1 Schedule

Problem sessions:

```
The homework is due Nov 18, 2008.
The QUIZ will be on Tuesday, Nov. 25.
```


2 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

I: Gaussian elimination (p. 219, DSV).
I: Computing the dual of a linear program (p. 206, DSV).
A: The simplex algorithm (p. 213, DSV).
B: Zero-sum games using linear programming (p. 208, DSV).
A: Max-flow using linear programming (p. 198, DSV).

3 Basic material

Important concepts, problems, theorems, and algorithms:

- system of linear equations, rank of a matrix,
- linear program, dual linear program,
- basic matrix notation.

Testing method:

- Solve a small linear program (2-3 variables).
- Solve a system of equations using Gaussian elimination (up to 4 variables).
- Given a system of equations, write it in a matrix form.
- Compute rank of a matrix.
- Solve a zero-sum game.

Example problems:

5.1 (due Nov 18, 2008) Solve the following linear program:

$$
\begin{aligned}
& \max x_{1}+x_{2} \\
& x_{1}+2 x_{2} \leq 3 \\
& 3 x_{1}+x_{2} \leq 4 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

5.2 (due Nov 18, 2008) Solve the following system of equations using Gaussian elimination:

$$
\begin{array}{r}
y_{1}+y_{2}+y_{4}=4 \\
y_{1}+y_{3}=10 \\
y_{3}+4 y_{4}=3 \\
y_{2}+y_{4}=1
\end{array}
$$

5.3 (due Nov 18, 2008) Write the following system of equations in the matrix form $A x=b$:

$$
\begin{array}{r}
y_{1}+y_{2}+y_{4}=4 \\
y_{1}+y_{3}=10 \\
y_{3}+4 y_{4}=3 \\
y_{2}+y_{4}=1
\end{array}
$$

5.4 (due Nov 18, 2008) Compute the rank of the following two matrices

$$
\left(\begin{array}{ccc}
2 & 4 & 9 \\
1 & -3 & 5 \\
0 & 10 & -1
\end{array}\right),\left(\begin{array}{cccc}
2 & 4 & 9 & 3 \\
1 & -3 & 5 & -1 \\
0 & 10 & -1 & 5
\end{array}\right)
$$

Does the system $2 x+4 y+9 z=3, x-3 y+5 z=-1,10 y-z=5$ have a solution?
5.5 (removed)

4 Additional homework

5.6 (due Nov 18, 2008) Solve the following linear program:

$$
\begin{array}{r}
\max \sum_{i=1}^{9} x_{i}, \\
x_{1}+x_{2} \leq 1, \\
x_{2}+x_{3} \leq 1, \\
x_{3}+x_{4} \leq 1, \\
x_{4}+x_{5} \leq 1, \\
x_{5}+x_{6} \leq 1 \\
\\
x_{6}+x_{7} \leq 1 \\
\\
x_{7}+x_{8} \leq 1 \\
\\
x_{8}+x_{9} \leq 1, \\
\\
x_{9}+x_{1} \leq 1, \\
x_{i} \geq 0, i=1, \ldots, 9 .
\end{array}
$$

Use a linear programming solver to obtain the solution (for example you can use freeware lpsolve or function Maximize in Mathematica (installed in most labs)).
5.7 (due Nov 18, 2008) There are n bottles which contain different mixtures of three chemicals called A, B, C. The i-th bottle contains the chemicals in ratio $a_{i}: b_{i}: c_{i}$ (thus, $a_{i} /\left(a_{i}+b_{i}+c_{i}\right)$ fraction of the i-th bottle is chemical $A, b_{i} /\left(a_{i}+b_{i}+c_{i}\right)$ fraction of the i-th bottle is chemical B, and $c_{i} /\left(a_{i}+b_{i}+c_{i}\right)$ fraction of the i-th bottle is chemical $C)$. We want to know whether it is possible to obtain a mixture containing the chemicals A, B, C in ratio $a: b: c$ by mixing various amounts from the bottles. Give an efficient algorithm for this problem.

For example, if the input is $n=2$, the ratios in the bottles are $1: 1: 2$ and $3: 3: 1$, and we want to obtain mixture with ratio 1:1:1 then the answer is YES (we can take 2 parts from the first bottle and 1 part from the second bottle).
5.8 (due Nov 18, 2008) Construct the linear program dual to the following linear program:

$$
\begin{aligned}
& \max x_{1}+2 x_{2}+3 x_{3}+4 x_{4} \\
& x_{2}+x_{3}+x_{4} \leq 1 \\
& x_{1}+x_{3}+x_{4} \leq 2 \\
& x_{1}+x_{2}+x_{4} \leq 3 \\
& x_{1}+x_{2}+x_{3} \leq 4 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0 .
\end{aligned}
$$

Find the optimal solution of the primal and the dual problem. Use a linear programming solver to obtain the solutions.

5 Additional problems from the book (do not turn in)

Try to solve the following problems. A few of them will be on the quiz. We will go over the ones that you choose in the problem sessions.

- 7.1, 7.2, 7.3, 7.4, 7.7, 7.8, 7.11, 7.12, 7.13, 7.15, 7.19, 7.27.

