1 Schedule

The homework is due Sep 11, 2008.
The QUIZ will be on Tuesday, Sep. 16.

2 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

B: Addition (p.11, DSV).
B: Multiplication (p.15, DSV).
B: Division (p.15, DSV).
B: Modular exponentiation (p.19, DSV).
B: Euclid's algorithm (p.20, DSV).
I: Extended Euclid's algorithm (p.21, DSV).
A: Primality testing (p.25, DSV).
A: Generating random primes (p.28, DSV).
A: RSA (p.33, DSV).

3 Basic material

Important concepts, problems, theorems, and algorithms:

- Modular arithmetic, Fermat's little theorem.

> Theorem: Let p be a prime and let a be an integer such that $\operatorname{gcd}(a, p)=1$. Then $a^{p-1} \equiv 1(\bmod p)$.
> Theorem: Let p be a prime and let a be an integer. Then $a^{p} \equiv a(\bmod p)$.

Testing method:

- Compute $a^{b} \bmod c$. (c will be a prime smaller than 20.)
- Trace the execution of Euclid's gcd algorithm.
- Compute the multiplicative inverse of a modulo b.
- Apply Fermat's little theorem in a computation (see problems 1.1, 1.4, 1.5, below).

Example problems (homework):

1.1 (due Sep 11, 2008) Compute $2^{101} \bmod 5$.
1.2 (due Sep 11, 2008) Compute $\operatorname{gcd}(30,105)$. Compute $\operatorname{gcd}(89,55)$. Use Euclid's gcd algorithm. Show all steps.
1.3 (due Sep 11, 2008) Compute the multiplicative inverse of 31 modulo 872.
1.4 (due Sep 11, 2008) Is $4^{312}-9^{1200}$ divisible by 35 ? Use Fermat's little theorem to prove your answer.
1.5 (due Sep 11, 2008) What is $2^{2^{100}} \bmod 5$? (as usual, $a^{b^{c}}$ is a raised to the b^{c}-th power).
1.6 (due Sep 11, 2008) Prove that for every integer x, either $x^{2} \equiv 0(\bmod 4)$ or $x^{2} \equiv 1(\bmod 4)$.
1.7 (due Sep 11, 2008) Let p, q be two different primes. Let x, y be such that $x \equiv y(\bmod p)$ and $x \equiv y(\bmod q)$. Prove that $x \equiv y(\bmod p q)$.
1.8 (due Sep 11, 2008) For each of the following-prove or disprove (clearly state which of the two are you doing):

- For all $x \in \mathbb{Z}$ such that $\operatorname{gcd}(x, 19)=1$ we have $x^{18} \equiv 1(\bmod 19)$.
- For all $x \in \mathbb{Z}$ such that $\operatorname{gcd}(x, 21)=1$ we have $x^{18} \equiv 1(\bmod 21)$.
- For all $x \in \mathbb{Z}$ we have $x^{37} \equiv x(\bmod 37)$.
- For all $x \in \mathbb{Z}$ we have $x^{37} \equiv x(\bmod 35)$.

4 Additional homework

1.9 (due Sep 11, 2008) Solve the following system of congruences:

$$
\begin{aligned}
& x \equiv 7(\bmod 11) \\
& x \equiv 8(\bmod 12) \\
& x \equiv 9(\bmod 13)
\end{aligned}
$$

(Hint: Chinese remainder theorem.)
1.10 (due Sep 11, 2008) Let x, y be unknown positive integers. Let $A=x y$ and $B=x+y$. Give a polynomial-time algorithm which on input A, B computes x, y.
1.11 (due Sep 11, 2008) Let p be a prime and let a, b be two integers such that $a^{2} \equiv b^{2}(\bmod p)$. Prove that either $a \equiv b(\bmod p)$ or $a \equiv-b(\bmod p)$. Clearly state where in your proof you used the assumption that p is a prime.
1.12 (due Sep 11, 2008) [BONUS PROBLEM] Professor A designed a black-box which on input a computes a^{2} in time $O(\log a)$. We would like to use the black-box to multiply numbers, i. e., on input a, b we want to compute $a b$. We want our algorithm to run in time $O(\log (a b))$.
a) Give such an algorithm.
b) Suppose now, that instead of $x \mapsto x^{2}$ black-box, we have $x \mapsto x^{3}$ black-box. Show how we can use the new black-box to multiply numbers a, b in time $O(\log (a b))$.
c) Suppose now, that instead of $x \mapsto x^{2}$ black-box, we have $x \mapsto x^{4}$ black-box. Show how we can use the new black-box to multiply numbers a, b in time $O(\log (a b))$.

In parts a), b), c) you can assume that we can add two numbers c, d in $O(\log (c d))$-time. You can also assume that for any constant f we can divide d by f in $O(\log d)$-time.

5 Additional problems from the book (do not turn in)

Try to solve the following problems. A few of them will be on the quiz.

- $1.1,1.4,1.5,1.10,1.11,1.14,1.15,1.19,1.20,1.22,1.23,1.25,1.26,1.31,1.32,1.37,1.39$.

