Homework problems:

12.1 (due Nov 30, 2006) There are n bottles which contain different mixtures of three chemicals called A, B, C. The i-th bottle contains the chemicals in ratio $a_{i}: b_{i}: c_{i}$ (thus, $a_{i} /\left(a_{i}+b_{i}+c_{i}\right)$ fraction of the i-th bottle is chemical $A, b_{i} /\left(a_{i}+b_{i}+c_{i}\right)$ fraction of the i-th bottle is chemical B, and $c_{i} /\left(a_{i}+b_{i}+c_{i}\right)$ fraction of the i-th bottle is chemical C). We want to know whether it is possible to obtain a mixture containing the chemicals A, B, C in ratio $a: b: c$ by mixing various amounts from the bottles. Give an efficient algorithm for this problem.

For example, if the input is $n=2$, the ratios in the bottles are $1: 1: 2$ and $3: 3: 1$, and we want to obtain mixture with ratio $1: 1: 1$ then the answer is YES (we can take 2 parts from the first bottle and 1 part from the second bottle).
12.2 (due Nov 30, 2006) Solve the following linear program:

$$
\begin{array}{r}
\max \sum_{i=1}^{9} x_{i}, \\
x_{1}+x_{2} \leq 1, \\
x_{2}+x_{3} \leq 1, \\
x_{3}+x_{4} \leq 1, \\
x_{4}+x_{5} \leq 1, \\
x_{5}+x_{6} \leq 1, \\
x_{6}+x_{7} \leq 1, \\
x_{7}+x_{8} \leq 1, \\
x_{8}+x_{9} \leq 1, \\
x_{9}+x_{1} \leq 1, \\
x_{i} \geq 0, i=1, \ldots, 9 .
\end{array}
$$

You can (but don't have to) use linear programming solvers (such as, lpsolve).
12.3 (due Nov 30, 2006) Construct the linear program dual to the following linear program:

$$
\begin{aligned}
& \max x_{1}+2 x_{3}+3 x_{3}+4 x_{4} \\
& x_{2}+x_{3}+x_{4} \leq 1 \\
& x_{1}+x_{3}+x_{4} \leq 2 \\
& x_{1}+x_{2}+x_{4} \leq 3 \\
& x_{1}+x_{2}+x_{3} \leq 4 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0
\end{aligned}
$$

