “higher” vertex to v in Bi+1.

construction of M i. Since Bi+1(u0) ⊆ Bi+1, we get

b′ � b′′ ≺ M i+1(v, 0) � b′′′ � b′′′′. By the def-

inition of breakpoints, we have PMi+1,u0
(b′′′′) ≤ (1 +

ε)PMi+1,u0
(M i+1(v, 0)) and by the monotonicity of M i+1

PMi+1,u0
(b′′′) ≤ PMi+1,u0

(b′′′′), which together show that

PMi+1,u0
(b′′′) ≤ (1 + ε)PMi+1,u0

(M i+1(v, 0)).

Since b′′′ ∈ L(M i, i + 1), we have PMi,u0
(b′′′) =

PMi+1,u0
(b′′′). Thus

PMi,u0
(M i(v, 0)) ≤ (1 + ε)PMi+1,u0

(M i+1(v, 0)).

Similarly, we can show

PMi,u1
(M i(v, 1)) ≤ (1 + ε)PMi+1,u1

(M i+1(v, 1)).

Plugging these into Equation 12 gives

PMi,u(v) ≤ (1 + ε)(pu(0)PMi+1,u0
(M i+1(v, 0))+

pu(1)PMi+1,u1
(M i+1(v, 1))) = (1 + ε)PMi+1,u(v)

which is what we set out to prove.

We now analyze the complexity of constructing M0 from

M :

Claim 3.11. The branching program M0 can be constructed
in time O(n2S(S + log(W)) log(nS/ε)/ε).

Proof: Observe that for every i and u ∈ U i, |Bi(u)| ≤
2n
ε and hence |Bi| ≤ 2nS

ε . Let us analyze the complexity

of constructing M i from M i+1. We will assume inductively

that the set Bi+2 is known and stored in a binary tree along

with the values PMi+1,u(b), for every b ∈ Bi+2 and u ∈
U i+2. Hence, given v ∈ L(M, i+1), we can find bk, bk+1 ∈
Bi+2 such that bk ≺ v � bk+1 in time log(nS/ε). This

ensures that if we are given a vertex v′ ∈ L(M i+1, i+1) and

u ∈ U i+1, we can compute PMi+1,u(v
′) in time log(nS/ε).

To see this, note that

PMi+1,u(v
′) =

∑
z∈{0,1}

pu(z)PMi+1,uz
(M i+1(v′, z))

where uz ∈ U i+2 denotes the vertex reached in D when

taking the edge labeled z from u. To compute M i+1(v′, z)
we first compute v = M(v′, z) using the fact that M
is described implicitly. We then find bk ≺ v � bk+1 in

Bi+2 and set M i+1(v′, z) = bk+1. Since we have the

values of PMi+1,uz
(b) precomputed, we can use them to

compute PMi+1,u(v
′). The time required is dominated by

the O(log(nS/ε)) time needed to find bk+1.

Now, for each u ∈ U i+1, by using binary search on the set

of vertices, each new breakpoint in Bi+1(u) can be found

in time O(log(W) log(nS/ε)). Thus finding the set Bi+1

takes time O(nS log(W) log(nS/ε)/ε).
Once we find the set Bi+1, we store it as a binary tree. We

compute and store the values of PMi,u(b) = PMi+1,u(b) for

each b ∈ Bi+1 and u ∈ U i+1 in time O(nS2 log(nS/ε)/ε).
Thus overall, the time required to construct M0 from M

is O(n2S(S + log(W)) log(nS/ε)/ε).
Proof of Theorem 3.6: Choose ε = Ω(δ/n) so that

(1 + ε)n ≤ (1 + δ). We construct the program M0 from

M and output PM0,u(s) where s is the start state of M
and u is the start state of S. By Claim 3.11, this takes time

O(n3S(S+log(W)) log(nS/δ)/δ). Applying Lemmas 3.10

and 3.9, we conclude that

PM,u(s) ≤ PM0,u(s) ≤ PM,u(s)(1 + δ).

Note that PM,u(s) and PM0,u(s) are respectively the prob-

abilities that M and M0 accept a string sampled from the

distribution D. This completes the proof.

4. AN FPTAS FOR GENERAL INTEGER KNAPSACK

In this section, we address the problem of count-

ing solutions to knapsack where the feasible solutions

can take integer values instead of being restricted to be

0/1 valued. Given, non-negative integer weights w =
(w1, . . . , wn), a capacity C and non-negative integer ranges

u = (u1, . . . , un), the goal here is to estimate the size of

the set of solutions KNAP(w,C, u) = {x :
∑

i≤n wixi ≤
C, 0 ≤ xi ≤ ui}. Note that the range sizes u1, . . . , un

could be exponential in n. Dyer [6] gave an FPRAS for

802824824824

integer-valued knapsack as well. We obtain a FPTAS for

the problem.

Theorem 4.1 (integer knapsack). Given a knapsack in-
stance KNAP(w,C, u) with weight W =

∑
i wiui + C,

U = maxi ui and ε > 0, there is a deterministic
O(n5(logU)2(logW)/ε2) algorithm that computes an ε-
relative error approximation for |KNAP(w,C, u)|.

As in the case of {0, 1}-knapsack we start with the exact

branching program M for KNAP(w,C, u), where each state

in L(M, j) corresponds to a partial sum vj =
∑

i≤j wixi

and has (uj+1 + 1) outgoing edges corresponding to the

possible values of variable xj+1. We then approximate this

program with a small-width branching program as was done

for {0, 1}-knapsack. However, unlike the previous case,

where we only had to worry about the width being large,

the program M can have both exponentially large width

and degree. To handle this, we observe that the branching

program M is an interval ROBP in the sense defined below,

which allows us to shrink the state space as well as obtain

succinct descriptions of the edges of the new branching

programs we construct.

Definition 4.2 (Interval ROBPs). For u = (u1, . . . , un) ∈
Z
n
+, S, T ∈ Z+, an (S, u, T)-interval ROBP M is a layered

multi-graph with a layer for each 0 ≤ i ≤ T , at most S
states in each layer. The first layer has a single (start) vertex,
each vertex in the last layer is labeled accepting or rejecting.
A vertex v in layer i − 1 has exactly ui + 1 edges labeled
{0, 1, . . . , ui} to vertices in layer i. Further, there exists a
total order ≺ on the vertices of layer i for 0 ≤ i ≤ T such
that the edge labelings respect the ordering in the following
sense: for a vertex v in layer i − 1, if M(v, k) denotes
the k’th neighbor of v for 0 ≤ k ≤ ui, then M(v, ui) �
M(v, ui − 1) � · · · � M(v, 0).

An interval ROBP defines a natural Boolean function
M : {0, . . . , u1}×{0, . . . , u2}×· · ·×{0, . . . , un} → {0, 1}
where on input x = (x1, . . . , xn), we begin at the start
vertex and output the label of the final vertex reached when
traversing M according to x.

Note that the case u = (1, 1, . . . , 1) corresponds to a

special class of monotone ROBPs. The intuition behind the

definition of interval ROBPs is that even if an interval ROBP

M has large degree, the edges of M can be represented

succinctly: Given an (S, u, T)-interval ROBP M , and a

vertex v in layer i− 1, the edges out of v can be described

exactly by a subset of at most 2S edges irrespective of how

large the degree of v ui is. For, if v′ is a vertex in i’th layer,

and E(v, v′) = {0 ≤ k ≤ ui : M(v, k) = v′} is the set of

edge labels going from v to v′, then E(v, v′) is an interval,

meaning E(v, v′) = {lv,v′ , lv,v′ + 1, lv,v′ + 2, . . . , rv,v′} for

some integers lv,v′ , rv,v′ . Thus, the set of edges E(v, v′)
is completely described by lv,v′ and rv,v′ . We exploit

this observation critically when computing the small-width

approximating branching program.

In analogy to the case of {0, 1}-knapsack, given an

instance KNAP(w,C, u) of integer knapsack, there is an in-

terval ROBP that exactly computes the set KNAP(w,C, u).
Let M denote this interval ROBP with edges between layer

i − 1 and layer i labeled by xi ∈ {0, . . . , ui} and for

v ∈ L(M, i − 1), 0 ≤ xi ≤ ui we have M(v, xi) =
v + wixi ∈ L(M, i).

Given a vertex v ∈ L(M, i) we use PM (v) to denote

the probability that M(v, z) accepts, for z chosen uniformly

form {0, . . . , uj+1} × · · · × {0, . . . , un}. As in the proof of

Theorem 3.6, we construct a series of progressively simpler

interval ROBPs Mn = M,Mn−1, . . . ,M0 with a similar

rounding procedure.

We next describe how to obtain M i from M i+1. This

involves two steps: we first create “breakpoints” to sparsify

the i+1’th layer L(M i+1, i+1) of M i+1 and then round the

edges going from layer i to layer i+1. We set L(M i, i+1) =
{v1, . . . , v�} ⊆ L(M i+1, i + 1) where the vj’s are defined

as follows: Let v1 = 0. Given vj , let

vj+1 = min v such that v > vj and

0 < PMi+1(v) < PMi+1(vj)/(1 + η). (13)

Let I1 = {v1, . . . , v2 − 1}, . . . , I� = {v�, . . .}, where 	 ≤
n(logU)/η as PMi(v1) ≤ 1 and PMi(v�) ≥ U−n. Next

we redirect the transitions going from level i to level i+ 1.

If we have an edge labeled z ∈ {0, . . . , ui+1} entering a

vertex v ∈ Ij , then we redirect the edge to vertex vj . The

redirection will be done implicitly in the sense that for any

vertex v in level i and a vertex vj , we only compute and

store the end points {lv,vj , rv,vj} of the interval E(v, vj) =
{0 ≤ k ≤ ui+1 : M i(v, k) = vj}.

Our branching programs have the following approximat-

ing properties analogous to Lemmas 3.8, 3.9, 3.10 and Claim

3.11. The proofs are deferred to the full version.

Lemma 4.3. For any v ∈ L(M i, j) and 0 ≤ k ≤ l ≤ uj+1,
M i(v, k) ≤ M i(v, l). Let v, v′ ∈ L(M i, j) and v ≤ v′. For
any suffix z, M i(v, z) ≤ M i(v′, z).

Lemma 4.4. For v ∈ M i, we have AMi+1(v) ⊆ AMi(v).
Further, for any v ∈ L(M i, j) where j ≤ i, we have
PM (v) ≤ PMi(v) ≤ PM (v)(1 + η)n−i.

Lemma 4.5. Each vertex vj ∈ L(M i, i+1) can be computed
in time O(n(logU)(logW)/η).

Proof of Theorem 4.1: We set η = δ/2n and use the

above arguments to construct the branching program M0

and compute the value of PM0(s) where s is the start state.

By Lemma 4.4

PM (s) ≤ PM0(s) ≤ PM (s)(1 + η)n ≤ (1 + δ)PM (s),

where the last inequality holds for small enough δ. Finally,

note that the number of solutions |KNAP(w,C, u)| is pre-

803825825825

cisely PM (s)
∏

i(ui+1). Hence we output PM0(s)
∏

i(ui+
1).

REFERENCES

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Ann.
of Math., 160(2):781–793, 2004.

[2] M. Ajtai and A. Wigderson. Deterministic simulation of
probabilistic constant depth circuits. Advances in Computing
Research - Randomness and Computation, 5:199–223, 1989.
A preliminary version appears in Proceedings of the 26th
Annual Symposium on Foundations of Computer Science
(FOCS), 11-19, 1985.

[3] S. Arora and B. Barak. Computational complexity: A Modern
Approach. Cambridge University Press, Cambridge, 2009.

[4] M. Bayati, D. Gamarnik, D. Katz, C. Nair, and P. Tetali.
Simple deterministic approximation algorithms for counting
matchings. In Proceedings of the 39th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 122–127, 2007.

[5] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. A. Servedio, and E.
Viola. Bounded independence fools halfspaces. In Proceed-
ings of the 50th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 171–180, 2009.

[6] M. Dyer. Approximate counting by dynamic programming. In
Proceedings of the 35th Annual ACM Symposium on Theory
of Computing (STOC), pages 693–699, 2003.

[7] M. Dyer, A. Frieze, and R. Kannan. A random polynomial-
time algorithm for approximating the volume of convex
bodies. J. ACM, 38(1):1–17, 1991.

[8] M. Dyer, A. Frieze, R. Kannan, A. Kapoor, L. Perkovic,
and U. Vazirani. A mildly exponential time algorithm for
approximating the number of solutions to a multidimensional
knapsack problem. Combin. Probab. Comput., 2(3):271–284,
1993.

[9] D. Gamarnik and D. Katz. Correlation decay and deter-
ministic FPTAS for counting list-colorings of a graph. In
Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1245–1254, 2007.

[10] M. Jerrum. A very simple algorithm for estimating the
number of k-colorings of a low-degree graph. Random Struct.
Algorithms, 7(2):157–165, 1995.

[11] M. Jerrum and A. Sinclair. Approximating the permanent.
SIAM J. Comput., 18(6):1149–1178, 1989.

[12] M. Jerrum and A. Sinclair. Polynomial-time approximation
algorithms for the Ising model. SIAM J. Comput., 22(5):1087–
1116, 1993.

[13] M. Jerrum and A. Sinclair. The Markov Chain Monte Carlo
Method: An Approach To Approximate Counting and Integra-
tion. In D. S. Hochbaum, editor, Approximation Algorithms
for NP-hard Problems, pages 482–520. PWS Publishing,
1996.

[14] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time
approximation algorithm for the permanent of a matrix with
nonnegative entries. J. ACM, 51(4):671–697, 2004.

[15] J. Kamp, A. Rao, S. P. Vadhan, and D. Zuckerman. Deter-
ministic extractors for small-space sources. In Proceedings of
the 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 691–700, 2006.

[16] R. M. Karp and M. Luby. Monte Carlo algorithms for
the planar multiterminal network reliability problem. J.
Complexity, 1(1):45–64, 1985.

[17] L. Lovász and S. Vempala. Simulated annealing in convex
bodies and an O∗(n4) volume algorithm. J. Comput. System
Sci., 72(2):392–417, 2006.

[18] M. Luby, D. Randall, and A. Sinclair. Markov chain al-
gorithms for planar lattice structures. SIAM J. Comput.,
31(1):167–192, 2001.

[19] M. Luby and B. Velic̆ković. On deterministic approximation
of DNF. Algorithmica, 16(4/5):415–433, 1996.

[20] R. Meka and D. Zuckerman. Pseudorandom generators for
polynomial threshold functions. In Proceedings of the 42nd
Annual ACM Symposium on Theory of Computing (STOC),
pages 427–436, 2010.

[21] B. Morris and A. Sinclair. Random walks on truncated cubes
and sampling 0-1 knapsack solutions. SIAM J. Comput.,
34(1):195–226, 2004.

[22] Y. Rabani and A. Shpilka. Explicit construction of a small
epsilon-net for linear threshold functions. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing
(STOC), pages 649–658, 2009.

[23] A. Sly. Computational transition at the uniqueness threshold.
In Proceedings of the 51th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 287–296,
2010.

[24] D. Štefankovič, S. Vempala, and E. Vigoda. Adaptive simu-
lated annealing: a near-optimal connection between sampling
and counting. J. ACM, 56(3):1–36, 2009.

[25] D. Weitz. Counting independent sets up to the tree threshold.
In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC), pages 140–149, 2006.

804826826826

