Homework problems:

13.1 (due Dec 7, 2006) We are given n points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in the plane. We want to find a simple polygon containing all the points. Give an $O(n \log n)$ algorithm for this problem.
(A polygon is called simple if its segments do not intersect.)
13.2 (due Dec 7, 2006) Let H be a set of disjoint horizontal line segments, and let V be a set of disjoint vertical line segments. Let $n=|H|+|V|$. Give an $O(n \log n)$ algorithm to count the number of intersections in $H \cup V$ (i. e., the number of intersections between the horizontal and vertical segments).
13.3 (due Dec 7, 2006) We are given n unit circles in the plane (a unit circle is a circle with radius 1). We want to find out whether any two of them intersect. Give an $O(n \log n)$ algorithm for this problem.

Bonus problem:

13.4 (due Dec 7, 2006) We are given n axis-parallel rectangles R_{1}, \ldots, R_{n} in the plane. Give an efficient algorithm to compute the area of their union R (i. e., the area of $\bigcup_{i=1}^{n} R_{i}$).

