Homework problems:

13.1 (due Dec 7, 2006) We are given n points $(x_1, y_1), \ldots, (x_n, y_n)$ in the plane. We want to find a simple polygon containing all the points. Give an $O(n \log n)$ algorithm for this problem. (A polygon is called simple if its segments do not intersect.)

13.2 (due Dec 7, 2006) Let H be a set of disjoint horizontal line segments, and let V be a set of disjoint vertical line segments. Let n = |H| + |V|. Give an $O(n \log n)$ algorithm to count the number of intersections in $H \cup V$ (i.e., the number of intersections between the horizontal and vertical segments).

13.3 (due Dec 7, 2006) We are given n unit circles in the plane (a unit circle is a circle with radius 1). We want to find out whether any two of them intersect. Give an $O(n \log n)$ algorithm for this problem.

Bonus problem:

13.4 (due Dec 7, 2006) We are given *n* axis-parallel rectangles R_1, \ldots, R_n in the plane. Give an efficient algorithm to compute the area of their union *R* (i.e., the area of $\bigcup_{i=1}^{n} R_i$).