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Recent inapproximability results of Sly (2010), together with an approximation algorithm

presented by Weitz (2006), establish a beautiful picture of the computational complexity of

approximating the partition function of the hard-core model. Let λc(TΔ) denote the critical

activity for the hard-model on the infinite Δ-regular tree. Weitz presented an FPTAS for

the partition function when λ < λc(TΔ) for graphs with constant maximum degree Δ. In

contrast, Sly showed that for all Δ � 3, there exists εΔ > 0 such that (unless RP = NP)

there is no FPRAS for approximating the partition function on graphs of maximum degree

Δ for activities λ satisfying λc(TΔ) < λ < λc(TΔ) + εΔ.

We prove that a similar phenomenon holds for the antiferromagnetic Ising model.

Sinclair, Srivastava and Thurley (2014) extended Weitz’s approach to the antiferromagnetic

Ising model, yielding an FPTAS for the partition function for all graphs of constant

maximum degree Δ when the parameters of the model lie in the uniqueness region of the

infinite Δ-regular tree. We prove the complementary result for the antiferromagnetic Ising

model without external field, namely, that unless RP = NP, for all Δ � 3, there is no FPRAS

for approximating the partition function on graphs of maximum degree Δ when the inverse

temperature lies in the non-uniqueness region of the infinite tree TΔ. Our proof works by

relating certain second moment calculations for random Δ-regular bipartite graphs to the

tree recursions used to establish the critical points on the infinite tree.
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1. Introduction

A remarkable computational transition has recently been established for the complexity

of approximating the partition function of the hard-core model. Amazingly, this compu-

tational transition coincides exactly with the statistical physics phase transition on infinite

Δ-regular trees. In this work we prove that a similar phenomenon holds for a much more

general class of two-spin models.

Our general setup is two-spin systems on an input graph G = (V , E) with maximum

degree Δ. We follow the setup of several related previous works [12, 26, 18]. Configurations

of the system are assignments σ : V → {−1,+1}. For a given configuration σ ∈ {−1,+1}V ,

let n−(σ) denote the number of vertices assigned −1, let m−(σ) be the number of edges

with both endpoints assigned −1 and m+(σ) the number of edges with both endpoints

assigned +1.

There are three non-negative parameters B1, B2 and λ, where B1 is the edge activity

for (−,−) edges, B2 is the edge activity for (+,+) edges, and λ is the vertex activity (or

external field). A configuration σ ∈ {−1,+1}V has weight

wG(σ) = λn−(σ)B
m−(σ)
1 B

m+(σ)
2 .

The Gibbs distribution μG(·) is over the set {−1,+1}V , where μG(σ) = wG(σ)/Z and where

Z = ZG(B1, B2, λ) is a normalizing factor, known as the partition function, defined as

Z :=
∑

σ∈{−1,+1}V
wG(σ) =

∑
σ∈{−1,+1}V

λn−(σ)B
m−(σ)
1 B

m+(σ)
2 .

Let us point out a few examples of two-spin models that are of particular interest.

Setting B1 = 0 and B2 = 1, the only configurations with positive weight in the Gibbs

distribution induce independent sets of G. This case is known as the hard-core model with

fugacity λ. Setting B1 = B2 = B, one recovers the Ising model. The case λ = 1 is the Ising

model without external field. When B < 1 it is the antiferromagnetic Ising model, and

when B � 1 it is the ferromagnetic Ising model. In general, when B1B2 < 1 the model is

called antiferromagnetic, and when B1B2 � 1 it is ferromagnetic.

The Ising and hard-core models (and, more generally, spin models) have been studied

thoroughly in various contexts, especially in statistical physics. Their interpretation as

idealized models of microscopic interaction within a body have nurtured research on

understanding their macroscopic behaviour on appropriate underlying graph structures,

such as the infinite grid or the infinite triangular lattice. The intriguing questions arising

have made an impact on other fields as well, most notably probability and computer

science. For illuminating accounts of such directions, we refer the reader to [21] and [29].

In this paper, we focus on the computational complexity of approximating the partition

function in two-spin models. A long series of works, which we only touch upon later in

this introduction, have identified the connection of the problem with decay of correlation

properties in Gibbs measures of the infinite Δ-regular tree. In statistical physics terms,

this is known as the phase transition on the Bethe lattice. To briefly sketch this important

concept, let TΔ denote the infinite Δ-regular tree. When the parameters of the two-spin

model lie in the so-called uniqueness region of TΔ, for finite complete trees of height h,

the influence on the root from fixing a configuration on the leaves dies off in the limit
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as the height goes to infinity. In sharp contrast, in the non-uniqueness region there exist

configurations of the leaves for which their influence on the root persists in the limit. For

convenience, we often refer to the uniqueness region, omitting the reference to TΔ.

The uniqueness/non-uniqueness regions can be determined rather easily on TΔ (for

other infinite graphs this is far from easy; see [3] and [25] for recent advances in the

two-dimensional grid). For the hard-core model, Kelly [17] showed that non-uniqueness

holds if and only if

λ > λc(TΔ) :=
(Δ− 1)Δ−1

(Δ− 2)Δ
.

For the antiferromagnetic Ising model without external field, non-uniqueness holds if and

only if

B < Bc(TΔ) :=
Δ− 2

Δ

(see e.g. [26]). For general antiferromagnetic two-spin models with soft constraints (i.e.,

B1B2 > 0), non-uniqueness holds if and only if
√
B1B2 < (Δ− 2)/Δ and λ ∈ (λ1, λ2) for

some critical values λ1(Δ, B1, B2), λ2(Δ, B1, B2) (see e.g. [18]).

Before stating our results, it will be instructive to review some known results from the

literature. When λ = 1, the partition function is the number of independent sets in G, and

this quantity is #P-complete to compute exactly [30], even when Δ = 3 [13]. For the Ising

model, once again, exact computation of the partition function for graphs of maximum

degree Δ is #P-complete, even for the ferromagnetic model [16]. Hence, the focus is on

the computational complexity of approximating the partition function.

This is where the phase transition on TΔ comes into play. Specifically, for the hard-

core model, a deep connection has recently been established between uniqueness/non-

uniqueness and the complexity of approximating the partition function. Namely, for graphs

of constant maximum degree Δ, Weitz [31] presented a beautiful FPTAS for approximating

the partition function when λ < λc(TΔ). On the other hand, Sly [27] presented a clever

reduction which proves that for every Δ � 3 there exists εΔ > 0 such that it is NP-hard

(unless RP = NP) to approximate the partition function for graphs of maximum degree

Δ for any λ where λc(TΔ) < λ < λc(TΔ) + εΔ.

It was believed that Sly’s inapproximability result should hold for all λ > λc(TΔ).

However, Sly’s work utilized results of Mossel, Weitz and Wormald [24] which showed

that for a random Δ-regular bipartite graph, an independent set chosen from the Gibbs

distribution is ‘unbalanced’ with high probability for λ under the same condition as in

Sly’s result.

Mossel, Weitz and Wormald [24] used a technically complicated second moment

argument that is characterized in [27] as a ‘technical tour-de-force’. In [8] we extended

the results of [24] to all λ > λc(TΔ) for Δ = 3 and Δ � 6. However, that work built upon

[24] and had an even more complicated analysis. In this work, as a by-product of the

approach we devise for coping with the Ising model, we can prove inapproximability for

the hard-core model for all λ > λc(TΔ) for Δ = 3, 4, 5, and our proof is simpler than in [8].

This settles the picture for the hard-core model, and also proves Conjecture 1.2 of [24].
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Theorem 1.1. Unless NP = RP, for the hard-core model, for all Δ � 3, for all λ in the non-

uniqueness region of the infinite tree TΔ, there does not exist an FPRAS for the partition

function at activity λ for graphs of maximum degree at most Δ.

Our main focus in this paper is to address whether the above phenomenon for the

hard-core model occurs for other models. In particular, our goal is to address for two-

spin antiferromagnetic models whether the computational complexity of approximating

the partition function for graphs with maximum degree Δ undergoes a transition that

coincides exactly with the uniqueness/non-uniqueness phase transition on the infinite tree

TΔ.

Let us first review existing results in the literature. For the ferromagnetic Ising model,

Jerrum and Sinclair [16] presented an FPRAS for all graphs, for all B � 1 where B =

B1 = B2. For the antiferromagnetic Ising model, for general graphs there does not exist an

FPRAS for B < 1 [16], unless NP = RP. For constant Δ, Sinclair, Srivastava and Thurley

[26] extend Weitz’s approach to the antiferromagnetic Ising model (see also [33, 25, 18]

for other results on the Ising model), yielding in the uniqueness region an FPTAS for the

partition function of graphs with maximum degree Δ.

We prove for the antiferromagnetic Ising model without external field that for all B

in the non-uniqueness region of the infinite tree there does not exist an FPRAS for the

antiferromagnetic Ising model.

Theorem 1.2. Unless NP = RP, for the antiferromagnetic Ising model without external

field, for all Δ � 3, for all B in the non-uniqueness region of the infinite tree TΔ, there

does not exist an FPRAS for the partition function at inverse temperature B for graphs of

maximum degree at most Δ.

The hard-core model and Ising model are the two most well-studied examples of two-

spin systems. For ferromagnetic two-spin systems with no external field, that is, B1B2 > 1

and λ = 1, Goldberg, Jerrum and Paterson [12] presented an FPRAS for the partition

function for any graph. For any antiferromagnetic two-spin model, for constant Δ, an

FPTAS for the partition function was obtained by Sinclair, Srivastava and Thurley [26]

for Δ-regular graphs in the uniqueness region of the infinite tree TΔ, and by Li, Lu

and Yin [18] for graphs of maximum degree Δ in the intersection of the uniqueness

regions for infinite trees Td for d � Δ. For antiferromagnetic two-spin models we obtain a

complementary inapproximability result in the non-uniqueness region. Our results do not

reach the uniqueness/non-uniqueness threshold in general.

Theorem 1.3. Unless NP = RP, for all Δ � 3, for all B1, B2, λ that lie in the non-uniqueness

region of the infinite tree TΔ and √
B1B2 �

√
Δ− 1− 1√
Δ− 1 + 1

,

there does not exist an FPRAS for the partition function at parameters B1, B2, λ for graphs

of maximum degree at most Δ.
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1.1. Independent results of Sly and Sun

In an independent and simultaneous work, Sly and Sun [28] obtained closely related

results. They prove inapproximability of the partition function in the case of the hard-core

model and the antiferromagnetic Ising model. Their result for the Ising model also covers

the case of an external field, which then extends to general two-spin antiferromagnetic

models [26, 28].

The main technical result in our proof is a second moment argument to analyse the

partition function for the Ising model on random Δ-regular bipartite graphs, as outlined in

the following section (Section 2). As a consequence we can estimate the partition function

within any arbitrarily small polynomial factor, which allows us to use the reduction in

[27]. In contrast, Sly and Sun’s approach builds upon the recent interpolation scheme of

Dembo, Montanari and Sun [6] to analyse the logarithm of the partition function, which

yields estimates of the partition function within an arbitrarily small exponential factor.

To get their NP-hardness results, they use a modification of the approach appearing in

[27] which allows us to use a constant-sized gadget.

1.2. Further work

Since the original publication of this work on arXiv [9] there has been further progress

on this topic. In [10] we present a general approach for analysing the second moment

of spin systems on random regular bipartite graphs using induced matrix norms. As a

by-product, we obtain hardness results for all two-spin antiferromagnetic systems in the

tree non-uniqueness region as in [28], and in addition hardness results for approximately

counting k-colourings for even k < Δ and for the antiferromagnetic Potts model in the

conjectured tree non-uniqueness region.

We point out that the present high-level approach to analysing the second moment

is different to that in [10]. Here we give an analysis of the critical points of the second

moment in the case of the antiferromagnetic Ising model and the hard-core model;

this analysis is partly possible because the spins take binary values. As a consequence,

in certain cases we obtain stronger results than those needed for the desired hardness

results (see for example the discussion in Section 5.4). In contrast, in [10] the approach

is targeted to the maximizers of the second moment (which is sufficient for the desired

hardness results) and connecting them to the maximizers of the first moment.

We should also remark that, in [10], the gadget, which is a random regular bipartite

graph, has fixed size as in [28]. In contrast, the gadget studied here, which is Sly’s original

gadget in [27], allows us to quantify certain properties in terms of its size (see Lemma 6.2),

which is desirable in approximation-preserving reductions. For example, the results in this

paper combined with those in [10] were used in [5] to prove #BIS-hardness on bipartite

graphs for two-spin antiferromagnetic systems in the tree non-uniqueness region.

2. Proof outline

The main element of the proof of Theorem 1.3 (and similarly the proofs of Theorems 1.1

and 1.2) is to analyse random Δ-regular bipartite graphs to show a certain bimodality as

in [24] for the hard-core model. From there the same reduction of [27] applies with some
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non-trivial modifications in the analysis. Hence, in some sense our main technical result is

to show that in random Δ-regular bipartite graphs, under the conditions of Theorem 1.3,

a configuration selected from the Gibbs distribution is ‘unbalanced’ with high probability.

To formally state our results, let us introduce some notation. Let G(n,Δ) denote the

probability distribution over bipartite graphs with n+ n vertices formed by taking the

union of Δ random perfect matchings. We will denote the two sides of the bipartition

of the graphs as V1, V2. Strictly speaking, this distribution is over bipartite multigraphs.

However, since our results hold asymptotically almost surely (a.a.s.) over G(n,Δ), as noted

in [24], by contiguity arguments they also hold a.a.s. for the uniform distribution over

bipartite Δ-regular graphs. For a complete account of contiguity, we refer the reader to

[15, Chapter 9].

For a graph G ∼ G(n,Δ) and a given configuration σ ∈ {−1,+1}V , let N−(σ) denote the

set of vertices assigned −1 and let N+(σ) be the set of vertices assigned +1. For α, β � 0,

let

Σα,β = {σ ∈ {−1,+1}V | |N−(σ) ∩ V1| = αn, |N−(σ) ∩ V2| = βn},

that is, α (resp. β) is the fraction of the vertices in V1 (resp. V2) whose spin is −1. Let

ΣBal denote the set of all balanced configurations, and for ρ > 0, let Σρ be the set of

ρn-unbalanced configurations. Formally,

ΣBal =
⋃
α

Σα,α, Σρ =
⋃

|α−β|�ρ
Σα,β .

The following theorem, which is proved later in this section, establishes that in the

Gibbs distribution of a random Δ-regular bipartite graph, balanced configurations have

exponentially small measure.

Theorem 2.1. Under the hypotheses of Theorem 1.3, there exist constants a > 1 and ρ >

0, such that asymptotically almost surely, for a graph G sampled from G(n,Δ), the Gibbs

distribution μG satisfies

μG(ΣBal) � a−n · μG(Σρ).

Therefore, the Glauber dynamics is torpidly mixing.

While Theorem 2.1 is interesting in its own right, our inapproximability results require

a far more precise quantification of the bimodality than that given in Theorem 2.1.

Nevertheless, it is instructive to outline the proof of Theorem 2.1, since it will allow us to

introduce the key ingredients that are needed for the hardness results.

Namely, to establish Theorem 2.1, we use a second moment approach as in [24]. For

G ∼ G(n,Δ) we analyse the random variable Zα,β
G , where

Z
α,β
G =

∑
σ∈Σα,β

wG(σ),

for some well-suited values of α, β. In particular, the α, β will be selected to maximize the

first moment of Zα,β
G . One of the key ingredients in obtaining Theorem 2.1 is that the
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maximum of the first moment occurs for α �= β. More generally, this is true for general

antiferromagnetic two-spin systems in the non-uniqueness region of the infinite tree TΔ

(see the upcoming Lemma 2.2). The proof of this fact is based on an explicit connection

with three specific Gibbs measures in the infinite tree TΔ which are invariant under parity-

preserving transformations. We next introduce these relevant Gibbs measures, deferring a

more technical discussion to Section 3.

Let B1, B2, λ specify an antiferromagnetic two-spin system. There exists a unique

translation-invariant Gibbs measure μ∗ on TΔ, known as the free measure, whose marginal

probability for the root ρ being assigned spin −1 will be denoted by p∗ := μ∗(σρ = −1)

(the exponent denotes the boundary condition; ∗ refers to the free boundary). In the non-

uniqueness region, there also exist two semi-translation-invariant measures μ+ and μ−,

corresponding to the ‘even’ and ‘odd’ boundary conditions, respectively. These measures

can be obtained by conditioning the leaves on level 2� (resp. 2�+ 1) of the tree to have

spin −1 and taking the weak limit as �→ ∞. We will denote the marginals for the root

being assigned the spin −1 by p+ := μ+(σρ), p
− := μ−(σρ). In the non-uniqueness region

of TΔ, it holds that μ∗ �= μ±; in fact, it holds that p− < p∗ < p+.

The following lemma illustrates the relevance of p−, p∗, p+ in our arguments.

Lemma 2.2. Let Δ � 3. For the distribution G(n,Δ),

lim
n→∞

1

n
log EG[Zα,β

G ]

is maximized for:

(1) (α, β) = (p∗, p∗) when B1, B2, λ are in the uniqueness region of the infinite tree TΔ,

(2) (α, β) = (p±, p∓) when B1, B2, λ are in the non-uniqueness region of the infinite tree TΔ.

Note that Lemma 2.2 already yields a weak form of a bimodality in the Gibbs

distribution on random Δ-regular graphs: in the non-uniqueness region, the configurations

with the largest contribution are unbalanced in expectation. Since Z
α,β
G is typically

exponential in n, Markov’s inequality implies an upper bound on the number of balanced

configurations, which holds with high probability over the choice G ∼ G(n,Δ).

However, to get tight results, we need a strong form of this bimodality. To do this,

we look more carefully at the random variable Zα,β
G for (α, β) = (p±, p∓). In particular,

suppose that we are able to show that Zp± ,p∓

G is within a polynomial multiplicative factor

from its expectation. Lemma 2.2 would then yield that, for ε > 0 and all α′, β′ satisfying

‖(α′, β′)− (p±, p∓)‖ � ε, Zα′ ,β′

G is exponentially smaller than Zp± ,p∓

G . Using arguments in [7]

and [24], one can then easily deduce Theorem 2.1.

We will formalize the above argument shortly. Prior to that, let us remark that the same

idea underlies the reduction used by Sly [27] (which we will use to obtain Theorems 1.1,

1.2 and 1.3). Namely, define the phase of a configuration of G to be the bipartition which

has the largest number of vertices assigned −1. With high probability, a configuration

sampled from μG will be from the set Σp± ,p∓ (roughly) and hence the phase will take

binary values. Informally, this allows us to view G as a Boolean gadget (the precise

construction of the gadget used by Sly [27] is given in Section 6). Consider now an
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arbitrary graph H and replace each vertex of H with a (distinct) copy of the graph G. Sly

showed how to encode the edges of H (i.e., make connections between the copies of G),

so that the final graph has maximum degree Δ and its partition function is dominated by

configurations where the phases of the copies of G correspond to a maximum cut of H .

The quantification of this scheme involves hard work, but this has already been done in

[27] (certain calculations do require rather lengthy modifications to account for general

antiferromagnetic two-spin systems; see Section 6 for details).

Let us now return to the technical core of the argument, which requires analysis of

the second moment of Zα,β
G for (α, β) = (p±, p∓). By symmetry, we may clearly focus

on (α, β) = (p+, p−). Pick two configurations σ1, σ2 from the set Σp+ ,p− (not necessarily

distinct). We need variables γ, δ that capture the overlap of the configurations σ1, σ2.

Formally, for γ, δ � 0, let

Σα,β
γ,δ = {(σ1, σ2) | σ1, σ2 ∈ Σα,β , |N−(σ1) ∩N−(σ2) ∩ V1| = γn,

|N−(σ1) ∩N−(σ2) ∩ V2| = δn},

and

Y
γ,δ
G =

∑
(σ1 ,σ2)∈Σ

α,β
γ,δ

wG(σ1)wG(σ2).

We will study Y γ,δ
G for (α, β) = (p+, p−), so this is why we dropped the dependence on α, β.

Observe that EG[Y γ,δ
G ] is the contribution to the second moment EG[(Zα,β

G )2] coming from

pairs of configurations in Σα,β with overlap γn, δn.

In our case, for the second moment approach to succeed we need the largest contribution

to the second moment to come from ‘uncorrelated’ pairs of configurations. This is captured

by the following condition.

Condition 2.3. For (α, β) = (p+, p−),

lim
n→∞

1

n
log EG[Y γ,δ

G ]

is maximized at γ = α2, δ = β2.

Lemma 2.4. Under the hypotheses of Theorem 1.3, Condition 2.3 holds.

Lemma 2.5. For the antiferromagnetic Ising model with λ = 1, Δ = 3 and B in the non-

uniqueness region of TΔ, Condition 2.3 holds.

Lemma 2.6. For the hard-core model, Δ = 3, 4, 5 and λ in the non-uniqueness region of TΔ,

Condition 2.3 holds.

The innocuous statements of Lemmas 2.4, 2.5, and 2.6 are rather misleading. Namely,

proving that uncorrelated pairs of random variables ‘dominate’ the second moment is a

standard complication of the second moment approach in a variety of settings; see for

example [1, 2, 24]. To highlight the technical difficulties, the second moment typically has
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a number of other extra variables that need to be considered and those are usually treated

by sophisticated analysis arguments. We escape this paradigm in the following sense: our

arguments try to explain the success of the second moment by relating it to the intrinsic

nature of the problem at hand (in our context, uniqueness on the infinite tree). To stress

the advantages of such a scheme, it is possibly the foundation of a more generic method

to translate uniqueness proofs to similar second moment arguments.

In the hard-core model, due to the hard constraints, only one extra variable (besides

γ, δ) was needed and it could be expressed explicitly in terms of γ, δ, so that, in fact,

one had a two-variable optimization. Even with this seemingly simple setup and despite

the variety and complexity of approaches appearing in [24], [27] and [8], certain regions

for Δ = 4, 5 remained open. In the general two-spin model the second moment is more

complex than in the hard-core model in the sense that the soft constraints cause the

number of extra variables to increase to nine. To make matters even worse, one cannot

get rid of those extra variables in some easy algebraic way, since such a scheme reduces

to a sixth-order polynomial equation in terms of γ, δ. These obstacles are overcome in the

proof of Lemma 2.4 by a clean argument: the analysis of the second moment is reduced

to certain tree recursions on TΔ, allowing for a short inequality argument.

After establishing Condition 2.3, we obtain for (α, β) = (p±, p∓) that

EG[(Zα,β
G )2] ≈ EG[Y α2 ,β2

G ].

At this point, we are in a position to study the ratio EG[(Zα,β
G )2]/(EG[Zα,β

G ])2. This is

a technical computation and requires an asymptotic tight approximation of sums by

appropriate Gaussian integrals. While the asymptotic value of the ratio is a constant, as

in [24], the constant is greater than 1.

Lemma 2.7. When Condition 2.3 is true, for (α, β) = (p±, p∓), it holds that

lim
n→∞

EG[(Zα,β
G )2]

(EG[Zα,β
G ])2

= (1− ω2)−(Δ−1)/2(1− (Δ− 1)2ω2)−1/2,

where ω is given by (3.4).

Remark. The formula given in the lemma is valid for the hard-core model as well

(B1 = 0, B2 = 1), agreeing with the statement of [24, Theorem 3.3].

The fact that the ratio of the second moment to the first moment squared converges to

a constant greater than 1 does not allow us to get a.a.s. results using the standard second

moment method. This can be dealt with by the so-called small subgraph conditioning

method [32, 15]. The consequence of applying the small subgraph conditioning method is

the following result (proved in Section 8.1).

Lemma 2.8. When Condition 2.3 is true, for (α, β) = (p±, p∓), it holds asymptotically almost

surely over the graph G ∼ G(n,Δ) that

Z
α,β
G � 1

n
EG[Zα,β

G ].
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We next conclude Theorem 2.1.

Proof of Theorem 2.1. Lemmas 2.2 and 2.8 establish the necessary ingredients to carry

out the argument in [24, Proof of Theorem 2.2] (see also [8, Proofs of Theorems 2 and 3]).

The torpid mixing of Glauber dynamics follows immediately by a conductance argument,

using [7, Claim 2.3].

The outline of the rest of the paper is as follows. In Section 3 we derive certain

properties for the infinite tree which are used throughout the remainder of the paper.

We then look at the first and second moments in Section 4. In Section 5 we look at the

optimization problems for the first and second moments and prove Lemmas 2.2 and 2.4.

In Section 6 we give the proof of our inapproximability results (Theorems 1.1, 1.2 and 1.3)

based on Sly’s reduction for the hard-core model.

In Section 7 we analyse the ratio of the second moment to the first moment squared for

random Δ-regular graphs (Lemma 2.7) and for the modified graph used in Sly’s reduction.

In Section 8 we apply the small subgraph conditioning method to get a.a.s. results (over

the choice of the random graph), where we also prove Lemma 2.8. Finally, in Section 9

we give the proofs of some remaining lemmas, including Lemmas 2.5 and 2.6.

3. Extremal measures on the infinite tree for two-spin models

In Section 2 we defined the measures μ∗, μ± on TΔ which will be of interest to us. In our

context, the phase transition on the infinite (Δ− 1)-ary tree T̂Δ rooted at ρ will also be

of interest (note that T̂Δ differs from TΔ only in that the root has degree Δ− 1). The

uniqueness/non-uniqueness regions for T̂Δ coincide with those of TΔ, albeit with different

occupation probabilities for the root in the respective free and fixed boundary measures.

We let μ̂±, μ̂∗ denote the measures on T̂Δ which are the analogues of the measures

μ±, μ∗ on TΔ, respectively. Recall that we use +,− to denote the even and odd boundary

conditions, and ∗ for the free boundary condition. We will let q±, q∗ denote the marginal

probabilities of the root being assigned −1 in each of these measures on T̂Δ, that

is, q± = μ̂±(σρ = −1) and q∗ = μ̂∗(σρ = −1). Once again, it can easily be proved that

q− < q∗ < q+ using (anti)monotonicity arguments.

A well-known and interesting property that the measures μ± (and μ̂±) possess is that of

extremality. Namely, in the non-uniqueness region they cannot be written as non-trivial

convex combinations of other Gibbs measures. In this particular setting, this follows

from (and can be interpreted as) the fact that the even and odd boundaries force the

maximal bias on the probability that the root ρ is assigned the spin −1 as the height of

the tree goes to infinity. In other words, for every Gibbs measure μ �= μ± on TΔ, we have

p− < μ(σρ = −1) < p+. For a more complete account of extremality, we refer the reader

to [11].

In this section we state some further properties for the densities q±, q∗ and p±, p∗, which

we are going to utilize throughout the text. Standard tree recursions for Gibbs measures
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(see e.g. [26]) establish that

q±

1− q± = λ

(
B1 · q∓

1−q∓ + 1

q∓

1−q∓ + B2

)Δ−1

,
q∗

1− q∗ = λ

(
B1 · q∗

1−q∗ + 1

q∗

1−q∗ + B2

)Δ−1

. (3.1)

We define separate expressions for

q±

1− q± ,
q∗

1− q∗ ,

that is,

Q+ =
q+

1− q+
, Q− =

q−

1− q− , Q∗ =
q∗

1− q∗ . (3.2)

The following lemma summarizes the properties of the occupation densities q+, q−, q∗

which we are going to utilize. Its rather folklore proof is a straightforward analysis of

appropriate tree recursions, and is omitted.

Lemma 3.1. For Δ � 3 and B1, B2, λ > 0, consider the system of equations

x = λ

(
B1y + 1

y + B2

)Δ−1

, y = λ

(
B1x+ 1

x+ B2

)Δ−1

, (3.3)

with x, y � 0.

(1) In the uniqueness region of T̂Δ, the only solution to (3.3) is (Q∗, Q∗).

(2) In the non-uniqueness region of T̂Δ, (3.3) has exactly three solutions which are given by

(Q±, Q∓) and (Q∗, Q∗). It holds that Q− < Q∗ < Q+.

Proof. See, for example, [20, Section 6.2].

We also define the quantities ω,ω∗, which will emerge throughout the paper (and will

be motivated shortly):

ω :=
(1− B1B2)2Q+Q−

(B2 + Q−)(B2 + Q+)(1 + B1Q−)(1 + B2Q+)
, ω∗ :=

(1− B1B2)2(Q∗)2

(B2 + Q∗)2(1 + B1Q∗)2
. (3.4)

Note that ω∗ is obtained from ω after identifying Q± with Q∗. The following lemma

for ω,ω∗ will be crucial for proving some optimality conditions required to establish

Lemma 2.2 and Condition 2.3. Its proof is given in Section 9.1.

Lemma 3.2. Let Δ � 3. For (B1, B2, λ) in the non-uniqueness region of T̂Δ, it holds that

(Δ− 1)2ω < 1 < (Δ− 1)2ω∗.

Let us explain the seemingly mysterious inequality in Lemma 3.2. While not obvious,

it is related to the two-step recurrence on the infinite tree T̂Δ. The two-step recurrence is

obtained by the composition of two successive one-step recurrences. In the non-uniqueness

region, the fixed points of the two-step recurrence are exactly q±, q∗ (this is basically
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Lemma 3.1). The inequality in Lemma 3.2 establishes, after some calculations, that the

fixed point q+ (resp. q−) is an attractor of the two-step recurrence in μ̂+ (resp. μ̂−), while

the fixed point q∗ is repulsive. More specifically, the derivative of the two-step function

at q± is equal to (Δ− 1)2ω, and similarly at q∗ it is equal to (Δ− 1)2ω∗. This property

will be used to show that the measures μ̂± satisfy a strong form of non-reconstruction

with exponential decay of correlation. We should also note that the analysis in [26] (see

also [18]) establishes the following criterion for uniqueness, which we reformulate for our

purposes: uniqueness holds on T̂Δ if and only if (Δ− 1)2ω∗ � 1.

Finally, let us translate the above to obtain a handle on p±, p∗. Using a slight modification

of the tree recursions in T̂Δ, we obtain that

p±

1− p± =
q±

1− q±

(
B1 · q∓

1−q∓ + 1

q∓

1−q∓ + B2

)
,

p∗

1− p∗ =
q∗

1− q∗

(
B1 · q∗

1−q∗ + 1

q∗

1−q∗ + B2

)
. (3.5)

Using (3.2) and (3.5), an easy calculation gives

p± =
Q±(1 + B1Q

∓)

B2 + Q+ + Q− + B1Q+Q−
. (3.6)

Equation (3.6) will prove to be very useful in simplifying seemingly intricate calculations.

For the case of the Ising model with zero external field (B1 = B2 = B, λ = 1), it holds

that p+ + p− = q+ + q− = 1, p∗ = q∗ = 1/2. These properties may be proved easily using

the symmetries of the model. Namely, observe that if (x, y) satisfy (3.3) then so do

(1/y, 1/x). By items 1 and 2 of Lemma 3.1, this implies that q+ + q− = 1 and q∗ = 1/2.

By (3.5), it also follows that p+ + p− = 1, p∗ = 1/2.

4. Moment analysis

In this section we give expressions for EG[Zα,β
G ], EG[Y γ,δ

G ] and then study the asymptotics

of

1

n
log EG

[
Z
α,β
G

]
,

1

n
log EG

[
Y
γ,δ
G

]
.

4.1. First moment

The first moment of Zα,β
G is given by

EG
[
Z
α,β
G

]
= λn(α+β)

(
n

αn

)(
n

βn

)( ∑
δ�α,δ�β

(
αn
δn

)(
(1−α)n
(β−δ)n

)(
n
βn

) Bδn1 B
(1−α−β+δ)n
2

)Δ

. (4.1)

Ignoring the contribution of the external field λ, the terms outside the sum count |Σα,β
G | .

The sum gives the expected contribution to wG(σ) (for σ ∈ Σα,β
G ) from a single matching,

where δn is the number of edges between N−(σ) ∩ V1 and N−(σ) ∩ V2 in a single matching.

The weight of σ for a single matching depends only on δn and is equal to Bδn1 B
(1−α−β+δ)n
2 .

The fraction in the sum is the probability that there are exactly δn edges from N−(σ) ∩ V1

to N−(σ) ∩ V2. Since the matchings are chosen independently, the exponentiation to the

power Δ gives the expected contribution of σ ∈ Σα,β
G to the partition function for Δ
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matchings. Finally, the λ term accounts for the contribution of the external field for

σ ∈ Σα,β
G .

A different way to arrive at a slightly different formulation for the first moment

is as follows. Here, we introduce some redundant variables at the cost of introducing

some complexity of the presentation, but underlying a general approach to treat such

expressions.

Observe that the sets N−(σ) ∩ V1, N+(σ) ∩ V1 form a partition of V1 and similarly for

V2. Thus for a perfect matching let xij , (1 � i, j � 2) denote the number of edges having

their endpoints in partition i of V1 and in partition j of V2. Note that the xij must satisfy

x11 + x12 = α, x11 + x21 = β,

x21 + x22 = 1− α, x12 + x22 = 1− β,
xij � 0.

(4.2)

The first moment may be written as

EG
[
Z
α,β
G

]
= λ(α+β)n

(
n

αn

)(
n

βn

)(∑
X

(
αn
x11n

)(
(1−α)n
x21n

)(
βn
x11n

)(
(1−β)n
x21n

)(
n

x11n,x12n,x21n,x22n

) Bx11n
1 Bx22n

2

)Δ

. (4.3)

In the above sum we let X denote the xij which satisfy (4.2). Note that the expressions

(4.1) and (4.3) are completely equivalent after identifying δ with x11 and using (4.2) to

express the variables x12, x21, x22 in terms of x11.

4.2. Second moment

We continue with the ideas presented in Section 4.1 to get an expression for EG
[
Y
γ,δ
G

]
.

Recall that for the formulation of the second moment α and β are fixed, and hence

omitted from the notation. Now there are four induced parts by σ1, σ2 on each V1 and

V2. Let γn, δn stand for the number of vertices in V1 and V2 whose spin is −1 in both

σ1, σ2, and let yijn be the number of edges incident with endpoints in partition i of V1

and partition j of V2 in a single matching. For ease of exposition, define

L1 = γ, L2 = L3 = α− γ, L4 = 1− 2α+ γ,

R1 = δ, R2 = R3 = β − δ, R4 = 1− 2β + δ.

In the same spirit, with expression (4.3) for the first moment, we have that

EG
[
Y
γ,δ
G

]
=λ2(α+β)n

(
n

αn

)(
n

βn

)(
αn

γn

)(
(1− α)n
(α− γ)n

)(
βn

δn

)(
(1− β)n

(β − δ)n

)
(4.4)

×
(∑

Y

∏4
i=1

(
Lin

yi1n,yi2n,yi3n,yi4n

) ∏4
j=1

(
Rjn

y1jn,y2jn,y3jn,y4jn

)
(

n
y11n,y12n,...,y44n

)
× B(2y11+y12+y13+y21+y22+y31+y33)n

1 B
(y22+y24+y33+y34+y42+y43+2y44)n
2

)Δ

.
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In the above sum, we let Y denote the yij satisfying∑
j yij = Li, for i = 1, . . . , 4,∑
i yij = Rj, for j = 1, . . . , 4,

yij � 0.

(4.5)

The interpretation of (4.4) should be clear: ignoring the external field, the first line

accounts for |Σα,β
γ,δ |, while a term in the sum accounts for the weight of a matching

specified by the cardinalities Y (last line) as well as the probability of such a matching

occurring (middle line).

4.3. Asymptotics of the logarithms of the moments

We next turn to finding the asymptotics of 1
n

log EG
[
Z
α,β
G

]
, 1
n

log EG
[
Y
γ,δ
G

]
. The asymptotic

orders of the sums in (4.3) and (4.4) are dominated by their maximum terms. For the sole

purpose of having a unifying treatment for soft and hard constrained two-spin models,

here and in the rest of the paper we adopt the usual conventions that ln 0 ≡ −∞ and

0 ln 0 ≡ 0. Standard application of Stirling’s approximation yields for the first moment

lim
n→∞

1

n
log EG

[
Z
α,β
G

]
= max

X
Φ1(α, β,X), (4.6)

where

Φ1(α, β,X) := (α+ β) ln λ+ (Δ− 1)f1(α, β) + Δg1(X),

f1(α, β) := α ln α+ (1− α) ln(1− α) + β ln β + (1− β) ln(1− β),

g1(X) := (x11 lnB1 + x22 lnB2)−
∑

i,jxij ln xij .

For the second moment it yields

lim
n→∞

1

n
log EG

[
Y
γ,δ
G

]
= max

Y
Φ2(γ, δ,Y), (4.7)

where

Φ2(γ, δ,Y) := 2(α+ β) ln λ+ (Δ− 1)f2(γ, δ) + Δg2(Y),

f2(γ, δ) := 2(α− γ) ln(α− γ) + γ ln γ + (1− 2α+ γ) ln(1− 2α+ γ)

+ 2(β − δ) ln(β − δ) + δ ln δ + (1− 2β + δ) ln(1− 2β + δ),

g2(Y) := (2y11 + y12 + y13 + y21 + y22 + y31 + y33) lnB1

+ (y22 + y24 + y33 + y34 + y42 + y43 + 2y44) lnB2

−
∑

i,jyij ln yij .

Recall that we are going to study the second moment for specific values of α, β, namely

(α, β) = (p±, p∓), so this is why we dropped the dependence of the functions Φ2, f2 on α, β.

The functions g1, g2 are defined on the regions (4.2), (4.5) respectively. For fixed α, β, γ, δ,

they are strictly concave over the convex regions on which they are defined, and hence

they have a unique maximum, so this is also the case for the functions Φ1,Φ2. The limits

(4.6) and (4.7) can thus be justified using the standard Laplace method (see for example

[4, Chapter 4]).
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5. Finding the maxima

In this section we use the information obtained in Section 4.3 to establish Lemmas 2.2

and 2.4. The proofs for Lemmas 2.5 and 2.6 are given in Sections 9.5 and 9.6 respectively,

see also Section 5.4 for an overview. These proofs are based on the approach given in this

section.

5.1. Optimizing entropy distributions

By the limits (4.6) and (4.7), to establish Lemmas 2.2 and 2.4 (and 2.5, 2.6 as well), it

suffices to study the maxima of the functions

φ1(α, β) := max
X

Φ1(α, β,X) and φ2(γ, δ) := max
Y

Φ2(γ, δ,Y). (5.1)

A small abstraction allows us to treat the two functions in a unifying way.

Namely, observe that φ1, φ2 have the form φ(u, v) = maxZ Φ(u, v,Z), where Φ can be

decomposed as Φ(u, v,Z) = f(u, v) + g(Z), for some functions f, g, and Z stands for mn

non-negative variables Zij , i = 1, . . . , m, j = 1, . . . , n.1 Thus in the context of φ1 (resp. φ2),

u, v,Z correspond to α, β,X (resp. γ, δ,Y). Moreover, Z satisfies some prescribed marginals,

that is, ∑
jZij = αi(u),

∑
iZij = βj(v), Zij � 0, (5.2)

for some functions αi(u) and βj(v), which satisfy
∑

i αi(u) =
∑

j βj(v) = 1. In this section

we will only consider u, v such that αi(u) �= 0 �= βj(v) for all i, j, since the remaining cases

correspond to boundary conditions in our setup and these are treated more easily in the

specific instance of the maximization (see the relevant Lemmas 5.4 and 5.7). Finally, the

function g(Z) is an entropy-like function and has the form

g(Z) =
∑

i

∑
j(Zij lnMij − Zij lnZij), (5.3)

where M ∈ R
m×n is a matrix with non-negative entries.

We will use another interpretation of the function g(Z), which will be handy when we

perform integrations: let Zf denote the variables Zij for i = 1, . . . , m− 1, j = 1, . . . , n− 1.

Using the equations in (5.2), we may write g(Z) as a function of the variables Zf . Note

that the region (5.2) must be adjusted to account for the non-negativity of the substituted

variables. Other than this, the ‘new’ function has exactly the same behaviour as g(Z) but

in a full-dimensional space. Thus we will also think of g(Z) as a function of the variables

Zf where the Zij with i = m or j = n are just shorthand for the expressions of these

variables when substituted by the equations in (5.2). We will refer to this reformulation

as the full-dimensional representation of g(Z). We define similarly the full-dimensional

representation of Φ(u, v,Z).

1 In all the applications of the arguments in this section, we will have m = n. The slightly more general setting

considered here (which allows m �= n) is not crucial, but the arguments extend to this setting without any

additional effort.
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It is immediate to see that g(Z) is strictly concave in the convex region (5.2), hence

it attains its maximum over the region at a unique point. A tedious but straightforward

optimization of g(Z), using Lagrange multipliers, yields the following result.

Lemma 5.1. Fix u, v such that αi(u) �= 0 �= βj(v) for all i, j. Let Z∗ = arg maxZ g(Z), the

maximum taken over the region (5.2). Then

Z∗ij = MijRiCj, (5.4)

where Ri and Cj are positive real numbers, which satisfy

Ri
∑
j

MijCj = αi and Cj
∑
i

MijRi = βj. (5.5)

Moreover, the full-dimensional representation of g(Z) decays quadratically in a sufficiently

small ball around Z∗.

The proof of Lemma 5.1 is given in Section 9.2. It is relevant to point out that while

the values of Z∗ij are unique in the region (5.2), the values of Ri, Cj which satisfy (5.5) are

not unique since a positive solution {{Ri}i, {Cj}j} of (5.5) gives rise to a positive solution

{{tRi}i, {Cj/t}j} for arbitrary t > 0. Modulo this mapping, the uniqueness of Z∗ij easily

implies that the positive Ri, Cj which satisfy (5.5) are otherwise unique.

Plugging (5.4) in g(Z), we obtain

max
Z
g(Z) = −

∑
i

∑
jMijRiCj ln(RiCj) := g∗(u, v). (5.6)

In our setup, it will be hard in general to solve for the Ri, Cj , so that we need to study

∂g∗/∂u, ∂g∗/∂v using implicit differentiation. The following lemma will be very useful.

Lemma 5.2. For g∗ = maxZ g(Z), we have

∂g∗

∂u
= −

∑
i

ln(Ri)
∂αi

∂u
and

∂g∗

∂v
= −

∑
j

ln(Cj)
∂βj

∂v
.

In particular,

∂(f + g∗)

∂u
=
∂f

∂u
−

∑
i

ln(Ri)
∂αi

∂u
and

∂(f + g∗)

∂v
=
∂f

∂v
−

∑
j

ln(Cj)
∂βj

∂v
,

where the Ri, Cj are positive solutions of (5.5).

The proof of Lemma 5.2 is given in Section 9.2.

5.2. The logarithm of the first moment – maximum

In this section we prove Lemma 2.2. As observed in Sections 4.3 and 5.1, it suffices to

study the maxima of φ1(α, β). Lemma 2.2 is implied by the following lemmas.
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Lemma 5.3. The only critical points of φ1(α, β) are as follows:

(1) (α, β) = (p±, p∓) and (α, β) = (p∗, p∗) when B1, B2, λ lie in the non-uniqueness region of

TΔ,

(2) (α, β) = (p∗, p∗) when B1, B2, λ lie in the uniqueness region of TΔ.

Lemma 5.4. The function φ1(α, β) does not have any local maximum on the boundary of

the region

{(α, β) | 0 � α � 1, 0 � β � 1}.

Lemma 5.5. Let X∗ = arg maxX Φ1(p+, p−,X) and Xo = arg maxX Φ1(p∗, p∗,X).

(1) When B1, B2, λ lie in the non-uniqueness region of TΔ, the function Φ1(α, β,X) has a

local maximum at the point (p+, p−,X∗) and a saddle point at (p∗, p∗,Xo).

(2) When B1, B2, λ lie in the uniqueness region of TΔ, the function Φ1(α, β,X) has a local

maximum at (p∗, p∗,Xo).

Proof of Lemma 2.2. Recall from (4.6) and (5.1) that

lim
n→∞

1

n
log EG

[
Z
α,β
G

]
= φ1(α, β) = max

X
Φ1(α, β,X).

By Lemma 5.4, the function φ1(α, β) does not attain its maximum on the boundary and

hence its (global) maximum is achieved at a critical point. Lemma 5.3 gives the critical

points in the uniqueness/non-uniqueness region and Lemma 5.5 classifies which are local

maxima. The result follows.

We defer the proofs of Lemmas 5.4 and 5.5 to Section 9.3. We give the more interesting

proof of Lemma 5.3.

Proof of Lemma 5.3. We apply Lemma 5.2 with

Z← X, u← α, v ← β, α1 ← α, α2 ← 1− α, β1 ← β, β2 ← 1− β,
f ← (α+ β) ln λ+ (Δ− 1)f1, g ← Δg1.

The matrix M is given by

M =

(
B1 1

1 B2

)
.

Lemma 5.2 gives that the critical points of maxX Φ1(α, β,X) must satisfy

∂φ1

∂α
= ln

(
λ

(
α

1− α

)Δ−1(
R2

R1

)Δ)
= 0,

∂φ1

∂β
= ln

(
λ

(
β

1− β

)Δ−1(
C2

C1

)Δ)
= 0,

(5.7)
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where

R1(B1C1 + C2) = α, C1(B1R1 + R2) = β,

R2(C1 + B2C2) = 1− α, C2(R1 + B2R2) = 1− β.
(5.8)

Let r = R1/R2 and c = C1/C2. Using (5.7) and (5.8), we obtain

r
B1c+ 1

c+ B2
=

α

1− α = r1+1/(Δ−1)(1/λ)1/(Δ−1) =⇒ r = λ

(
B1c+ 1

c+ B2

)Δ−1

,

c
B1r + 1

r + B2
=

β

1− β = c1+1/(Δ−1)(1/λ)1/(Δ−1) =⇒ c = λ

(
B1r + 1

r + B2

)Δ−1

.

The right-hand side equations are exactly the equations (3.3) and in light of Lemma 3.1

it must be the case that in the non-uniqueness region either that

r =
q±

1− q± , c =
q∓

1− q∓ or r = c =
q∗

1− q∗ .

By (3.6), we hence obtain that the critical points for the first moment in the non-uniqueness

region are given by (α, β) = (p±, p∓) or (α, β) = (p∗, p∗). Similarly for the uniqueness region.

5.3. The logarithm of the second moment – maximum

In this section we prove Lemma 2.4. As established in Sections 4.3 and 5.1, it suffices to

study the maxima of φ2(γ, δ). Lemma 2.4 is immediately implied by the following lemmas.

Lemma 5.6. Under the hypotheses of Theorem 1.3, for (α, β) = (p±, p∓), the only critical

points of φ2(γ, δ) satisfy γ = α2, δ = β2.

Lemma 5.7. For (α, β) = (p±, p∓), the function φ2(γ, δ) does not have any local maximum

on the boundary of the region

{(γ, δ) | γ � 0, α− γ � 0, 1− 2α+ γ � 0, δ � 0, β − δ � 0, 1− 2β + δ � 0}.

Lemma 5.8. For (α, β) = (p+, p−), let

Y∗ = arg max
Y

Φ2(α2, β2,Y).

The function Φ2(γ, δ,Y) has a local maximum at (α2, β2,Y∗).

Proof of Lemma 2.4. Just combine Lemmas 5.6, 5.7 and 5.8 as in the proof of Lemma 2.2

in Section 5.2.

The proofs of Lemmas 5.7 and 5.8 are valid for all B1, B2, λ, so to prove Lemmas 2.5

and 2.6 one only needs to obtain the analogues of Lemma 5.6 in the respective settings of

B1, B2. The proofs of these analogues are given in Sections 9.5 and 9.6; see also Section 5.4
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for a proof overview. We defer the proofs of Lemmas 5.7 and 5.8 to Section 9.4 and give

here the more interesting proof of Lemma 5.6.

Proof of Lemma 5.6. Once more we apply Lemma 5.2 with

Z← Y, u← γ, v ← δ, α1 ← γ, α2 = α3 ← α− γ, α4 ← 1− 2α+ γ,

β1 ← γ, β2 = β3 ← β − δ, β4 ← 1− 2β + δ, f ← (Δ− 1)f2, g ← Δg2.

The matrix M is given by

M =

⎛
⎜⎜⎝
B2

1 B1 B1 1

B1 B1B2 1 B2

B1 1 B1B2 B2

1 B2 B2 B2
2

⎞
⎟⎟⎠ .

We obtain that the critical points of maxY Φ2(γ, δ,Y) must satisfy

∂φ2

∂γ
= ln

((
γ(1− 2α+ γ)

(α− γ)2

)Δ−1(
R2R3

R1R4

)Δ)
= 0, (5.9)

∂φ2

∂δ
= ln

((
δ(1− 2β + δ)

(β − δ)2

)Δ−1(
C2C3

C1C4

)Δ)
= 0, (5.10)

where the Ri, Cj satisfy the following equations (◦ denotes the Hadamard product):⎛
⎜⎜⎝
R1 C1

R2 C2

R3 C3

R4 C4

⎞
⎟⎟⎠ ◦M

⎛
⎜⎜⎝
C1 R1

C2 R2

C3 R3

C4 R4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ δ

α− γ β − δ
α− γ β − δ

1− 2α+ γ 1− 2β + δ

⎞
⎟⎟⎠ . (5.11)

We will write out an explicit form of the equations after establishing the following claim.

Claim 5.9. It holds that R2 = R3 and C2 = C3.

Proof. Observe that the matrix M remains invariant upon interchanging its second and

third rows and second and third columns, that is,

(R1, R2, R3, R4, C1, C2, C3, C4) satisfy (5.11)

⇐⇒ (R1, R3, R2, R4, C1, C3, C2, C4) satisfy (5.11).

Since g2(Y) is strictly concave, this yields the claim.

The rest of the proof will work as follows: as in the first moment, we first do some

manipulations with the equations so that we arrive at a nice form. This form coincides

with an inequality version of the tree equations (3.3) for the ferromagnetic Ising model

without external field, which can be analysed easily.
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Using Claim 5.9, equalities (5.11) give

R1 =
γ

B2
1C1 + 2B1C2 + C4

, C1 =
δ

B2
1R1 + 2B1R2 + R4

,

R2 =
α− γ

B1C1 + (B1B2 + 1)C2 + B2C4
, C2 =

β − δ
B1R1 + (B1B2 + 1)R2 + B2R4

, (5.12)

R4 =
1− 2α+ γ

C1 + 2B2C2 + B2
2C4

, C4 =
1− 2β + δ

R1 + 2B2R2 + B2
2R4

.

Also, again using Claim 5.9, the equalities in (5.9) and (5.10) give

∂φ2

∂γ
= ln

((
γ(1− 2α+ γ)

(α− γ)2

)Δ−1(
R2

2

R1R4

)Δ)
= 0, (5.13)

∂φ2

∂δ
= ln

((
δ(1− 2β + δ)

(β − δ)2

)Δ−1(
C2

2

C1C4

)Δ)
= 0. (5.14)

We now set

r1 = R1/R2, r4 = R4/R2, c1 = C1/C2, c4 = C4/C2.

After dividing the appropriate pairs of equations in (5.12), we obtain

r1 =
γ

α− γ ·
B1c1 + (B1B2 + 1) + B2c4

B2
1c1 + 2B1 + c4

,

r4 =
1− 2α+ γ

α− γ · B1c1 + (B1B2 + 1) + B2c4

c1 + 2B2 + B2
2c4

,

(5.15)

c1 =
δ

β − δ ·
B1r1 + (B1B2 + 1) + B2r4

B2
1r1 + 2B1 + r4

,

c4 =
1− 2β + δ

β − δ · B1r1 + (B1B2 + 1) + B2r4

r1 + 2B2 + B2
2r4

.

(5.16)

Equations (5.13) and (5.14) become

(r1r4)Δ =

(
γ(1− 2α+ γ)

(α− γ)2

)Δ−1

, (c1c4)Δ =

(
δ(1− 2β + δ)

(β − δ)2

)Δ−1

. (5.17)

Using the identity

(B2
1c1 + 2B1 + c4)(c1 + 2B2 + B2

2c4)

= (B1c1 + (B1B2 + 1) + B2c4)2 + (1− B1B2)2(c1c4 − 1),

and multiplying the equations in (5.15), we obtain

r1r4 =
γ(1− 2α+ γ)

(α− γ)2
· (B1c1 + (B1B2 + 1) + B2c4)2

(B1c1 + (B1B2 + 1) + B2c4)2 + (1− B1B2)2(c1c4 − 1)
. (5.18)
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It will be convenient at this point to work with d = Δ− 1. We plug the first equation in

(5.17) into (5.18), yielding

(r1r4)1/d − 1 =
(1− B1B2)2(c1c4 − 1)

(B1c1 + (B1B2 + 1) + B2c4)2
,

(c1c4)1/d − 1 =
(1− B1B2)2(r1r4 − 1)

(B1r1 + (B1B2 + 1) + B2r4)2
.

(5.19)

The second equality in (5.19) follows by a completely symmetric argument for c1, c4.

Observe that (5.19) implies that one of the following three cases can hold:

I r1r4 = c1c4 = 1,

II r1r4 > 1, c1c4 > 1,

III r1r4 < 1, c1c4 < 1.

Case I reduces to γ = α2, δ = β2 by (5.17). Thus we may focus on cases II and III. We

further restrict our attention to case II, with case III being completely analogous. From

AM–GM, we have the inequalities

B1c1 + B2c4 � 2
√
B1B2c1c4, B1r1 + B2r4 � 2

√
B1B2r1r4,

so (5.19) gives

(r1r4)1/d − 1 � (1− B1B2)2(c1c4 − 1)

(B1B2 + 1 + 2
√
B1B2c1c4)2

,

(c1c4)1/d − 1 � (1− B1B2)2(r1r4 − 1)

(B1B2 + 1 + 2
√
B1B2r1r4)2

.

It is straightforward to verify the identity

(B1B2 + 1 + 2z
√
B1B2)2 + (1− B1B2)2(z2 − 1) = ((1 + B1B2)z + 2

√
B1B2)2.

Set x =
√
r1r4, y =

√
c1c4. Using the identity with z = x, y and taking square roots, we

obtain

x1/d � (1 + B1B2)y + 2
√
B1B2

2
√
B1B2y + B1B2 + 1

, y1/d � (1 + B1B2)x+ 2
√
B1B2

2
√
B1B2x+ B1B2 + 1

. (5.20)

Using the substitution B′ = (1 + B1B2)/2
√
B1B2, this can be rewritten in the form

x1/d � B′y + 1

y + B′
, y1/d � B′x+ 1

x+ B′
. (5.21)

The astute reader will immediately realize the analogy of (5.21) with the tree equations

(3.3) for the Ising model without external field. Moreover, since B′ � 1 we are in the

case of the ferromagnetic Ising model. For the ferromagnetic Ising model on the infinite

tree Td+1, we have uniqueness when 1 < B � (d+ 1)/(d− 1). Hence intuitively the lemma

holds when B′ � (d+ 1)/(d− 1). However, in (5.21) we have an inequality version of the

tree recursions (3.3) and therefore a bit more work is required.

In our setting, we obtain that (5.21) cannot hold when x > 1, y > 1. To see this, multiply

the inequalities in (5.21) to obtain

x1/dy1/d � B′x+ 1

x+ B′
· B
′y + 1

y + B′
. (5.22)
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Note that (5.22) is reversed in case III. The following lemma implies that (5.22) cannot

hold in case II, and similarly for the reverse inequality (5.22) in case III.

Lemma 5.10. Let d � 2. When

B′ � 1/Bc(Td+1) =
d+ 1

d− 1
,

for z > 1 it holds that

z1/d >
B′z + 1

z + B′
.

The inequality is reversed for z < 1.

We give the proof of Lemma 5.10 after observing that

B′ � d+ 1

d− 1

reduces to √
B1B2 �

√
d− 1√
d+ 1

.

This concludes the proof of Lemma 5.6.

Proof of Lemma 5.10. The case z < 1 reduces to the case z > 1 using the inversion z ←
1/z. Thus we focus on proving the lemma for z > 1. Let f(w) := wd+1 − B′wd + B′w − 1.

The lemma reduces to proving f(w) > 0 when w > 1 (under the substitution w = z1/d).

We have

f′(w) = (d+ 1)wd − dB′wd−1 + B′,

f′′(w) = dwd−2((d+ 1)w − (d− 1)B′).

The assumptions imply that (d+ 1)− (d− 1)B′ � 0. Hence, when w > 1, we have f′′(w) >

f′′(1). Note that f′′(1) � 0 only if (d+ 1)− (d− 1)B′ � 0. Thus, f′′(w) is strictly positive

when w > 1 and hence f′(w) is strictly increasing. It follows that for w > 1, we have

f′(w) > f′(1) and

f′(1) = (d+ 1)− (d− 1)B′ � 0.

Thus, f is strictly increasing for w > 1, yielding f(w) > f(1) = 0.

5.4. Some remarks

Here we give the idea behind the arguments establishing Lemmas 2.5 and 2.6. As observed

in Section 5.3, these lemmas boil down to proving that, for (α, β) = (p+, p−), the only critical

point of φ2(γ, δ) is at (γ, δ) = (α2, β2) under the respective hypotheses.

Our point of departure is once again the equations in (5.19), although we proceed with

a more thorough analysis. Looking at the argument for the case
√
d− 1√
d+ 1

�
√
B1B2,

http://journals.cambridge.org


522

the point of the proof which is subject to tighter analysis is the use of the AM–GM

inequalities. These are weak if the ratios r1/r4, c1/c4 are much bigger than B2/B1. In

Section 9.5, we turn this weakness in our favour. Namely, for the antiferromagnetic Ising

model without external field, in the region

0 < B <

√
d− 1√
d+ 1

,

the densities p± are heavily biased towards 1 and 0 respectively, and this reflects at the

values of r1, r4, c1, c4. This observation can be turned into a simple proof of Lemma 2.5.

For the proof of Lemma 2.6, it is easier to get an explicit handle on the values p± (and

thus on the bias of the ri, cj), which can be used to analyse the equations (5.19) (see

Section 9.6).

Further, let us make some small minor observations. The reader may have noticed that

the proof of Lemma 5.6 applies in a more general setup than that stated in Condition 2.3.

Namely, in the region √
B1B2 �

√
d− 1√
d+ 1

,

Lemma 5.6 holds for all values of α, β such that 1 > α, β > 0 and not just for (α, β) =

(p±, p∓) (this range of B1, B2 covers the whole uniqueness region even with external field).

It is thus conceivable that when
√
B1B2 � (

√
d− 1)/(

√
d+ 1), the bound on the partition

function Z
α,β
G in Lemma 2.8 holds for 1 > α, β > 0 (we do not attempt to show a more

general version of Lemma 2.8 in this paper since we are only interested in the values of

(α, β) which maximize EG[Zα,β
G ]).

6. NP-hardness results

In this section we give the proofs for our NP-hardness results. We will prove the following

theorem, which allows us to prove Theorems 1.1, 1.2 and 1.3.

Theorem 6.1. Let Δ � 3. Assume that (B1, B2, λ) lie in the non-uniqueness region of the

infinite tree TΔ. Moreover, assume that Condition 2.3 holds. Then, unless NP= RP, there

is no FPRAS for the partition function of the two-spin model with parameters B1, B2, λ in

graphs with maximum degree Δ.

With Theorem 6.1 at hand, it is straightforward to prove Theorems 1.1, 1.2 and 1.3.

Proofs of Theorems 1.1, 1.2, 1.3. Theorem 1.3 follows immediately from Lemma 2.4 and

Theorem 6.1. Theorem 1.1 was known to hold for Δ = 3 and Δ � 6 ([27], [8]). Lemma 2.6

in combination with Theorem 6.1 proves the cases Δ = 4, 5 as well.

We now prove Theorem 1.2. In the case of the Ising model with no external field, note

that Lemma 2.4 and Theorem 6.1 give hardness for Δ � 3 when
√
d− 1√
d+ 1

� B <
d− 1

d+ 1
, where d = Δ− 1. (6.1)
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The theorem will be proved once we show that this can be extended to the region

0 < B <

√
d− 1√
d+ 1

.

Observe that hardness for B,Δ gives hardness for B,Δ + 1. It is easy to check that for

d � 2 it holds that
√
d+ 1− 1√
d+ 1 + 1

<
d− 1

d+ 1
<

d

d+ 2
,

so the intervals corresponding to Δ and Δ + 1 are overlapping for Δ � 3. Thus it

suffices to check NP-hardness for d = 2 and 0 < B < (
√
d− 1)/(

√
d+ 1). This follows

from Lemma 2.5 and Theorem 6.1, thus completing the proof.

We thus focus on proving Theorem 6.1. Sly’s reduction [27], while presented for the

particular case of the hard-core model, can be used to show hardness for general antifer-

romagnetic two-spin models. The only part of Sly’s reduction that needs modification is

in establishing the properties of the gadget he uses. Let us first describe the gadget used

in [27].

The construction of the gadget has two parameters 0 < θ, ψ < 1/8. Let

k := (Δ− 1)�θ logΔ−1 n� and � := 2

⌊
ψ

2
logΔ−1 n

⌋
and let m′ := k(Δ− 1)�. Note that m′ = o(n1/4). The gadget is constructed in two steps.

First, a random bipartite graph G with n+ m′ vertices on each side is constructed. The two

sides of the graph will be labelled with +,−. For s ∈ {+,−}, let the vertices on the s-side

be Ws ∪Us, where |Ws| = n and |Us| = m′. The edges of the graph are the union of Δ− 1

uniformly random perfect matchings between W+ ∪U+ and W− ∪U−, together with a

uniformly random perfect matching between W+ and W−. Thus, in the resulting random

graph G, the vertices in W := W+ ∪W− have degree Δ and the vertices in U := U+ ∪U−
have degree Δ− 1. We denote the graph distribution defined by this construction as G.

The second part of the construction appends complete trees of depth � to G in the

following manner. For s ∈ {+,−}, partition the vertices of Us into k groups of (Δ− 1)�

vertices. For each group we create a new (Δ− 1)-ary tree of even depth � (where � is

an even integer as specified earlier). The leaves of this tree are the group of vertices in

Us; the other vertices of the tree are new. After the addition of these 2k trees to G the

vertices of Us have degree Δ; in fact, all vertices in this new graph have degree Δ except

for the roots of the trees which have degree Δ− 1. Let R+ (respectively, R−) denote the

roots of those trees whose leaves are a subset of U+ (U−). Let R := R+ ∪ R−. Informally,

the addition of the trees makes it easier to prove stronger concentration properties for the

spins of the vertices with degree Δ− 1 (which are now the roots of the trees).

Analogously to [27], for a configuration σ on H , the phase Y (σ) of σ is defined to be

+ if the number of vertices assigned −1 in W+ is greater than the number of vertices

assigned −1 in W−, otherwise Y (σ) = −. In other words, the phase Y (σ) of a configuration

σ simply points to the set between W+,W− with the greatest number of vertices assigned

−1 in σ.
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The properties of Sly’s gadget are stated in the following lemma (proved in Section 6.3).

We use the following notation: for a configuration σ on H , σR denotes the restriction of

σ to vertices in R. Moreover, for a spin s ∈ {−1,+1}, σ−1(s) denotes the vertices assigned

the spin s.

Lemma 6.2 (analogue of [27, Theorem 2.1]). Let Δ � 3. Assume that (B1, B2, λ) lie in the

non-uniqueness region of the infinite tree TΔ. Moreover, assume that Condition 2.3 holds.

There exist constants θ(Δ, B1, B2, λ), ψ(Δ, B1, B2, λ) > 0 such that for all sufficiently large n

the graph H satisfies the following with probability 1− on(1).

(1) The two phases occur with roughly equal probability, that is, for i ∈ {+,−} we have

μH (Y (σ) = i) � 1

n
.

(2) Conditioned on the phase i ∈ {+,−}, the spins of vertices in R are approximately inde-

pendent, that is,

max
η∈{−1,+1}R

∣∣∣∣μH (σR = η | Y (σ) = i)

QiR(η)
− 1

∣∣∣∣ � n−2θ,

where QiR is the following product distribution on configurations η : R+ ∪ R− → {±1}:

QiR(η) = (qi)|η
−1(−1)∩R+|(1− qi)|η−1(+1)∩R+|(q−i)|η

−1(−1)∩R−|(1− q−i)|η−1(+1)∩R−|.

Recall that for i ∈ {+,−}, qi is the probability that the root of the infinite (Δ− 1)-ary tree

T̂Δ is assigned the spin −1 in the extremal measure μ̂j: see Section 3.

We now describe briefly how these properties of H are established in [27]. This is done

in two steps.

(1) First prove that in the graph G, conditioned on the phase i ∈ {+,−}, the spins of the

vertices in U are asymptotically (jointly) distributed as a product distribution QiU on

{−1,+1}U . The latter distribution is obtained by replacing R with U in the definition

of QiR in Lemma 6.2. Roughly, this can be obtained as follows from what we have

seen so far. In Section 2 we showed that for a random Δ-regular bipartite graph,

with high probability over the choice of the graph, in the Gibbs distribution the total

weight of configurations from the set Σp+ ,p− dominate exponentially over the rest. An

analogous phenomenon occurs for a graph G ∼ G, which allows us to quantify the

aforementioned behaviour; see Section 6.1 for more details.

(2) Translate the results to R. This is accomplished in a crafty way in [27]: the product

measures QiU on {−1,+1}U are analogous to the even and odd boundaries in the

infinite (Δ− 1)-ary tree, providing for an elegant translation of the results (see the

proof of the second part of Lemma 6.2 for more details). Moreover, the extremality of

the measures implies that the roots of the trees, conditioned on the phase, are strongly

concentrated around their expected value. The latter part follows after studying non-

reconstruction in the extremal measures and proving that the correlation of the spins

of the vertices in R to the spins of the vertices in U decays doubly exponentially in

�; see Section 6.2. Crucially, this allows us to bound the distance between the (true)
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distribution of the spins of the vertices in R (conditioned on the phase i) and the

product distribution QiR by an inverse polynomial function of n.

In Section 6.1 we give the lemmas in [27] which require adjustment in the two-spin

model. Their proofs are analogous to those in [27], by comparing the quantities in the

graph distribution G with those in the distribution G. In Section 6.2, we describe the

non-reconstruction results that Sly uses. Finally, in Section 6.3, we give the proof of

Lemma 6.2 and conclude Theorem 6.1, checking that Sly’s arguments go through in our

setting as well.

6.1. The partition function for graphs sampled from G
In this section we give an outline of the lemmas which are needed to extend Sly’s reduction

for general two-spin models.

Let η be an assignment of spins to U, that is, η ∈ {−1,+1}U . For a graph G ∼ G, let

Z
α,β

G
(η) be the partition function over configurations which agree with η on U, that is,

Z
α,β

G
(η) is the total weight of configurations in σ ∈ {−1,+1}V (G) subject to |N−(σ) ∩W+| =

αn, |N−(σ) ∩W−| = βn and σU = η.

Let η+
1 denote the number of vertices in U+ which are assigned spin +1 and let

η−1 = m′ − η+
i (the number of vertices in U+ that are assigned spin −1). Define similarly

η+
2 , η

−
2 for U−. We have the following analogue of [27, Lemma 3.1].

Lemma 6.3. For any α, β and all η ∈ {−1,+1}U we have

EG[Zα,β

G
(η)]

EG[Zα,β
G ]

= (1 + o(1))

(
αη
−
1 (1− α)η+

1 βη
−
2 (1− β)η

+
2

(α− x∗)η−1 (1− α− β + x∗)η
+
1 −η−2 (β − x∗)η−2

B
η+

1 −η
−
2

2

)Δ−1

λη
−
1 +η−2 ,

where x∗ is the (unique) non-negative solution of the equation

B1B2(α− x)(β − x) = x(1− α− β + x).

In particular, when (α, β) = (p+, p−), it holds that

EG[Zα,β

G
(η)]

EG[Zα,β
G ]

= (1 + o(1))
C∗

(1− q+)m
′
(1− q−)m

′ (q
+)η

−
1 (1− q+)η

+
1 (q−)η

−
2 (1− q−)η

+
2 , (6.2)

where

C∗ =

(
(B2 + Q+)(B2 + Q−)

B2 + Q+ + Q− + B1Q+Q−

)(Δ−1)m′

. (6.3)

The proof of Lemma 6.3 is given in Section 7.2.1. Seeking high-probability lower bounds

on Zα,β

G
(η), we study the second moment of Zα,β

G
(η).
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Lemma 6.4 (analogue of Lemma 3.5 in [27]). If Condition 2.3 holds, for (α, β) = (p+, p−)

and all η ∈ {−1,+1}U we have

EG
[
(Zα,β

G
(η))2

]
EG

[
(Zα,β

G )2
] = (1 + o(1))(C∗)2

(
λ

(
1 + B1Q

−

B2 + Q−

)Δ−1)2η−1
(
λ

(
1 + B1Q

+

B2 + Q+

)Δ−1)2η−2

, (6.4)

where Q−, Q+ are given by (3.2) and C∗ is given by (6.3).

The proof of Lemma 6.4 is given in Section 7.2.2. Once again, it turns out that the

second moment method fails to give high probability bounds, as is captured by the

following lemma.

Lemma 6.5. When Condition 2.3 is true, for (α, β) = (p+, p−) it holds that

lim
n→∞

EG
[
(Zα,β

G
(η))2

]
(
EG[Zα,β

G
(η)]

)2
= (1− ω2)−(Δ−1)/2(1− (Δ− 1)2ω2)−1/2,

where ω is given by (3.4).

The proof of Lemma 6.5 is given in Section 7.2.3. We then apply the small subgraph

conditioning method to obtain the following analogue of [27, Lemma 3.9].

Lemma 6.6. For Δ � 3, suppose that for B1, B2, λ in the non-uniqueness region, Condi-

tion 2.3 is true. Then, for (α, β) = (p+, p−), asymptotically almost surely over the choice of

the graph G ∼ G, for η ∈ {−1,+1}U , it holds that

Z
α,β

G
(η) >

1√
n

EG[Zα,β

G
(η)].

The proof of Lemma 6.6 is given in Section 8.2.

6.2. The reconstruction problem in the extremal measures

The final ingredient we need is proving that a strong form of non-reconstruction holds in

the extremal measures. Let us first introduce some notation.

Let T̂ρ,�,Δ denote the subtree of T̂Δ rooted at ρ up to depth �. Let Sρ,� be the leaves

of T̂ρ,�,Δ. Let Xρ,�,+ denote the marginal probability that the root ρ is occupied in a

configuration σ generated by the following process.

(1) Sample a configuration σ̂ from the projection of the measure μ̂+ on T̂ρ,�,Δ,

(2) Conditioning on the configuration σ̂S on Sρ,�, sample a configuration σ from the

Gibbs distribution on T̂ρ,�,Δ.

Note that the configuration of the vertices in Sρ,� is a random vector, so Xρ,�,+ is a random

variable. Define similarly Xρ,�,−. We need the following analogue of [27, Lemma 4.2].

Lemma 6.7. Assume that Δ � 3 and B1, B2, λ lie in the non-uniqueness region of TΔ. There

exist constants ζ1(Δ, B1, B2, λ), ζ2(Δ, B1, B2, λ) > 0 such that, for all sufficiently large �,

P
[
|Xρ,�,± − q±| � exp(−ζ1�)

]
� exp(− exp(ζ2�)).

http://journals.cambridge.org


527

Proof. Martinelli, Sinclair and Weitz [19, Proof of Theorem 5.1, equation (21)] prove the

required strong concentration for the variables Xρ,�,± for the Ising model with arbitrary

external field (in a form different to that stated here but completely equivalent). Their

results can be translated to the general two-spin model after carrying out the reduction

described in [26]. Finally, in the case of hard constraints Lemma 6.7 follows by the

respective result in [27, Lemma 4.2] (slightly extended in [8, Lemma 30]). Of course, one

could also apply the methods in [19] or [27] to directly get the result in general.

6.3. Finishing the proofs of the hardness results

We first give the proof of Lemma 6.2; this is a straightforward extension of the proof of

[27, Theorem 2.1], so we give a description of the main elements and point to the relevant

lemmas which verify that Sly’s proof goes through in our setting as well.

Proof of Lemma 6.2. We first introduce some notation that is used by Sly [27]. Define

Σ± to be the configurations σ ∈ {−1,+1}V (G) such that |N−(σ) ∩W±| � |N−(σ) ∩W∓|,
that is, a configuration in Σ+ assigns the spin −1 to more vertices in W+ than in W− (and

conversely for Σ−). Similarly, for η ∈ {−1,+1}U , define Σ±(η) to be the configurations σ

in σ ∈ Σ± such that σU = η. Further, for G ∼ G, define

Z±
G

(η) =
∑

σ∈Σ±(η)

wG(σ), Z±
G

:=
∑
σ∈Σ±

wG(σ).

Note that

Z±
G

=
∑

η∈{−1,+1}U
Z±
G

(η).

Define similarly Z±G for a random Δ-regular graph G, that is, for G ∼ G, let Z+
G =∑

α�β Z
α,β
G and Z−G =

∑
α<β Z

α,β
G .

Using that (α, β) = (p±, p∓) maximizes the logarithm of EG[Zα,β
G ] (see Lemma 2.2),

the first item of Lemma 6.3 together with Markov’s inequality shows that the largest

contribution to EG[Z±
G

(η)] is given by EG[Zp± ,p∓

G
(η)]. This gives

EG[Z±
G

(η)] = (1 + o(1))(C ′)m
′
Q±U(η)EG[Z±G ], (6.5)

where the last equality uses the conclusion (6.2) of Lemma 6.3 (the constant C ′ can be

inferred from (6.2), though it will not be important for what follows). The derivation

of (6.5) is identical to the proof of [27, Lemma 3.3, equation (3.9)]. Summing (6.5) over

η ∈ {−1,+1}U yields

EG[Z±
G

] = (1 + o(1))(C ′)m
′
EG[Z±G ]. (6.6)

Our results from the small subgraph conditioning method (see Section 8.1), combined

with the above observations, yield that Z±
G

(η) is close to its expectation, in particular

lim
n→∞

max
η∈{−1,+1}U

PrG

(
Z±
G

(η) <
1√
n

EG[Z±
G

(η)]

)
= 0. (6.7)

see the proof of [27, Theorem 3.10] for details.
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At this point, one needs to transfer these results to the graph H . Define Z±H to be

the contribution to the partition function of H from configurations with phase ± (note

that the restriction of such configurations on G is a configuration in Σ±). To connect

the partition function of H with the partition function of G, let T be the graph induced

by the edges E(H)\E(G). In particular, T is a union of disjoint trees and the union of

the leaves of the trees is precisely the set U. For η ∈ {−1,+1}U , define ZT (η) to be the

contribution to the partition function of T from configurations σ ∈ {−1,+1}T such that

σU = η. These definitions allow us to write

Z±H =
∑

η∈{−1,+1}U
Z±
G

(η)ZT (η).

It follows by (6.7) and Markov’s inequality that

lim
n→∞

PrG

( ∑
η∈{−1,+1}U

Z±
G

(η)ZT (η) <
1

2
√
n

∑
η∈{−1,+1}U

ZT (η)EG[Z±
G

(η)]

)
= 0,

lim
n→∞

PrG

( ∑
η∈{−1,+1}U

Z±
G

(η)ZT (η) >

√
n

3

∑
η∈{−1,+1}U

ZT (η)EG[Z±
G

(η)]

)
= 0,

see also [27, (4.22), (4.23)]. It follows that μH (Y (σ) = ±) = Z±H/ZH � 1/n a.a.s. over the

choice of the graph G. This proves the first item in Lemma 6.2.

The proof of the second item in Lemma 6.2 utilizes to a greater extent the connection

to the tree and relies crucially on the non-reconstruction results described in Section 6.2.

First observe that

μH (σU = η |Y (σ) = ±) =
Z±
G

(η)ZT (η)

Z±H
=

Z±
G

(η)ZT (η)∑
η′∈{−1,+1}U Z

±
G

(η′)ZT (η′)
. (6.8)

Now, provided that

Z±
G

(η) <
1√
n

EG[Z±
G

(η)]

(see (6.7)), the right-hand side of (6.8) is (with large probability) within a multiplicative

factor n from

ν±(η) :=
ZT (η)EG[Z±

G
(η)]∑

η′∈{−1,+1}U ZT (η′)EG[Z±
G

(η′)]
=

ZT (η)Q±U(η)∑
η′∈{−1,+1}U ZT (η′)Q±U(η′)

,

using (6.6) in the first equality. The crucial idea, captured in the proof of [27, Lemma 4.3],

is that the measures ν± on configurations {−1,+1}U are the same as the distributions

induced by the random processes we described in Section 6.2; see the proof of [27,

Lemma 4.3] for more details. This allows us to use Lemma 6.7 together with (6.7) to

bound the probability mass of ‘bad’ configurations η on U, that is, configurations on U

which exert a large influence on the roots R of the trees; see [27, Proof of Theorem 2.1].

This yields item (2) in Lemma 6.2, concluding the argument.
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With Lemma 6.2 at hand, Theorem 6.1 can be proved completely analogously to [27,

Proof of Theorems 1 and 2].

Proof of Theorem 6.1. Use Lemma 6.2 and the reduction in [27, Section 2.2].

7. Calculating moments

7.1. Random bipartite Δ-regular graphs

We use the information we obtained for the first and second moments to prove Lemma 2.7.

Its proof is a technical calculation.

Recall that

Q± =
q±

1− q± .

To aid the presentation, it will be convenient to define the following expressions, which

will appear in the analysis of the asymptotics of the first and second moments:

E1 := B1Q
−Q+ + Q− + Q+ + B2,

E2 := B1Q
−Q+ + B1B2(Q+ + Q−) + B2,

E3 := (1− B1B2)2Q−Q+

+ (1 + B1(Q+ + Q−) + B2
1Q
−Q+)(B2

2 + B2(Q− + Q+) + Q−Q+).

(7.1)

We are also going to need the explicit values of

X∗ = arg max
X
g1(X) and Y∗ = arg max

X
g2(Y)

when α = p+, β = p−, γ = α2, δ = β2. These are given by(
x∗11 x

∗
12

x∗21 x
∗
22

)
=

1

E1

(
B1Q

−Q+ Q+

Q− B2

)
, (7.2)

⎛
⎜⎜⎝
y∗11 y

∗
12 y

∗
13 y

∗
14

y∗21 y
∗
22 y

∗
23 y

∗
24

y∗31 y
∗
32 y

∗
33 y

∗
34

y∗41 y
∗
42 y

∗
43 y

∗
44

⎞
⎟⎟⎠ =

(
x∗11 x

∗
12

x∗21 x
∗
22

)
⊗

(
x∗11 x

∗
12

x∗21 x
∗
22

)
, (7.3)

where the operator ⊗ denotes the tensor product. The easiest way to derive the validity

of these values is to use the strict concavity of the functions g1(X), g2(Y) and just check

that the required equalities for the critical points are satisfied.

Lemma 7.1. For (α, β) = (p+, p−), we have that

lim
n→∞

EG[Zα,β
G ]

1
n
enΦ1(α,β,X∗)

=
1

2π
(αβ(1− α)(1− β))(Δ−1)/2

(
Q+Q−E2

E3
1

)−Δ/2

.
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Lemma 7.2. For (α, β) = (p+, p−), we have that

lim
n→∞

EG[(Zα,β
G )2]

1
n2 enΦ2(γ∗ ,δ∗ ,Y∗)

=
1

4π2
(αβ(1− α)(1− β))2(Δ−1)

(
(Q+Q−)4E3

2E3

E13
1

)−Δ/2

×
(

(Q+Q−)2E2E3

E7
1

)1/2

(1− (Δ− 1)2ω2)−1/2,

where γ∗ = α2, δ∗ = β2, Y∗ is given by (7.3) and ω by (3.4).

The proofs of Lemmas 7.1 and 7.2 are given in Sections 7.1.1 and 7.1.2 respectively. We

need to state one more lemma before we can give the proof of Lemma 2.7.

Lemma 7.3. It holds that 2Φ1(α, β,X∗) = Φ2(α2, β2,Y∗).

Proof. It clearly suffices to prove

f2(α2, β2) = 2f1(α, β) and g2(Y∗) = 2g1(X∗).

Both of these can be verified by straightforward calculations. A neater way to do this,

using the uncorrelated property represented by Condition 2.3 more directly, is to use

entropy arguments. We illustrate this in the case of f1 and f2, with the same technique

extending to g1, g2 as well.

Define A,B to be independent Bernoulli variables with success probabilities α, β

respectively. It is straightforward to see that f1(α, β) = −(H(A) +H(B)), where H(X) is the

entropy of the random variable X. Let A′ = (A1, A2), where A1, A2 are independent copies

of the random variable A. Define similarly B′. Using the definition of entropy, it is easy

to check that f2(α2, β2) = −(H(A′) +H(B′)). But clearly H(A′) = H(A1) +H(A2) = 2H(A)

and similarly for B,B′, thus verifying that f2(α2, β2) = 2f1(α, β).

Using (7.3), one can easily extend the previous argument to show that g2(Y∗) = 2g1(X∗).

We should emphasize that the proof of Lemma 7.3 does not rely on the fact that Q+, Q−

are a function of the critical probabilities on the infinite tree, that is, we do not need

Lemma 3.1, but rather the representation given in (3.6) and the uncorrelated property

represented by Condition 2.3.

Proof of Lemma 2.7. Let

L := lim
n→∞

EG[(Zα,β
G )2]

(EG[Zα,β
G ])2

.

Employ Lemmas 7.1, 7.2 and 7.3 to obtain

L = (1− (Δ− 1)2ω2)−1/2(αβ(1− α)(1− β))Δ−1

(
(Q+Q−)2E2E3

E7
1

)1/2

R−Δ/2,

where

R =

(
(Q+Q−)4E3

2E3

E13
1

)
·
(
Q+Q−E2

E3
1

)−2

=
(Q+Q−)2E2E3

E7
1

.
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Thus

L = (1− (Δ− 1)2ω2)−1/2(αβ(1− α)(1− β))Δ−1

(
(Q+Q−)2E2E3

E7
1

)−(Δ−1)/2

= (1− (Δ− 1)2ω2)−1/2

(
1

α2β2(1− α)2(1− β)2
· (Q+Q−)2E2E3

E7
1

)−(Δ−1)/2

.

By (3.6), we have

α =
Q+(1 + B1Q

−)

E1
and β =

Q−(1 + B1Q
+)

E1
,

so that

L = (1− (Δ− 1)2ω4)−1/2

(
E1E2E3

(B2 + Q−)2(B2 + Q+)2(1 + B1Q−)2(1 + B1Q+)2

)−(Δ−1)/2

.

The lemma follows after observing the easily proved identity

E1E2E3

(B2 + Q−)2(B2 + Q+)2(1 + B1Q−)2(1 + B1Q+)2
= 1− ω2.

7.1.1. The asymptotics of the first moment. In this section we prove Lemma 7.1, that is,

we compute the asymptotics of EG[Zα,β
G ] for (α, β) = (p+, p−); see the relevant Sections 4.1

and 4.3.

Proof of Lemma 7.1. We will use the full-dimensional representation (see Section 5.1)

of g1(X): while we are still going to refer to the values x∗ij , in what follows the only free

variable is going to be x11. By the approximation(
bn

an

)
= (1 + o(1))

1√
2πn

√
b

a(b− a)e
n(b ln b−a ln a−(a−b) ln(a−b)),

we obtain

EG[Zα,β
G ]

1
n
enΦ1(α,β,X∗)

= (1 + o(1))
1

2π
· (αβ(1− α)(1− β))(Δ−1)/2

×
(∑

x11

(∏
i,j

xij

)−1/2
1√
2πn
· en(g1(x11)−g1(x∗11))

)Δ

.

Note that in the above sum terms with |x11 − x∗11| � O(1) dominate exponentially over

the rest, and in a sufficiently small ball around x∗11 the function decays quadratically, as

established by Lemma 5.1. Thus, standard integration arguments (for precise details see

[15, Chapter 9]) yield

lim
n→∞

EG[Zα,β
G ]

1
n
enΦ1(α,β,X∗)

=
1

2π
(αβ(1− α)(1− β))(Δ−1)/2

(∏
i,j

x∗ij

)−Δ/2

×
(

1√
2π

∫ ∞

−∞
exp

(
∂2g1

∂x2
11

(x∗11) · (x11 − x∗11)2

2

)
dx11

)Δ

.
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Let

H :=
∂2g1

∂x2
11

(x∗11).

Since g1 is strictly concave and it achieves its maximum at x∗11, we have H < 0. It follows

that

1√
2π

∫ ∞

−∞
exp

(
∂2g1

∂x2
11

(x∗11) · (x11 − x∗11)2

2

)
dx11 = (−H)−1/2,

and consequently

lim
n→∞

EG[Zα,β
G ]

1
n
enΦ1(α,β,X∗)

=
1

2π
(αβ(1− α)(1− β))(Δ−1)/2

(
(−H)

∏
i,j

x∗ij

)−Δ/2

.

We have

∂2g1

∂x2
11

= −
(

1

x11
+

1

α− x11
+

1

β − x11
+

1

1− α− β + x11

)
.

Substituting the values of α, β from (3.6) and the values of the x∗ij from (7.2), we obtain

−H =
E1E2

B1B2Q−Q+
,

∏
i,j

x∗ij =
B1B2(Q+Q−)2

E4
1

, so that (−H)
∏
i,j

x∗ij =
Q+Q−E2

E3
1

,

and the result follows.

7.1.2. The asymptotics of the second moment. In this section we prove Lemma 7.2, that

is, we compute the asymptotics of EG[(Zα,β
G )2] for (α, β) = (p+, p−). We have

EG[(Zα,β
G )2] =

∑
γ,δ

EG[Y γ,δ
G ],

where EG[Y γ,δ
G ] was calculated in Section 4.2 (see also the relevant Section 4.3).

Proof of Lemma 7.2. As in the proof of Lemma 7.1, in the following we are going to

refer to the full-dimensional representations (see Section 5.1) of g2,Φ2, that is, our free

variables are going to be {yij} with 1 � i, j � 3, so the rest of the yij are just shorthand

for their respective values (in terms of the free variables). We have that

EG[(Zα,β
G )2]

1
n2 enΦ2(γ∗ ,δ∗ ,Y∗)

= (1 + o(1))
1

4π2

×
∑
γ,δ

(
1√
2πn

)2

(γδ(1− 2α+ γ)(1− 2β + δ)(α− γ)2(β − δ)2)(Δ−1)/2

×
(∑

Y

(
1√
2πn

)9( 4∏
i=1

4∏
j=1

1
√
yij

)
en(Φ2(γ,δ,Y)−Φ2(γ∗ ,δ∗ ,Y∗))/Δ

)Δ

.
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The function Φ2(γ, δ,Y) has a unique maximum at (γ∗, δ∗,Y∗). Thus, in the above sum,

terms with ‖(γ, δ,Y)− (γ∗, δ∗,Y∗)‖ � O(1) dominate exponentially over the rest. Moreover,

in the region ‖(γ, δ,Y)− (γ∗, δ∗,Y∗)‖ � O(1) the function Φ2 decays quadratically.

For convenience, let

L := lim
n→∞

EG[(Zα,β
G )2]

1
n2 enΦ2(γ∗ ,δ∗ ,Y∗)

.

As in the proof of Lemma 7.1, we obtain

L =

(
1√
2π

)15

(γ∗δ∗(1− 2α+ γ∗)(1− 2β + δ∗)(α− γ∗)2(β − δ∗)2)(Δ−1)/2

×
( 4∏
i,j=1

y∗ij

)−Δ/2 ∫ ∞

−∞

∫ ∞

−∞

(
1

(
√

2π)9

∫ ∞

−∞
e

1
2

(γ,δ,Y)·H·(γ,δ,Y)T dY

)Δ

dγ dδ

=
1

4π2
(αβ(1− α)(1− β))2(Δ−1)

( 4∏
i,j=1

y∗ij

)−Δ/2

×
(

1√
2π

)2 ∫ ∞

−∞

∫ ∞

−∞

(
1

(
√

2π)9

∫ ∞

−∞
e

1
2

(γ,δ,Y)·H·(γ,δ,Y)T dY

)Δ

dγ dδ,

(7.4)

where H denotes the Hessian matrix of Φ2 evaluated at (γ∗, δ∗,Y∗) scaled by 1/Δ and the

operator · stands for matrix multiplication.

We thus focus on computing the integral in (7.4). This will be achieved by two successive

Gaussian integrations. First, we split the exponent of the quantity inside the integral as

follows:

1

2
(γ, δ,Y) ·H · (γ, δ,Y)T =

1

2
(γ, δ) ·Hγ,δ · (γ, δ)T − 1

2
Y · (−HY) · YT +

3∑
i=1

3∑
j=1

Tijyij ,

where Hγ,δ denotes the principal minor of H corresponding to γ, δ, HY denotes the

principal minor of H corresponding to Y, and

Tij =
1

Δ

(
γ · ∂

2Φ2

∂γ∂yij
+ δ · ∂

2Φ2

∂δ∂yij

)
.

It follows that(∫ ∞

−∞
e

1
2

(γ,δ,Y)·H·(γ,δ,Y)T dY

)Δ

= e
Δ
2

(γ,δ)·Hγ,δ ·(γ,δ)T
(∫ ∞

−∞
e−

1
2

Y·(−HY)·YT+
∑ 3

i=1

∑ 3
j=1 Tijyij dY

)Δ

.

Let T denote the row vector with entries Tij . Note that HY is the Hessian of g2(Y)

evaluated at Y∗. Since g2(Y) is concave and g2 achieves its maximum at Y∗, we have that
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HY is negative definite. Hence,(
1

(
√

2π)9

∫ ∞

−∞
e

1
2

(γ,δ,Y)·H·(γ,δ,Y)T dY

)Δ

=
1

(Det(−HY))Δ/2
e

Δ
2

(T·(−HY)−1·TT+(γ,δ)·Hγ,δ ·(γ,δ)T ).

We are thus left with the task of computing the integral(
1√
2π

)2 ∫ ∞

−∞

∫ ∞

−∞
e

Δ
2

(T·(−HY)−1·TT+(γ,δ)·Hγ,δ ·(γ,δ)T ). (7.5)

It can easily be seen that the expression in the exponent is a quadratic polynomial in γ, δ,

so that we may again perform Gaussian integration. We have

Δ

2
(T · (−HY)−1 · TT + (γ, δ) ·Hγ,δ · (γ, δ)T ) = Dγ2 + Eγδ + Fδ2, (7.6)

for some complicated D,E, F , which can be determined explicitly by (7.6), once we perform

the substitutions. Hence,(
1√
2π

)2 ∫ ∞

−∞

∫ ∞

−∞
e

Δ
2

(T·(−HY)−1·TT+(γ,δ)·Hγ,δ ·(γ,δ)T )dγ dδ =
1

(4DF − E2)1/2
, (7.7)

provided that 4DF − E2 > 0, so the integration is meaningful. We will check this condition

later.

Combining equations (7.4), (7.5), (7.7), we obtain

L =
1

4π2
(αβ(1− α)(1− β))2(Δ−1)

(
Det(−HY)

4∏
i,j=1

y∗ij

)−Δ/2

(4DF − E2)−1/2

=
1

4π2
(αβ(1− α)(1− β))2(Δ−1) · R, (7.8)

where

R :=

(
Det(−HY)

4∏
i,j=1

y∗ij

)−Δ/2

(4DF − E2)−1/2.

At this point we use Maple to perform the remaining calculations. The solution in the

form of (7.3) is particularly handy, since it rationalizes the relevant expressions. We have

Det(−HY) =
E19

1 E
3
2E3

(B1B2)8(Q+Q−)12
,

4∏
i,j=1

y∗ij =
(B1B2)8(Q+Q−)16

E32
1

,

4DF − E2 =
E7

1

(Q+Q−)2E2E3
· (1− (Δ− 1)2ω2).

Note that by Lemma 3.2, we have 4DF − E2 > 0, so that the integration in (7.7) is indeed

meaningful. After plugging the above values into R and substituting back in (7.8), the

lemma follows.
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7.2. Gadget

In this subsection we prove Lemmas 6.3 and 6.4. We will need the following bound.

Lemma 7.4 (general form of Lemma 3.2 in [27]). Let b1, . . . , b� � 0 and y1, . . . , y� be

integers. Let a = b1 + · · ·+ b� and x = y1 + · · ·+ y�. Assume y2
i � bi for each i ∈ {1, . . . , �}.

Then (
a+x

b1+y1 ,b2+y2 ,...,b�+y�

)(
a

b1 ,b2 ,...,b�

) =

(
1 + O

( �∑
i=1

y2
i /bi

))
ax

b
y1

1 · · · b
y�
�

.

Proof. We have(
a+x

b1+y1 ,b2+y2 ,...,b�+y�

)(
a

b1 ,b2 ,...,b�

) =
(a+ x)!

a!

�∏
i=1

bi!

(bi + yi)!

=
ax

b
y1

1 · · · b
y�
�

( x∏
j=1

(1 + j/a)

)/ �∏
i=1

( yi∏
j=1

(1 + j/bi)

)

=
ax

b
y1

1 · · · b
y�
�

(
1 + O

(
x2

a
+
y2

1

b1
+ · · ·+ y2

�

b�

))
.

The lemma now follows from the fact that x2/a � y2
1/b1 + · · ·+ y2

�/b
2
� (which follows

from the Cauchy–Schwarz inequality).

7.2.1. First moment.

Proof of Lemma 6.3. By (4.1), recall that

EG
[
Z
α,β
G

]
= λ(α+β)n

(
n

αn

)(
n

βn

)( ∑
x�min{α,β}

κ
α,β,x
G

)Δ

,

where

κ
α,β,x
G =

(
αn
xn

)(
(1−α)n
(β−x)n

)(
n
βn

) Bxn1 B
(1−α−β+x)n
2 .

Similarly, we have

EG
[
Z
α,β

G
(η)

]
= λ(α+β)n+η−1 +η−2

(
n

αn

)(
n

βn

)

×
( ∑
x�min{α+η−1 /n,β+η−2 /n}

κ
α,β,x

G
(η)

)Δ−1( ∑
x�min{α,β}

κ
α,β,x
G

)
,

where

κ
α,β,x

G
(η) =

(
αn+η−1
xn

)((1−α)n+η+
1

(β−x)n+η−2

)
(
n+m′

βn+η−2

) Bxn1 B
(1−α−β+x)n+η+

1 −η
−
2

2 .
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From Lemma 7.4 and the fact that η+
1 , η

−
1 , η

+
2 , η

−
2 � n1/4, we have the following estimate

on the ratio of κα,β,x
G

(η) and κα,β,xG :

κ
α,β,x

G
(η)

κ
α,β,x
G

= (1 + o(1))
αη
−
1 (1− α)η+

1 βη
−
2 (1− β)η

+
2

(α− x)η
−
1 (1− α− β + x)η

+
1 −η−2 (β − x)η

−
2

B
η+

1 −η
−
2

2 . (7.9)

It is easy to see that for any α, β, the logarithm of the function κα,β,xG scaled by n is exactly

the full-dimensional representation of the function g1(X) (see Section 4.3). Since g1(X) is

strictly concave with respect to X, it has a unique maximum. With these observations, it

can easily be calculated that the value of x = x11 for which g1(X) achieves its maximum

is given by the unique positive solution of

B1B2(α− x∗)(β − x∗) = x∗(1− α− β + x∗).

By Lemma 5.1, the logarithm of κα,β,xG decays quadratically in the distance from x∗. Let

A = {x : |x− x∗| � n−1/4}.

The relative contribution of terms outside A to EG
[
Z
α,β
G

]
is exp(−Ω(n1/2)) and hence

can be omitted. Similarly, using (7.9), the relative contribution of terms outside A to

EG
[
Z
α,β

G
(η)

]
is exp(−Ω(n1/2)) and hence can also be omitted.

For x ∈ A we have

κ
α,β,x

G
(η)

κ
α,β,x
G

= (1 + o(1))
αη
−
1 (1− α)η+

1 βη
−
2 (1− β)η

+
2

(α− x∗)η−1 (1− α− β + x∗)η
+
1 −η−2 (β − x∗)η−2

B
η+

1 −η
−
2

2 .

Thus,

EG
[
Z
α,β

G
(η)

]
EG

[
Z
α,β
G

]
= (1 + o(1))

(
αη
−
1 (1− α)η+

1 βη
−
2 (1− β)η

+
2

(α− x∗)η−1 (1− α− β + x∗)η
+
1 −η−2 (β − x∗)η−2

B
η+

1 −η
−
2

2

)Δ−1

λη
−
1 +η−2 ,

which proves the first part of the lemma.

When (α, β) = (p+, p−), we express α, β and x∗ = x∗11 in terms of Q+, Q− using equations

(3.6) and (7.2). We obtain

αη
−
1 (1− α)η+

1 βη
−
2 (1− β)η

+
2

(α− x∗)η−1 (1− α− β + x∗)η
+
1 −η−2 (β − x∗)η−2

B
η+

1 −η
+
2

2

=

(
B2(1− α)(1− β)

1− α− β + x∗

)m′(
α(1− α− β + x∗)

B2(α− x∗)(1− α)

)η−1
(
β(1− α− β + x∗)

B2(β − x∗)(1− β)

)η−2

=

(
(B2 + Q+)(B2 + Q−)

B2 + Q+ + Q− + B1Q+Q−

)m′(
1 + B1Q

−

B2 + Q−

)η−1
(

1 + B1Q
+

B2 + Q+

)η−2

,

and hence

EG
[
Z
α,β

G
(η)

]
EG

[
Z
α,β
G

] = (1 + o(1))C∗
(
λ

(
1 + B1Q

−

B2 + Q−

)Δ−1)η−1
(
λ

(
1 + B1Q

+

B2 + Q+

)Δ−1)η−2

, (7.10)
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where C∗ is given by (6.3). Using the fact that Q+, Q− satisfy (3.3), we have

Q+ = λ

(
1 + B1Q

−

B2 + Q−

)Δ−1

and Q− = λ

(
1 + B1Q

+

B2 + Q+

)Δ−1

.

Hence, we obtain

EG
[
Z
α,β

G
(η)

]
EG

[
Z
α,β
G

] = (1 + o(1))C∗(1 + Q+)m
′
(1 + Q−)m

′

×
(

Q+

1 + Q+

)η−1
(

1

1 + Q+

)η+
1
(

Q−

1 + Q−

)η−2
(

1

1 + Q−

)η+
2

.

The second part of the lemma follows after observing that

q± =
Q±

1 + Q±
, 1− q± =

1

1 + Q±
.

7.2.2. Second moment.

Proof of Lemma 6.4. By (4.4), we have

EG
[
(Zα,β

G )2
]

= λ2(α+β)n

(
n

αn

)(
n

βn

)

×
∑
γ,δ

(
αn

γn

)(
(1− α)n
(α− γ)n

)(
βn

δn

)(
(1− β)n

(β − γ)n

)(∑
Y

κ
γ,δ,Y
G

)Δ

,

(7.11)

where

κ
γ,δ,Y
G =

∏4
i=1

(
Lin

yi1n,yi2n,yi3n,yi4n

) ∏4
j=1

(
Rjn

y1jn,y2jn,y3jn,y4jn

)
(

n
y11n,y12n,...,y44n

)
× B(2y11+y12+y13+y21+y22+y31+y33)n

1 B
(y22+y24+y33+y34+y42+y43+2y44)n
2 ,

L1 = γ, L2 = L3 = α− γ, L4 = 1− 2α+ γ,

R1 = δ, R2 = R3 = β − δ, R4 = 1− 2β + δ,

and Y stands for the non-negative variables yij , 1 � i, j � 4 such that∑
jyij = Li and

∑
iyij = Rj.

Similarly, we have that

EG
[
(Zα,β

G
(η))2

]
= λ2(α+β)n+2(η−1 +η−2 )

(
n

αn

)(
n

βn

)

×
∑
γ,δ

(
αn

γn

)(
(1− α)n
(α− γ)n

)(
βn

δn

)(
(1− β)n

(β − γ)n

)

×
(∑

Ŷ

κ
γ,δ,Ŷ

G
(η)

)Δ−1(∑
Y

κ
γ,δ,Y
G

)
,

(7.12)
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where

κ
γ,δ,Ŷ

G
(η) =

∏4
i=1

(
L̂in

ŷi1n,ŷi2n,ŷi3n,ŷi4n

)∏4
j=1

(
R̂jn

ŷ1jn,ŷ2jn,ŷ3jn,ŷ4jn

)
(

n+m′

ŷ11n,ŷ12n,...,ŷ44n

)
× B(2ŷ11+ŷ12+ŷ13+ŷ21+ŷ22+ŷ31+ŷ33)n

1 B
(ŷ22+ŷ24+ŷ33+ŷ34+ŷ42+ŷ43+2ŷ44)n
2 ,

L̂1 = γ + η−1 , L̂2 = L̂3 = α− γ, L̂4 = 1− 2α+ γ + η+
1 ,

R̂1 = δ + η−2 , R̂2 = R̂3 = β − δ, R̂4 = 1− 2β + δ + η+
2 ,

and Ŷ stands for the non-negative variables ŷij , 1 � i, j � 4 such that∑
j ŷij = L̂i and

∑
j ŷij = R̂j .

For a given Y, consider Ŷ such that yij = ŷij for all i, j ∈ {1, 2, 3, 4}, except ŷ14 =

y14 + η−1 , ŷ41 = y41 + η−2 , and ŷ44 = y44 + m′ − η−1 − η−2 . This is always possible, except at

the boundary, but as we will see shortly, these cases can be safely ignored. By Lemma 7.4,

we have

κ
γ,δ,Ŷ

G
(η)

κ
γ,δ,Y
G

= (1 + o(1))
γη
−
1 (1− 2α+ γ)η

+
1 δη

−
2 (1− 2β + δ)η

+
2

y
η−1
14 y

η−2
41 y

m′−η−1 −η−2
44

B
2m′−2η−1 −2η−2
2 . (7.13)

Let

A = {(γ, δ,Y) : ‖(γ, δ,Y)− (γ∗, δ∗,Y∗)‖2 � n−1/4},

where γ∗ = α2, δ∗ = β2 and Y∗ is given by (7.3). By Condition 2.3 and Lemma 5.1, the

relative contribution of terms outside A to EG
[
(Zα,β

G )2
]

is exp(−Ω(n1/2)) and hence can be

omitted. Similarly, using (7.13), the relative contribution of terms outside A to

EG
[
(Zα,β

G
(η))2

]
is exp(−Ω(n1/2)) and hence can also be omitted. For (γ, δ,Y) ∈ A we have

κ
γ,δ,Ŷ

G
(η)

κ
γ,δ,Y
G

= (1 + o(1))
(γ∗)η

−
1 (1− 2α+ γ∗)η

+
1 (δ∗)η

−
2 (1− 2β + δ∗)η

+
2

(y∗14)η
−
1 (y∗41)η

−
2 (y∗44)m

′−η−1 −η−2
B

2m′−2η−1 −2η−2
2 .

Using equations (3.6) and (7.3), we express α, β and Y in terms of Q+, Q−. For (γ, δ,Y) ∈ A,

we obtain that

κ
γ,δ,Ŷ

G
(η)

κ
γ,δ,Y
G

= (1 + o(1))

(
B2

2(1− 2α+ γ∗)(1− 2β + δ∗)

y∗44

)m′

×
(

γ∗y∗44

B2
2y
∗
14(1− 2α+ γ∗)

)η−1
(

δ∗y∗44

B2
2y
∗
41(1− 2β + δ∗)

)η−2

= (1 + o(1))

(
(B2 + Q+)(B2 + Q−)

B2 + Q+ + Q− + B1Q+Q−

)2m′(
1 + B1Q

−

B2 + Q−

)2η−1
(

1 + B1Q
+

B2 + Q+

)2η−2

.

Plugging the last equation into (7.11) and (7.12), we obtain the lemma.
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7.2.3. Proof of Lemma 6.5.

Proof of Lemma 6.5. By equations (6.4) and (7.10), we have

lim
n→∞

EG
[
(Zα,β

G
(η))2

]
(EG

[
Z
α,β

G
(η)

]
)2

= lim
n→∞

EG
[
(Zα,β

G )2
]

(EG
[
Z
α,β
G

]
)2
.

The lemma follows, after using Lemma 2.7.

8. Asymptotically almost surely results

8.1. Overview

In this section we apply the small subgraph conditioning method to obtain Lemmas 2.8

and 6.6, see Section 2 for a brief discussion. Closely related results have appeared in

[24, 27] for the hard-core model, but here we need to account for the extra parameters

B1, B2. The proofs are similar but the technical calculations are a bit more complicated

due to the extra parameters.

The following theorem is taken from [24]. The notation [X]m refers to the mth-order

falling factorial of the variable X.

Theorem 8.1. Let λi > 0 and δi > −1 be real numbers for i = 1, 2, . . . . Let r(n)→ 0 and

suppose that for each n there are random variables Xi = Xi(n), i = 1, 2, . . . and Y = Y (n),

all defined on the same probability space G = Gn such that Xi is non-negative integer valued,

Y is non-negative and E[Y ] > 0 (for n sufficiently large). Suppose furthermore that:

(1) for each k � 1, the variables X1, . . . , Xk are asymptotically independent Poisson random

variables with EXi → λi,

(2) for every finite sequence m1, . . . , mk of non-negative integers,

E[Y [X1]m1
· · · [Xk]mk ]

E[Y ]
→

k∏
i=1

(λi(1 + δi))
mi , (8.1)

(3)
∑

i λiδ
2
i < ∞,

(4) E[Y 2]/(E[Y ])2 � exp
(∑

i λiδ
2
i

)
+ o(1) as n→∞.

Then Y > r(n)E[Y ] asymptotically almost surely.

Proof. See, for example, [24, Theorem 7.1].

Recall that Zα,β
G is the measure of configurations in Σα,β

G for a random Δ-regular bipartite

graph G. Let Xi be the number of cycles of length i in G. Clearly Xi = 0 if and only if i

is odd. We have the following lemmas.

Lemma 8.2 (Lemma 7.3 in [24]). Condition 1 of Theorem 8.1 holds for even i with

λi =
r(Δ, i)

i
,
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where r(Δ, i) is the number of ways one can properly edge colour a cycle of length i with Δ

colours.

Proof. The proof of Lemma 8.2 is given in [24, Lemma 7.3].

Lemma 8.3. For (α, β) = (p±, p∓), we have that

EG[Zα,β
G Xi]

EG[Zα,β
G ]

→ λi(1 + δi) and
EG[Zα,β

G
(η)Xi]

EG[Zα,β

G
(η)]

→ λi(1 + δi),

where

δi =
(1− B1B2)i/2(Q+Q−)i/2

((1 + B1Q+)(1 + B1Q−)(B2 + Q+)(B2 + Q−))i/2
.

The proof of Lemma 8.3 is given in Section 8.2.

Lemma 8.4. It holds that

exp

( ∑
even i � 2

λiδ
2
i

)
= (1− ω2)−(Δ−1)/2(1− (Δ− 1)2ω2)−1/2,

where ω is given by (3.4).

The proof of Lemma 8.4 is given in Section 8.2.

Lemma 8.5. For (α, β) = (p±, p∓) and for every finite sequence m1, . . . , mk of non-negative

integers, it holds that

EG
[
Z
α,β
G (η)[X2]m1

· · · [X2k]mk
]

EG[Zα,β
G ]

→
k∏
i=1

(λi(1 + δi))
mi

and

EG
[
Z
α,β

G
(η)[X2]m1

· · · [X2k]mk
]

EG[Zα,β

G
(η)]

→
k∏
i=1

(λi(1 + δi))
mi .

Proof. The proof of Lemma 8.5 is identical to [24, Proof of Lemma 7.5].

We are now in a position to prove Lemmas 2.8 and 6.6.

Proofs of Lemmas 2.8 and 6.6. We verify the conditions of Theorem 8.1 in each case:

Condition 1 holds (Lemma 8.2), Condition 2 holds (Lemma 8.5), Conditions 3 and 4 hold

(Lemma 8.4 and Lemmas 2.7 and 6.5). Lemmas 2.8 and 6.6 follow by picking r(n) = 1/n

and r(n) = 1/
√
n respectively.
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8.2. Random bipartite Δ-regular graphs

In this section we prove Lemma 8.3. We give the proof for the variables Zα,β
G and omit

the proof for the variables Zα,β

G
(η), which can be carried out the same way as in [27,

Lemma 3.8] and along the lines of Section 7.2.1.

Recall that r(Δ, i) denotes the number of proper Δ-edge colourings of a cycle of length

i.

Lemma 8.6. r(Δ, i) = (Δ− 1)i + (−1)i(Δ− 1).

Proof. The (simple) proof of Lemma 8.6 is given in [24, Lemma 7.6].

Proof of Lemma 8.3. For sets S, T such that S ⊂ V1, T ⊂ V2, |S | = αn, |T | = βn, let YS,T
denote the measure of the configuration σ induced by S, T , that is, for a vertex v ∈ V (G),

σ(v) = 1 if and only if v ∈ S ∪ T .

Fix a specific pair of S, T . By symmetry,

E[Zα,β
G Xi]

E[Zα,β
G ]

=
E[YS,TXi]

E[YS,T ]
. (8.2)

We now decompose Xi as follows.

• ξ will denote a proper Δ-edge coloured, rooted and oriented i-cycle (r(Δ, i) possibilities),

in which the vertices are coloured with red (R), blue (B) and white (W ) such that

no two adjacent vertices in the cycle have both R or B colour, that is, the only

assignments which are prohibited for an edge are (R,R), (B,B). The colour of the

edges will prescribe which of the Δ perfect matchings an edge of a (potential) cycle

will belong to. R denotes vertices belonging to S , B denotes vertices belonging to T ,

and W the remaining vertices.

• Given ξ, ζ denotes a position that an i-cycle can be in (i.e., the exact vertices it

traverses, in order) such that prescription of the vertex colours of ξ is satisfied.

• 1ξ,ζ is the indicator function whether a cycle specified by ξ, ζ is present in the graph

G.

Note that each possible cycle corresponds to exactly 2i different configurations ξ (the

number of ways to root and orient the cycle). For each of those ξ, the respective sets of

configurations ζ are the same. Hence, we may write

Xi =
1

2i

∑
ξ

∑
ζ

1ξ,ζ .

Let P1 := Pr[1ξ,ζ = 1]. It follows that

E[YS,TXi] =
1

2i

∑
ξ

∑
ζ

P1 · E[YS,T |1ξ,ζ = 1].

In light of (8.2), we need to study the ratio E[YS,T |1ξ,ζ = 1]/E[YS,T ]. At this point, to

simplify notation, we may assume that ξ, ζ are fixed.

http://journals.cambridge.org


542

We have shown in Section 4.1 that

E[YS,T ] = λ(α+β)n

(∑
δ

(
αn
δn

)(
(1−α)n
(β−δ)n

)(
n
βn

) Bδn1 B
(1−α−β+δ)n
2

)Δ

,

where δ denotes the number of edges between S, T in one matching.

To calculate E[YS,T |1ξ,ζ = 1] we need some notation. For colours c1, c2 ∈ {R,B,W }, we

say that an edge is of type {c1, c2} if its endpoints have colours c1, c2. Let j1, j2 denote

the number of red and blue vertices in the colouring prescribed by ξ. For k = 1, . . . ,Δ, let

a1(k) denote the number of edges of colour k of type {R,B}, let a2(k) be the number of

edges of colour k of type {W,W }, let d1(k) be the number of edges of colour k of type

{R,W }, and let d2(k) be the number of edges of colour k of type {B,W }. Finally, for

j = 1, 2 let aj =
∑

k aj(k) and dj =
∑

k dj(k). By considering the sum of the degrees of R

vertices, the sum of the degrees of B vertices and the total number of edges of the cycle,

we obtain the following equalities:

a1 + d1 = 2j1, a1 + d2 = 2j2, a1 + a2 + d1 + d2 = i. (8.3)

A straightforward modification of the arguments in Section 4.1 yields

E[YS,T |1ξ,ζ = 1] =

λ(α+β)n
Δ∏
k=1

(∑
δk

(
αn−a1(k)−d1(k)

δkn

)(
(1−α)n−a2(k)−d2(k)

(β−δk)n−a1(k)−d2(k)

)
(
n−a1(k)−a2(k)−d1(k)−d2(k)

βn−a1(k)−d2(k)

) B
δkn+a1(k)
1 B

(1−α−β+δk)n+a1(k)
2

)
.

By Lemma 7.4, we have(
αn−a1(k)−d1(k)

δkn

)(
αn
δkn

) ∼
(
α− δk
α

)a1(k)+d1(k)

,

(
(1−α)n−a2(k)−d2(k)

(β−δk)n−a1(k)−d2(k)

)
(

(1−α)n
(β−δk)n

) ∼
(

1− α− β + δk

1− α

)a2(k)+d2(k)(
β − δk

1− α− β + δk

)a1(k)+d2(k)

,

(
n−a1(k)−a2(k)−d1(k)−d2(k)

βn−a1(k)−d2(k)

)(
n
βn

) ∼ βa1(k)+d2(k)(1− β)a2(k)+d1(k).

By the same line of arguments as in the proofs of Lemmas 6.3 and 6.4, we obtain that

E[YS,T |1ξ,ζ = 1]

E[YS,T ]
∼ (δ∗)a2−a1 (α− δ∗)a1+d1 (β − δ∗)a1+d2 (B1B2)a1

αa1+d1βa1+d2 (1− α)a2+d2 (1− β)a2+d1
.

Clearly P1 ∼ n−i and for given ξ, the number of possible ζ is asymptotic to

αj1βj2 (1− α)i/2−j1 (1− β)i/2−j2ni.

Thus, for the given ξ, we have ∑
ζ P1E[YS,T |1ξ,ζ = 1]

E[YS,T ]
∼ R,

where

R :=
(1− α− β + δ∗)a2−a1 (α− δ∗)a1+d1 (β − δ∗)a1+d2 (B1B2)a1

αa1+d1−j1βa1+d2−j2 (1− α)a2+d2+j1−i/2(1− β)a2+d1+j2−i/2
.
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Utilize (8.3) to express everything in terms of i, j1, j2, a2 to get

R =
(1− α− β + δ∗)i−2j1−2j2 (α− δ∗)2j1 (β − δ∗)2j2 (B1B2)a2−i+2j1+2j2

αj1βj2 (1− α)(i/2)−j1 (1− β)(i/2)−j2
.

Substituting

α =
Q+(1 + B1Q

−)

B2 + Q− + Q+ + B1Q−Q+
, β =

Q−(1 + B1Q
+)

B2 + Q− + Q+ + B1Q−Q+

and

δ∗ =
B1Q

−Q+

B2 + Q− + Q+ + B1Q−Q+
,

we obtain

R =
B
a2−i+2j1+2j2
1 Ba2

2 (Q+)j1 (Q−)j2

(1 + B1Q−)j1 (1 + B1Q+)j2 (B2 + Q−)i/2−j1 (B2 + Q+)i/2−j2
.

We thus obtain

E[YS,T |1ξ,ζ = 1]

E[YS,T ]
∼ xiyj1zj2wa2 ,

where

x =
1

B1

√
(B2 + Q−)(B2 + Q+)

, y =
B2

1Q
+(B2 + Q−)

1 + B1Q−
,

z =
B2

1Q
−(B2 + Q+)

1 + B1Q+
, w = B1B2.

Thus, by (8.2), we obtain

E[Y Xi]

E[Y ]
=
r(Δ, i)

2i
· xi

∑
j1 ,j2 ,a2

aj1 ,j2 ,a2
yj1zj2wa2 , (8.4)

where ai,j1 ,j2 ,a2
is the number of possible ξ with j1 red vertices, j2 blue vertices and a2 edges

of type {W,W }. To analyse such sums, an elegant technique (given in [14]) is to define an

appropriate transition matrix. The powers of the matrix count the (multiplicative) weight

of walks in the implicit graph. In our setting, the transition matrix is given by

A =

⎛
⎜⎜⎝

0 y 0 y

z 0 z 0

0 1 0 w

1 0 w 0

⎞
⎟⎟⎠ .

Note that a rooted oriented cycle with specification ξ, ζ corresponds to a unique closed

walk in the implicit graph defined by A. We have that Tr(Ai) =
∑4

j=1 e
i
j , where ej are the

eigenvalues of A (j = 1, . . . , 4). We thus obtain

E[Y Xi]

E[Y ]
=
r(Δ, i)

2i

4∑
j=1

(xej)
i.
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A computation gives

e1 = −e2 = B1(1− B1B2)

√
Q+Q−

(1 + B1Q+)(1 + B1Q−)
,

e3 = −e4 = B1

√
(B2 + Q+)(B2 + Q−).

It follows that for even i, we have

E[Y Xi]

E[Y ]
=
r(Δ, i)

i

(
1 +

(
(1− B1B2)

√
Q+Q−√

(1 + B1Q+)(1 + B1Q−)(B2 + Q+)(B2 + Q−)

)i)
,

thus proving the lemma.

Proof of Lemma 8.4. Using Lemma 8.6, we have

∑
even i � 2

λiδ
2
i =

∑
even i � 2

r(Δ, i)

i
· ωi =

∑
even i � 2

(Δ− 1)i + (Δ− 1)

i
· ωi.

Observe that ∑
j�1

x2j

2j
= −1

2
ln(1− x2)

for all |x| < 1. Clearly this holds for ω and by Lemma 3.2, it also holds for (Δ− 1)ω. It

follows that ∑
even i � 2

λiδ
2
i = −1

2

(
ln(1− (Δ− 1)2ω2) + (Δ− 1) ln(1− ω2)

)
,

thus proving the lemma.

9. Remaining proofs

9.1. Proof of Lemma 3.2

In this section we give the proof of Lemma 3.2. We prove only the inequality for ω, since

the inequality for ω∗ is the condition for non-uniqueness; see the discussion in Section 3.

We will in fact establish a slightly stronger inequality, as is captured by the following

lemma. To aid the presentation, let us work with x = Q+, y = Q−, d = Δ− 1.

Lemma 9.1. For any d � 2, it holds that

B1xy + B1B2(x+ y) + B2 > (d− 1)(1− B1B2)
√
xy.

Proof of Lemma 3.2. Let W := B1xy + B1B2(x+ y) + B2. Observe that

W = (B1x+ 1)(y + B2)− (1− B1B2)y = (B1y + 1)(x+ B2)− (1− B1B2)x.
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Using the two expressions of W and the AM–GM inequality, we obtain

W 2 = (B1x+ 1)(y + B2)(B1y + 1)(x+ B2) + (1− B1B2)2xy

− (1− B1B2)(y(B1x+ 1)(B2 + y) + x(B1y + 1)(B2 + x))

� (
√

(B1x+ 1)(B1y + 1)(B2 + x)(B2 + y)− (1− B1B2)
√
xy)2. (9.1)

Trivially

(B1x+ 1)(B1y + 1)(B2 + x)(B2 + y) > xy > (1− B1B2)2xy,

so (9.1) and Lemma 9.1 give√
(B1x+ 1)(y + B2)(B1y + 1)(x+ B2)− (1− B1B2)

√
xy > (d− 1)(1− B1B2).

which after trivial manipulations reduces to the desired inequality.

Proof of Lemma 9.1. The x, y satisfy

x = λ

(
B1y + 1

y + B2

)d

and y = λ

(
B1x+ 1

x+ B2

)d

.

It follows that

x

(
B1x+ 1

x+ B2

)d

= y

(
B1y + 1

y + B2

)d

⇒ x((B1x+ 1)(y + B2))d = y((B1y + 1)(x+ B2))d. (9.2)

Let W := B1xy + B1B2x+ B1B2y + B2. Observe that

(B1x+ 1)(y + B2) = B1xy + B1B2x+ y + B2 = W + (1− B1B2)y,

(B1y + 1)(x+ B2) = B1xy + B1B2y + x+ B2 = W + (1− B1B2)x.

Hence, (9.2) gives

x(W + (1− B1B2)y)d = y(W + (1− B1B2)x)d.

Expanding using Newton’s formula gives

x

d∑
k=0

(
d

k

)
Wd−k((1− B1B2)y)k = y

d∑
k=0

(
d

k

)
Wd−k((1− B1B2)x)k,

which is equivalent to

Wd(x− y) = xy

d∑
k=2

(
d

k

)
Wd−k(1− B1B2)k(xk−1 − yk−1).

Since x �= y, this can be rewritten as

Wd = xy

d∑
k=2

(
d

k

)
Wd−k(1− B1B2)k

(
xk−1 − yk−1

x− y

)
. (9.3)

Claim 9.2. For k � 2 and x, y > 0 with x �= y, it holds that

xk−1 − yk−1

x− y > (k − 1)(xy)(k−2)/2.
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The simple proof of Claim 9.2 is given at the end. Using Claim 9.2, (9.3) gives

Wd >

d∑
k=2

(
d

k

)
(k − 1)Wd−k(1− B1B2)k(xy)k/2,

or equivalently

Wd +

d∑
k=2

(
d

k

)
Wd−k(1− B1B2)k(xy)k/2

︸ ︷︷ ︸
C

>

d∑
k=2

(
d

k

)
kWd−k(1− B1B2)k(xy)k/2

︸ ︷︷ ︸
D

. (9.4)

Using Newton’s formula again and the identity(
d

k

)
=
d

k

(
d− 1

k − 1

)
,

we have

C = (W + (1− B1B2)
√
xy)d − dWd−1(1− B1B2)

√
xy,

D = d(1− B1B2)
√
xy

d∑
k=2

(
d− 1

k − 1

)
Wd−k(1− B1B2)k−1(

√
xy)k−1

= d(1− B1B2)
√
xy((W + (1− B1B2)

√
xy)d−1 −Wd−1).

Thus, (9.4) gives

W > (d− 1)(1− B1B2)
√
xy,

which is exactly the inequality we wanted. Finally, we give the proof of Claim 9.2.

Proof of Claim 9.2. Since k � 2, observe that

xk−1 − yk−1

x− y = xk−2 + xk−3y + · · ·+ yk−2

� (k − 1)((xy)(k−1)(k−2)/2)1/(k−1) = (k − 1)(xy)(k−2)/2.

The inequality is an application of the AM–GM inequality to xk−2, . . . , yk−2. Equality

holds if and only if x = y.

This completes the proof of Lemma 9.1.

9.2. Proofs for Section 5.1

Proof of Lemma 5.1. We first give the proof when Mij > 0 for all i, j. Then it is easy to

see that the function g(Z) attains its maximum in the interior of the region (5.2), since

∂g

∂Zij
= lnMij − lnZij − 1→ +∞ as Zij → 0+.
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Since g(Z) is differentiable in the interior of the region (5.2) (by αi �= 0 �= βj), we may

formulate the maximization of g(Z) using Lagrange multipliers. Let

Λ(Z, λ, λ′) = g(Z) + λi

(∑
j

Zij − αi
)

+ λ′j

(∑
i

Zij − βj
)
.

The optimal Z must satisfy

∂Λ

∂Zij
= 0⇐⇒ lnMij − lnZij − 1 + λi + λ′j ⇐⇒ Zij = exp(λi + λ′j − 1)Mij.

Setting Ri = exp(λi), Cj = exp(λ′j − 1) one obtains that the stationary points of g(Z) have

the form stated in Lemma 5.1. The equalities (5.5) come from the conditions

∂Λ

∂λi
=
∂Λ

∂λ′j
= 0.

We next treat the case where some entries of Mij are zero. Recall the convention

(Section 4.3) that ln 0 ≡ −∞ and 0 ln 0 ≡ 0. To see why these conventions are relevant,

note that whenever Mij = 0, g(Z) can have a maximum at Z∗ only if Z∗ij = 0. Going back

to the interpretations of g(Z) in the first and second moments, the reader will immediately

notice that these are in complete accordance with the combinatorial meaning of the

variables Zij . Let P = {(i, j) : Mij = 0}. We may restrict our attention for the maximum

of g(Z) in the region ∑
j Zij = αi(u), for i ∈ 1, . . . , m,∑
i Zij = βj(v), for j ∈ 1, . . . , n,

Zij � 0, for (i, j) /∈ P ,
Zij = 0, for (i, j) ∈ P .

(9.5)

The proof given above (under the assumptions Mij > 0 for all i, j) now goes through for

the region (9.5), as can readily be checked. Since Mij = 0 for (i, j) ∈ P , the form of Z∗

stated in Lemma 5.1 is consistent with the region (9.5).

Finally, the desired quadratic decay is an immediate consequence of the stationarity of

Z∗, the strict concavity of g and Taylor’s expansion.

Proof of Lemma 5.2. The lemma is essentially an application of the envelope theorem,

but we give a short proof for the sake of completeness. From (5.5) we have

(
∂

∂u
Ri

) m∑
j=1

MijCj + Ri

m∑
j=1

Mij

∂

∂u
Cj =

∂

∂u
αi, (9.6)

(
∂

∂u
Cj

) n∑
i=1

MijRi + Cj

n∑
i=1

Mij

∂

∂u
Ri = 0. (9.7)
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Then

∂g∗

∂u
= −

n∑
i=1

m∑
j=1

Mij

((
∂

∂u
Ri

)
(Cj ln(Ri) + Cj ln(Cj))

+

(
∂

∂u
Cj

)
(Ri ln(Ri) + Ri ln(Cj)) +

(
∂

∂u
Ri

)
Cj + Ri

(
∂

∂u
Cj

))
,

which, using (9.6) and (9.7), simplifies to

∂g∗

∂u
= −

n∑
i=1

ln(Ri)

((
∂

∂u
Ri

) m∑
j=1

MijCj + Ri

( m∑
j=1

Mij

∂

∂u
Cj

))

−
m∑
j=1

ln(Cj)

((
∂

∂u
Cj

) n∑
i=1

MijRi + Cj

( n∑
i=1

Mij

∂

∂u
Ri

))

−
m∑
j=1

((
∂

∂u
Cj

) n∑
i=1

MijRi + Cj

n∑
i=1

Mij

∂

∂u
Ri

)

= −
n∑
i=1

ln(Ri)
∂

∂u
αi.

9.3. Proofs for Section 5.2

Proof of Lemma 5.4. To avoid unnecessary complications, we give the proof for

B1B2 > 0. The case with B1 = 0 (essentially the hard-core model) is covered in [7, Claim

2.2]. By (5.7) we have

∂φ1

∂α
= ln

(
λ

1− α
α

(
α

1− α
R2

R1

)Δ)
,

∂φ1

∂β
= ln

(
λ

1− β
β

(
β

1− β
C2

C1

)Δ)
, (9.8)

where the Ri, Cj satisfy (5.8). By (5.8), we have

α

1− α =
R1

R2
· B1C1 + C2

C1 + B2C2
,

β

1− β =
C1

C2
· B1R1 + R2

R1 + B2R2
.

Hence, the derivatives ∂φ1/∂α, ∂φ1/∂β in (9.8) become

∂φ1

∂α
= ln

(
λ

1− α
α

(
B1C1 + C2

C1 + B2C2

)Δ)
,

∂φ1

∂β
= ln

(
λ

1− β
β

(
B1R1 + R2

R1 + B2R2

)Δ)
. (9.9)

We next establish the following claim.

Claim 9.3. When B1 > 0, B2 > 0, the function

f(x, y) :=
B1x+ y

x+ B2y
,

defined for x, y � 0 such that at least one of x, y is non-zero, is upper- and lower-bounded

by strictly positive constants depending only on B1, B2.

Proof. Observe that for t > 0 it holds that f(x, y) = f(tx, ty), so that we may assume

x+ y = 1. Thus, B1x+ y and x+ B2y are convex combinations of {1, B1} and {1, B2}
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respectively. Since we assumed that B1, B2 > 0, f(x, y) is bounded by strictly positive

constants.

Observe that Claim 9.3 is applicable to our case since not all of R1, R2 or C1, C2 can be

equal to 0 (by equations (5.8)).

We consider the boundaries with α(1− α)→ 0+ and prove that the derivatives with

respect to α go the right way. The boundary cases with β(1− β)→ 0+ are completely

analogous. We consider two cases.

(1) α→ 0+. Then 1− α→ 1. By Claim 9.3 and (9.9), we obtain ∂φ1/∂α→ +∞.

(2) 1− α→ 0+. Then α→ 1. By Claim 9.3 and (9.9), we obtain ∂φ1/∂α→ −∞.

This concludes the proof of Lemma 5.4.

Proof of Lemma 5.5. Let H1 denote the Hessian of Φ1 evaluated at (p+, p−, X∗). We keep

only α, β, x11 as free variables in Φ1 (the rest of the xij are substituted by (4.2)). We check

that the principal minors along the diagonal are positive, the first principal minor being

the lower right corner of the matrix. This is equivalent to applying Sylvester’s criterion in

a rearranged version of −H1. We use Maple to perform the necessary computations and

plug into the resulting formulas the values of p±,X∗ as given in (3.6) and (7.2) respectively.

Let Pi denote the determinant of the ith leading principal minor. We obtain that

P1 =
ΔE1E2

B1B2Q−Q+
,

P2 =
ΔE2

1 (B2 + Q−)(1 + B1Q
−)(1 + (Δ− 1)ω)

B1B2(Q−)2Q+
,

P3 =
ΔE4

1 (1− (Δ− 1)2ω)

B1B2(Q+Q−)2
,

where E1, E2 and ω are given by (7.1) and (3.4). Trivially P1, P2 > 0. The fact that P3 > 0

is just Lemma 3.2.

To prove that (p∗, p∗, Xo) is a saddle point, note that the respective expressions for

P1, P2, P3 can be obtained by substituting Q− ← Q∗, Q+ ← Q∗, where Q∗ = q∗/(1− q∗).
We thus have that P3 < 0 by Lemma 3.2.

9.4. Proofs for Section 5.3

Proof of Lemma 5.7. To avoid unnecessary complications, we give the proof for B1B2 >

0. The case with B1 = 0 (essentially the hard-core model) is covered in [8, Lemma 12].

By (5.13), we have

∂φ2

∂γ
= ln

(
(α− γ)2

γ(1− 2α+ γ)

(
γ(1− 2α+ γ)

(α− γ)2

R2
2

R1R4

)Δ)
,

where the Ri, Cj satisfy (5.12). By (5.12), we have

γ(1− 2α+ γ)

(α− γ)2
=
R1R4

R2
2

· (B2
1C1 + 2B1C2 + C4)(C1 + 2B2C2 + B2

2C4)

(B1C1 + (B1B2 + 1)C2 + B2C4)2
,
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Hence, the derivative ∂φ2/∂γ becomes

∂φ2

∂γ
= ln

(
(α− γ)2

γ(1− 2α+ γ)

(
(B2

1C1 + 2B1C2 + C4)(C1 + 2B2C2 + B2
2C4)

(B1C1 + (B1B2 + 1)C2 + B2C4)2

)Δ)
. (9.10)

Analogously, starting from (5.14), we can rewrite ∂φ2/∂δ as

∂φ2

∂δ
= ln

(
(β − δ)2

δ(1− 2β + δ)

(
(B2

1R1 + 2B1R2 + R4)(R1 + 2B2R2 + B2
2R4)

(B1R1 + (B1B2 + 1)R2 + B2R4)2

)Δ)
. (9.11)

Before proceeding, we need the following claim.

Claim 9.4. When B1 > 0, B2 > 0, the function

f(x, y, z) :=
(B2

1x+ 2B1y + z)(x+ 2B2y + B2
2z)

(B1x+ (B1B2 + 1)y + B2z)2
,

defined for x, y, z � 0 such that at least one of x, y, z is non-zero, is upper- and lower-bounded

by strictly positive constants depending only on B1, B2.

Proof. Observe that for t > 0 it holds that f(x, y, z) = f(tx, ty, tz), so we may assume

that x+ y + z = 1. Thus,

B2
1x+ 2B1y + z, x+ 2B2y + B2

2z and B1x+ (B1B2 + 1)y + B2z

are convex combinations of {B2
1 , 2B1, 1}, {1, 2B2, B

2
2} and {B1, B1B2 + 1, B2} respectively.

Since we assumed that B1, B2 > 0, f(x, y, z) is bounded by strictly positive constants.

Observe that Claim 9.4 is applicable to our case since not all of R1, R2, R4 or C1, C2, C4

can be equal to 0 (by equations (5.12)).

We next consider the boundaries with γ(α− γ)(1− 2α+ γ)→ 0+ and prove that the

derivative ∂φ2/∂γ goes to infinity the right way, using the expression in (9.10). The

boundary cases with β(β − δ)(1− 2β + δ)→ 0+ can be treated analogously using (9.11).

We consider three cases.

(1) γ → 0+. This case may only occur if 1− 2α � 0. Then α− γ → α > 0 and 1− 2α+ γ →
1− 2α � 0. By Claim 9.4 and (9.10), we obtain ∂φ2/∂γ → +∞.

(2) 1− 2α+ γ → 0+. This case may only occur if 2α− 1 � 0. Then γ → 2α− 1 � 0 and

α− γ → 1− α > 0. By Claim 9.4 and (9.10), we obtain ∂φ2/∂γ → +∞.

(3) α− γ → 0+. Then γ → α > 0 and 1− 2α+ γ → 1− α > 0. By Claim 9.4 and (9.10), we

obtain ∂φ2/∂γ → −∞.

This concludes the proof of Lemma 5.7.

Proof of Lemma 5.8. For (α, β) = (p+, p−), let H2 denote the Hessian of Φ2 evaluated

at (α2, β2,Y∗). We keep only γ, δ, yij with i, j = 1, 2, 3 as free variables in Φ2 (the rest of

the yij are substituted by (4.5)).

We use Sylvester’s criterion to check that −H2 is positive definite. We check that the

principal minors are positive, the first principal minor being the lower right corner of
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the matrix. This is equivalent to applying Sylvester’s criterion in a rearranged version

of −H2. Note that the first nine principal minors are guaranteed to be positive since

they correspond to the Hessian of the convex function −g2(Y) evaluated at its minimum

point. Thus we need to check only the remaining two principal minors. We use Maple to

perform the necessary computations and we plug into the resulting formulas the values

of p± from (3.6) and the Y∗ as given in (7.3).

Denote by Pi the determinant of the ith leading principal minor. We have

P10 =
Δ9E22

1 E
2
2 (B2 + Q−)2(1 + B1Q

−)2(1 + (Δ− 1)ω2)

(B1B2)8(Q−)14(Q+)12
,

P11 = det(−H2) =
Δ9E26

1 E
2
2 (1− (Δ− 1)2ω2)

(B1B2)8(Q−)14(Q+)14
,

where E1, E2 and ω are given by (7.1) and (3.4). Trivially P10 > 0. And we also have

P11 > 0 by Lemma 3.2.

9.5. Proof of Lemma 2.5

We now prove Condition 2.3 for the Ising model without external field and for d = 2, that

is, B1 = B2 = B, λ = 1 and Δ = 3. See Section 5.4 for the proof overview.

Our point of departure is (5.19). As in the proof of Lemma 2.4, we may assume that

r1r4, c1c4 are either both greater than 1 or both less than 1. We are going to argue that

(5.19) cannot hold in these cases. For B1 = B2 = B, multiplying the equations in (5.19)

gives

(Bc1 + (B2 + 1) + Bc4)2(Br1 + (B2 + 1) + Br4)2

=
(1− B2)2(c1c4 − 1)

(c1c4)1/2 − 1

(1− B2)2(r1r4 − 1)

(r1r4)1/2 − 1
.

We will prove that for 0 < B < (
√

2− 1)/(
√

2 + 1), when r1r4 �= 1 (and similarly when

c1c4 �= 1),

(Br1 + (B2 + 1) + Br4)2 >
(1− B2)2(r1r4 − 1)
√
r1r4 − 1

. (9.12)

In the region 0 < B < (
√

2− 1)/(
√

2 + 1) the values of α and β are heavily biased towards

1 and 0 respectively, and this reflects at the values of r1, r4, c1, c4. The required bias of the

values of α, β is captured by the following lemma.

Lemma 9.5. Assume

0 < B <

√
2− 1√
2 + 1

.

For (α, β) = (p+, p−) it holds that

α

1− α =
1− β
β

>
4

9
· 1

B3
.

http://journals.cambridge.org


552

The proof of Lemma 9.5 is given in Section 9.5.1. We utilize Lemma 9.5 to prove the

following result.

Lemma 9.6. Assume

0 < B <

√
2− 1√
2 + 1

.

For (α, β) = (p+, p−) and r1, r4, c1, c4 satisfying the equations in (5.15), (5.16), it holds that

(1) r1 > 1/(3B2) and c4 > 1/(3B2).

(2) If in addition r1r4, c1c4 > 1, then r1 > 4/(9B2) and c4 > 4/(9B2).

The proof of Lemma 9.6 is given in Section 9.5.2. We now prove inequality (9.12).

Rewrite (9.12) as

B2(r1 + r4)2 + 2B(B2 + 1)(r1 + r4) + (B2 + 1)2 > (1− B2)2(1 +
√
r1r4),

or

B2(r1 + r4)2 + 2B(B2 + 1)(r1 + r4) + 4B2 > (1− B2)2√r1r4. (9.13)

At this point we split the analysis into the cases r1r4 > 1 and r1r4 < 1, the first being

considerably harder.

Claim 9.7. Inequality (9.13) holds when r1r4 < 1.

Proof. We prove the stricter inequality (since 1 > B > 0 and r1, r4 > 0)

2Br1 >
√
r1r4.

By item (1) of Lemma 9.6 and the assumption r1r4 < 1, we have

2Br1 >
2

3
· 1

B
> 1 >

√
r1r4.

Claim 9.8. Inequality (9.13) holds when r1r4 > 1.

Proof. We prove the stricter inequality (since 1 > B > 0 and r1, r4 > 0)

B2(r1 + r4)2 >
√
r1r4. (9.14)

We first identify the regions where (9.14) is hard to prove. Note that

B2(r2
1 + 2r1r4 + r2

4) � 4B2r1r4,

so (9.14) is true if 4B2r1r4 >
√
r1r4. Thus we may assume that

1

16B4
� r1r4. (9.15)
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Since r1r4 > 1, by item (2) of Lemma 9.6

B2r2
1 >

42

92B2
, (9.16)

so that (9.14) is true if

42

92B2
� √r1r4.

Thus we may assume that

r1r4 >
44

94B4
. (9.17)

We are now ready to prove (9.14). Using (9.15), (9.16) and (9.17) we obtain

B2(r2
1 + 2r1r4 + r2

4) � B2(r2
1 + 2r1r4) >

1

B2

(
42

92
+ 2 · 44

94

)
>

1

B2
· 1

4
� √r1r4.

Proof of Lemma 2.5. The arguments in this section established the required analogue

of Lemma 5.6, that is, the only critical points of φ2(γ, δ) satisfy γ = α2, δ = β2. Now, we

can conclude using Lemmas 5.7 and 5.8, just as in the proof of Lemma 2.4 in Section 5.3.

9.5.1. Proof of Lemma 9.5. By the remarks in the end of Section 3, for the Ising model

with no external field it holds that

α

1− α =
1− β
β

and Q+Q− = 1. For ease of presentation, let x = Q+, y = Q−. By (3.3) and (3.6), we have

α

1− α =
x(By + 1)

y + B
, where x =

(
By + 1

y + B

)2

and x > 1 > y > 0.

Since xy = 1, we have that

α

1− α =
By + 1

y(y + B)
, where

1

y3
=

(
By + 1

y(y + B)

)2

and 0 < y < 1. (9.18)

Proof of Lemma 9.5. For

0 < B <

√
2− 1√
2 + 1

= 3− 2
√

2,

we want to prove that

α

1− α >
4

9
· 1

B3
,

which, given (9.18), is equivalent to y < (3/2) 3
√

3/2B2. For convenience, let c := (3/2) 3
√

3/2.

The equation for y in (9.18) may be rewritten as

(y + B)2 = y(By + 1)2,
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which in turn yields that

B2y2 + (B2 + 2B − 1)y + B2 = 0,

since, by (9.18), we are interested in 0 < y < 1.

Let f(z) := B2z2 + (B2 + 2B − 1)z + B2. By Lemma 3.3, we know that y is the unique

root of f(z) for 0 < z < 1. Observe that f(0) = B2 > 0, so the desired inequality will follow

if we prove that f(B2c) < 0. Now, f may be rewritten as

f(z) = B2z

(
z +

1

z
− 1− 2B − B2

B2

)
.

For z = B2c and 0 < B < 3− 2
√

2, we have

z +
1

z
=
B4c2 + 1

B2c
� (3− 2

√
2)4c2 + 1

c
· 1

B2
,

1− 2B − B2

B2
� 1− 2(3− 2

√
2)− (3− 2

√
2)2

B2
=

16
√

2− 22

B2
.

A straightforward calculation gives

(3− 2
√

2)4c2 + 1

c
<

3

5
< 16

√
2− 22,

thus proving f(B2c) < 0. The lemma follows.

9.5.2. Proof of Lemma 9.6. We need the following lemma.

Lemma 9.9. When 1 > B1B2 > 0 and r1, r4, c1, c4 satisfy (5.15) and (5.16), it holds that

α

1− α <
1 + r1/B2

1 + B2r4
,

1 + B1c1

1 + c4/B1
<

β

1− β .

Assuming Lemma 9.9 for the moment, we give the proof of Lemma 9.6.

Proof of Lemma 9.6. When B1 = B2 = B, Lemma 9.9 gives

α

1− α <
1 + r1/B

1 + Br4
,

1 + Bc1

1 + c4/B
<

β

1− β .

Since r4, c1 > 0, it follows that

r1 > B

(
α

1− α − 1

)
> B

(
4

9
· 1

B3
− 1

)
and c4 > B

(
1− β
β
− 1

)
> B

(
4

9
· 1

B3
− 1

)
,

where we have used Lemma 9.5 to bound α/(1− α) and (1− β)/β. This proves the first

item of the lemma, after observing that

4

9
· 1

B3
− 1 >

1

3
· 1

B3

for any B < 1/3.
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To prove the second item of the lemma, note that when r1r4, c1c4 > 1 we have

1 + r1/B

1 + Br4
<

1 + r1/B

1 + B/r1
=
r1

B
and

1 + Bc1

1 + c4/B
>

1 + B/c4

1 + c4/B
=
B

c4
.

It follows that

r1 > B · α

1− α and c4 > B · 1− β
β

.

The desired bounds now follow after using Lemma 9.5 to bound α/(1− α) and (1− β)/β.

We next give the proof of Lemma 9.9.

Proof of Lemma 9.9. Define

C ′1 =
B2

1c1 + 2B1 + c4

B1c1 + (B1B2 + 1) + B2c4
, C ′4 =

c1 + 2B2 + B2
2c4

B1c1 + (B1B2 + 1) + B2c4
,

R′1 =
B2

1r1 + 2B1 + r4

B1r1 + (B1B2 + 1) + B2r4
, R′4 =

r1 + 2B2 + B2
2r4

B1r1 + (B1B2 + 1) + B2r4
.

Using C ′1, C
′
4, R

′
1, R

′
4 we can rewrite the equations in (5.15), (5.16) as

r1C
′
1 =

γ

α− γ , r4C
′
4 =

1− 2α+ γ

α− γ , (9.19)

c1R
′
1 =

δ

β − δ , c4R
′
4 =

1− 2β + δ

β − δ . (9.20)

Eliminating γ, δ from (9.19) and (9.20) respectively, we obtain

α

1− α =
1 + r1C

′
1

1 + r4C
′
4

,
β

1− β =
1 + c1R

′
1

1 + c4R
′
4

. (9.21)

We have the following loose bounds on R′1, R
′
4, C

′
1, C

′
4:

B1 < R′1, R′4 <
1

B1
, C ′1 <

1

B2
, B2 < C ′4. (9.22)

These bounds may be proved by picking any of the inequalities, multiplying out and

using B1B2 < 1. It is immediate now to check that the bounds in Lemma 9.9 follow after

combining (9.21) and (9.22).

9.6. Proof of Lemma 2.6

To prove Lemma 2.6, we will need to establish the following lemma.

Lemma 9.10. For the hard-core model (that is, B1 = 0, B2 = 1) for Δ = 3, 4, 5 and (α, β) =

(p+, p−) the solution of (5.9), (5.10) and (5.11) satisfies γ = α2 and δ = β2.

Assuming for now Lemma 9.10, let us conclude Lemma 2.6.
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Proof of Lemma 2.6. By Lemma 9.10, the only critical points of φ2(γ, δ) satisfy γ =

α2, δ = β2. The result now follows by using Lemmas 5.7 and 5.8, just as in the proof of

Lemma 2.4 in Section 5.3.

Finally, we give the proof of Lemma 9.10.

Proof of Lemma 9.10. Let d := Δ− 1 and let

c1 := C1/C2, c4 := C4/C2, r1 := R1/R2, r4 := R4/R2

(the same notation as we used in the proof of Lemma 5.6). Equations (5.19), for B1 = 0

and B2 = 1, become

(c1c4)1/d − 1 =
r1r4 − 1

(1 + r4)2
and (r1r4)1/d − 1 =

c1c4 − 1

(1 + c4)2
. (9.23)

Let

x = (r1r4)1/d, y = (c1c4)1/d, a = 1/r4, and b = 1/c4.

We can rewrite equation (9.23) as follows:

y =
1 + 2a+ a2xd

1 + 2a+ a2
and x =

1 + 2b+ b2yd

1 + 2b+ b2
. (9.24)

Solving for a and b we obtain

a =
y − 1 + qa

xd − y and b =
x− 1 + qb

yd − x , (9.25)

where

q2
a = (y − 1)(xd − 1) and q2

b = (x− 1)(yd − 1). (9.26)

Note that a > 0 and b > 0. Assume y > 1. Then x > 1 (otherwise the sides of (9.23)

would have different signs) and also y � xd (the right-hand side of (9.24) is a convex

combination of 1 and xd) and hence |qa| > y − 1. Thus, using a > 0 in equation (9.25),

we obtain qa > 0 and similarly qb > 0. Now assume y < 1. Then x < 1 and also y � xd

(again, the right-hand side of (9.24) is a convex combination of 1 and xd) and hence

|qa| > 1− y. Thus, using a > 0 in equation (9.25), we obtain qa < 0 and similarly qb < 0.

Because of symmetry between x and y we only need to consider two cases (in the case

x = y = 1 we have γ = α2 and δ = β2):

I 1 < y � x � yd, qa :=
√

(y − 1)(xd − 1), qb :=
√

(x− 1)(yd − 1), and

II 0 < yd � x � y < 1, qa := −
√

(y − 1)(xd − 1), qb := −
√

(x− 1)(yd − 1).

From equation (5.11) we obtain the following expressions for α and β (see equation

(9.21)):

α

1− α =

c4

1+c4
r1 + 1

c1+2+c4

1+c4
r4 + 1

and
β

1− β =

r4
1+r4

c1 + 1
r1+2+r4

1+r4
c4 + 1

.
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Solving for α, β and using the parametrization with x, y, a, b, we have

α =
y(1 + a)2 − 1− a+ ab

x(1 + b)2 + y(1 + a)2 + 2ab− 1
,

β =
x(1 + b)2 − 1− b+ ab

x(1 + b)2 + y(1 + a)2 + 2ab− 1
.

(9.27)

Equations (3.1), (3.6) for B1 = 0, B2 = 1, (α, β) = (p+, p−) easily imply

α(1− α)d = β(1− β)d. (9.28)

Equation (9.28) is equivalent to (assuming α �= β)

α(1− α)d − β(1− β)d

α− β = 0, (9.29)

which using the expressions for α and β from (9.27) becomes

(y(1 + a)2 − 1− a+ ab)(x(1 + b)2 + ab+ a)d − (x(1 + b)2 − 1− b+ ab)(y(1 + a)2 + ab+ b)d)

x(b+ 1)2 − y(a+ 1)2 + a− b = 0.

(9.30)

The final part of the proof will require some computational assistance (just to manipulate

polynomials). First we are going to plug the expression for a and b from (9.25) into (9.30).

Then we are going to use (9.26) to reduce the powers of qa and qb, obtaining an expression

of the form

c00 + c10qa + c01qb + c11qaqb,

where c00, c01, c10, c11 are polynomials in x and y. Finally we will show that in case I we

have c00 > 0, c01 > 0, c10 > 0, c11 > 0 and in case II we have c00 > 0, c01 < 0, c10 < 0,

c11 > 0 (and hence (9.30) cannot be zero). This will be accomplished by reparametrizing

x = (ty + yd)/(t+ 1), factoring the expressions, and observing that:

• factor y − 1 occurs with even power in c00 and c11,

• factor y − 1 occurs with odd power in c01 and c10, and

• all the other factors have all coefficients positive.

The details of the argument appear in Appendix A of the online version [9].
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