Modeling coherence in ESOL learner texts

Helen Yannakoudakis & Ted Briscoe

University of Cambridge Computer Lab

Building Educational Applications

NAACL 2012

Outline

イロン イヨン イヨン イヨン

The Task: Automated Text Scoring (ATS) ATS systems Discourse coherence & cohesion

The Task: Automated Text Scoring (ATS)

Automated Text Scoring (ATS)

Automatically analyse the quality of writing competence and assign a score to a text

Goal

Evaluate writing as reliably as human readers

Challenges

Imitate the value judgements that human readers make when they mark a text

Introdution

Dataset System Conclusions The Task: Automated Text Scoring (ATS) ATS systems Discourse coherence & cohesion

ATS systems

Marking criteria

- Identify textual features that correlate with intrinsic features of human judgments
- Multiple factors influence the linguistic quality of texts
- Grammar, style, vocabulary usage, topic similarity, discourse coherence and cohesion, etc.

Introdution

Dataset System Conclusions The Task: Automated Text Scoring (ATS) ATS systems Discourse coherence & cohesion

ATS systems

Marking criteria

- Identify textual features that correlate with intrinsic features of human judgments
- Multiple factors influence the linguistic quality of texts
- Grammar, style, vocabulary usage, topic similarity, discourse coherence and cohesion, etc.

The Task: Automated Text Scoring (ATS) ATS systems Discourse coherence & cohesion

Discourse coherence & cohesion

Mechanisms

- Cohesion: use of cohesive devices that can signal primarily suprasentential discourse relations between textual units (Halliday and Hasan, 1976)
 - Anaphora, discourse markers, etc.
- Local coherence: transitions between textual units
- Global coherence: sequence of topics

イロン イヨン イヨン

The Task: Automated Text Scoring (ATS) ATS systems Discourse coherence & cohesion

Discourse coherence & cohesion

Related work

- Coherence analysis on:
 - News texts
 - e.g., Lin et al. (2011), Elsner and Charniak (2008), Soricut and Marcu (2006), etc.
 - Extractive summaries
 - Pitler et al. (2010)
 - Learner data
 - Miltsakaki and Kukich (2004), Higgins and Burstein (2007), Burstein et al. (2010)

First Certificate in English (FCE) exam

First Certificate in English (FCE) exam

FCE Writing Component

- Upper-intermediate level assessment
- Two tasks eliciting free-text answers, each one between 120 and 180 words
 - e.g. 'write a short story commencing ...'
- Answers annotated with mark (in the range 1–40), fitted to a RASCH model (Fischer and Molenaar, 1995)
- Manually error-coded using a taxonomy of ~80 error types (Nicholls, 2003)

<ロ> (四) (四) (三) (三)

Baseline

Baseline system

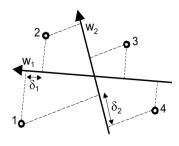
- ATS system described in Yannakoudakis et al. (2011)
- Features focus on lexical and grammatical properties, as well as errors
- Discourse coherence ignored
- Vulnerable to subversion
- Extend with discourse coherence features

Introdution	
Dataset	Ranking SVM
System	Models
Conclusions	

Machine Learning

Ranking SVMs

- Address ATS as a ranking learning problem (Joachims, 2002)
- Learn an optimal ranking function that explicitly models the grade relationships between scripts
- Model the fact that some scripts are better than others



	Introdution Dataset System Conclusions	Baseline Ranking SVMs Models Results	
Models			

'Superficial' proxies

• Number of pronouns

・ロト ・回ト ・ヨト ・ヨト

Introdution	
Dataset	Ranking SVMs
System	Models
Conclusions	

'Superficial' proxies

- Number of pronouns
- Number of discourse connectives
 - Addition (e.g., additionally)
 - Comparison (e.g., likewise)
 - Constrast (e.g., whereas)
 - Conclusion (e.g., therefore)

Introdution	
Dataset	Ranking SVMs
System	Models
Conclusions	

'Superficial' proxies

- Number of pronouns
- Number of discourse connectives
 - Addition (e.g., additionally)
 - Comparison (e.g., likewise)
 - Constrast (e.g., whereas)
 - Conclusion (e.g., therefore)
- Word length

- 4 同 1 - 4 三 1 - 4 三 1

Introdution	
Dataset	Ranking SVMs
System	Models
Conclusions	

Lemma/PoS cosine similarity

- Incorporate (syntactic) aspects of text coherence
- Represent sentences using vectors of lemma/PoS-tag counts
- Cosine similarity between adjacent sentences:

$$\cos(\theta) = \frac{\vec{s}_{i} \cdot \vec{s}_{i+1}}{\|\vec{s}_{i}\|\|\vec{s}_{i+1}\|}$$
(1)

• Coherence of a text *T*:

$$\operatorname{coherence}(T) = \frac{\sum_{i=1}^{n-1} \operatorname{sim}(s_i, s_{i+1})}{n-1}$$

э

(2)

Introdution	
Dataset	Ranking SVMs
System	Models
Conclusions	

Incremental Semantic Analysis (ISA)

- Word space model (Baroni et al., 2007)
- Fully-incremental variation of Random Indexing (Sahlgren, 2005)
- Similarity among words measured by comparing their context vectors
- Coherence of a text T:

coherence(T) =
$$\frac{\sum_{i=1}^{n-1} \max_{k,j} \sin(s_i^k, s_{i+1}^j)}{n-1}$$
 (3)

• Underlying idea: the degree of semantic relatedness between adjoining sentences serves as a proxy for local discourse coherence

Introdution	
Dataset	Ranking SVMs
System	Models
Conclusions	

IBM model 1

- Machine translation: the use of certain words in a source language is likely to trigger the use of certain words in a target language
- In texts: the use of certain words in a sentence tends to trigger the use of certain words in an adjoining sentence (Soricut and Marcu, 2006)
- Identification of word co-occurrence patterns across adjacent sentences
- Probability of a text T:

$$P_{\rm IBM_{dir}}(T) = \prod_{i=1}^{n-1} \prod_{j=1}^{|s_{i+1}|} \frac{\varepsilon}{|s_i|+1} \sum_{k=0}^{|s_i|} t(s_{i+1}^j | s_i^k)$$
(4)

イロン イヨン イヨン イヨン

Introdution	
Dataset	Ranking SVMs
System	Models
Conclusions	

IBM model 1

- Machine translation: the use of certain words in a source language is likely to trigger the use of certain words in a target language
- In texts: the use of certain words in a sentence tends to trigger the use of certain words in an adjoining sentence (Soricut and Marcu, 2006)
- Identification of word co-occurrence patterns across adjacent sentences
- Probability of a text T:

$$P_{\text{IBM}_{\text{dir}}}(T) = \prod_{i=1}^{n-1} \prod_{j=1}^{|s_{i+1}|} \frac{\varepsilon}{|s_i|+1} \sum_{k=0}^{|s_i|} t(s_{i+1}^j | s_i^k)$$
(4)

• Extend: identification of PoS co-occurrence patterns

イロン イヨン イヨン イヨン

Introdution	
Dataset	Ranking SVMs
System	Models
Conclusions	

Entity-based coherence model

- Measures local coherence on the basis of sequences of entity mentions (Barzilay and Lapata, 2008)
- Learns coherence properties similar to those employed by Centering Theory (Grosz et al., 1995)
- Each text is represented by an entity grid that captures the distribution of discourse entities across sentences

LANGUAGE - - X - - - - -COUNTRY - - X - - - - -POINTS - - X - - - - -CHILDREN - - 0 X - - - -TV - X - - - - -PROGRAMMES - - S 0 - - - -1 2 3 4 5 6 7 8

Introdution	Baseline
Dataset	Ranking SVMs
System	Models
Conclusions	Results

Pronoun coreference model

- Unsupervised generative model (Charniak and Elsner, 2009)
- Model each pronoun as generated by an antecedent somewhere in the previous 2 sentences
- Probability of a text: probability of the resulting sequence of pronoun assignments

	Introdution Dataset System Conclusions	Baseline Ranking SVMs Models Results	
Models			

Discourse-new model

- Discourse-new classifier (Elsner and Charniak, 2008)
- Distinguish NPs whose referents have not been previously mentioned in the discourse from those that have
- Probability of a text: $\prod_{np:NPs} P(L_{np}|np)$

Ranking SVN
Models

٩s

Models

Bag-of-Words (BOW)

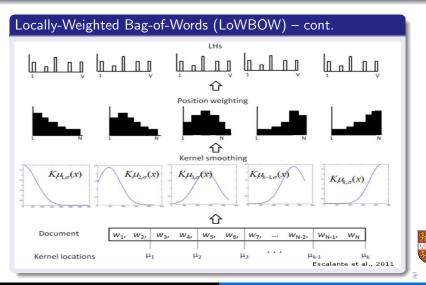
- Represent a text as a vector $d \in \mathbb{R}^V$
- Each word v_i is associated with a single vector dimension
- Histogram of word occurrences
- Unable to maintain any sequential information
- Unable to capture the semantic transition between different parts of the document
- Partial solution: use ngrams

Ranking SVI
Models

Locally-Weighted Bag-of-Words (LoWBOW)

- LoWBOW: sequentially-sensitive alternative to BOW (Lebanon et al., 2007)
- A text is represented by a set of local histograms computed across the whole text, but centered on different locations
- Preserves local contextual information by modeling the text sequential structure

Introdution	Baseline
Dataset	Ranking SVMs
System	Models
Conclusions	Results



Helen Yannakoudakis & Ted Briscoe

Modeling coherence in ESOL learner texts

Baseline Ranking SVMs Models Results

Results – examination year 2000

		r	ρ
0	Baseline	0.651	0.670
1	POS distr.	0.653	0.670
2	Disc. connectives	0.648	0.668
3	Word length	0.667	0.676
4	ISA	0.675	0.678
5	EGrid	0.650	0.668
6	Pronoun	0.650	0.668
7	Disc-new	0.646	0.662
8	$LoWBOW_{\mathrm{lex}}$	0.663	0.677
9	$LoWBOW_{POS}$	0.659	0.674

		r	ρ
0	Baseline	0.651	0.670
10	$IBM model_{\mathrm{lex}_{\mathrm{f}}}$	0.649	0.668
11	IBM model $_{lex_b}$	0.649	0.667
12	IBM model $_{POS_{f}}$	0.661	0.672
13	IBM model $_{POS_b}$	0.658	0.669
14	Lemma cosine	0.651	0.667
15	POS cosine	0.650	0.665
16	5+6+7+10+11	0.648	0.665
17	All	0.677	0.671

イロト イヨト イヨト イヨト

Table: 5-fold cross-validation performance on texts from year 2000 when adding different coherence features on top of the baseline AA system.

Introdution	
Dataset	Ranking SVMs
System	Models
Conclusions	Results

Results – examination year 2001 & outlier scripts

	r	ho
Baseline	0.741	0.773
	0 740	0 700+
ISA	0.749	0.790*

Table: Performance on the exam scripts drawn from the examination year 2001. * indicates a significant improvement at $\alpha = 0.05$.

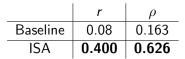


Table: Performance of the ISA AA model on outliers.

Conclusions & Future Work

- First systematic analysis of different models for assessing discourse coherence on learner data
- Significant improvement over Yannakoudakis et al. (2011)
- ISA, LOWBOW, the POS IBM model and word length are the best individual features
- Local histograms are useful
- Results specific to ESOL FCE texts
- Investigate a wider range of (learner) texts and further coherence models (e.g., Elsner and Charniak (2011a) and Lin et al. (2011)).

・ロト ・ 同ト ・ ヨト ・ ヨト

Thank you!

Acknowledgments: we are grateful to Cambridge ESOL for supporting this research. We would like to thank Marek Rei, Øistein Andersen as well as the anonymous reviewers for their valuable comments and suggestions.

