

Improving interpretation robustness in a tutorial dialogue system

Myroslava O. Dzikovska Elaine Farrow Johanna D. Moore

School of Informatics, University of Edinburgh {m.dzikovska,elaine.farrow,j.moore}@ed.ac.uk

Dialogue in Interactive Learning Environments

- Science teaching involves problem-solving and hands-on experiments
- Asking students to verbalize their reasoning can help improve learning
- Support explanation in interactive learning environments
 - Operate in a dynamically changing environment
 - Give students detailed feedback to help them construct correct explanations
 - Feedback: scripted or dynamically generated

Dynamic Adaptive Feedback Generation

- Semantic interpreter
 - Detailed analyses of correct and incorrect parts of student
 answer
 - · Generally based on a hand-crafted parser

Dynamic Adaptive Feedback Generation

- Semantic interpreter
 - Detailed analyses of correct and incorrect parts of student
 answer
 - · Generally based on a hand-crafted parser
- Tutorial planner to choose a feedback strategy
 - Prompt, hint, point out error, give away answer

Dynamic Adaptive Feedback Generation

- Semantic interpreter
 - Detailed analyses of correct and incorrect parts of student
 answer
 - · Generally based on a hand-crafted parser
- Tutorial planner to choose a feedback strategy
 - Prompt, hint, point out error, give away answer
- Natural language generator to instantiate the strategy
 - Use the state of the environment and the information from interpretation to produce a contextualized feedback message

Dynamic Adaptive Feedback Generation

- Semantic interpreter
 - Detailed analyses of correct and incorrect parts of student
 answer
 - Generally based on a hand-crafted parser
- Tutorial planner to choose a feedback strategy
 - Prompt, hint, point out error, give away answer
- Natural language generator to instantiate the strategy
 - Use the state of the environment and the information from interpretation to produce a contextualized feedback message
- Problem: rule-based interpreters are brittle
 - Out-of-grammar utterances can cause interpretation failures

Outline

Approach

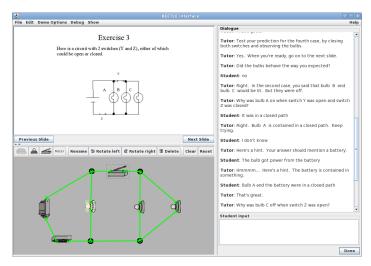
Experiment

Combining Symbolic and Statistical NLU

(Dzikovska et al, AIED 2013)

- Annotate corpus of student answers with simple accuracy labels responses
 - Correct, partially_correct_incomplete, contradictory, irrelevant, non_domain
- Labels align with common tutoring decisions
- Train a statistical classifier and combine it with the symbolic semantic interpreter

A Tutorial Dialogue System for Basic Electricity and Electronics



Architecture

Question: Why was bulb A on when switch X was open? **Student Answer:** The battery was in a closed path **Reference Answer:** Bulb A and the battery were contained in the same closed path

Architecture

Question: Why was bulb A on when switch X was open? **Student Answer:** The battery was in a closed path **Reference Answer:** Bulb A and the battery were contained in the same closed path

Interpreter

Partially_Correct_Incomplete Correct: (Bulb B1) (Path _P1) (is-closed _P1 true) (contains _P1 B1) Missing: (Battery B2) (contains _P1 B2) Contradictory: ()

Hint object: Your answer should mention a bulb Hint relation: Bulb A was contained in something

Architecture

Question: Why was bulb A on when switch X was open? **Student Answer:** The battery was in a closed path **Reference Answer:** Bulb A and the battery were contained in the same closed path

slide 7 of 18

Interpreter

Partially_Correct_Incomplete Correct: (Bulb B1) (Path _P1) (is-closed _P1 true) (contains _P1 B1) Missing: (Battery B2) (contains _P1 B2) Contradictory: ()

Hint object: Your answer should mention a bulb Hint relation: Bulb A was contained in something Classifier

Partially_Correct_Incomplete

Contentless Prompt: Right. Any-thing else?

Architecture

Question: Why was bulb A on when switch X was open? **Student Answer:** The battery was in a closed path **Reference Answer:** Bulb A and the battery were contained in the same closed path

Interpreter

Hint object: Your answer should mention a bulb Hint relation: Bulb A was contained in something Classifier

Partially_Correct_Incomplete

Contentless Prompt: Right. Any-thing else?

Combination and Selection Policy

Initial Evaluation

(Dzikovska et al., AIED 2013)

- Combine interpreter with classifier trained on approximately 3000 student responses
- Significant improvement in interpretation quality compared to semantic interpreter alone
- Best combination policy: use the output of the classifier only if semantic interpretation fails

Initial Evaluation

(Dzikovska et al., AIED 2013)

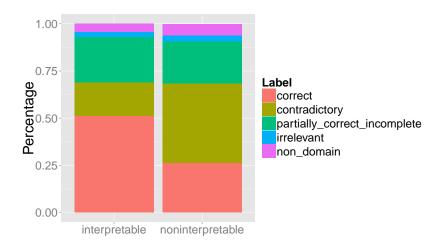
- Combine interpreter with classifier trained on approximately 3000 student responses
- Significant improvement in interpretation quality compared to semantic interpreter alone
- Best combination policy: use the output of the classifier only if semantic interpretation fails
- Next step: analyze non-interpretable utterance subset in more detail

Outline

Approach

Experiment

Distribution of labels in interpretable and non-interpretable utterances



A combination policy that uses a classifier only for interpretation failures can benefit from a classifier specific to non-interpretable utterances

- Beetle portion of Student Response Analysis Corpus (Dzikovska et al., 2013)
 - ~3000 student answers to explanation questions in BEETLE II system
 - 36% of utterances rejected as non-interpretable
- 10-fold cross-validation

Classifiers and Combination Policies

- Classifiers: same features, different training sets
 - 20 lexical overlap and negation features
 - Sim20: trained on all data in the training folds
 - Sim20NI: trained on Non-Interpretable utterances only

Classifiers and Combination Policies

- Classifiers: same features, different training sets
 - 20 lexical overlap and negation features
 - Sim20: trained on all data in the training folds
 - Sim20NI: trained on Non-Interpretable utterances only
- Two policies applied in case of interpretation failure
 - Best policy (in the talk): whenever interpretation fails, use the classifier result
 - Additional policy (reported in the paper): preserve some of the "non-understanding" messages

Results

Evaluation metric: per-class and macro-averaged F₁ score

	Standalone		Interpreter + Classifier	
	Interp.	Sim20	Sim20	Sim20NI
correct	0.66	0.71	0.70	0.70
pc₋incomplete	0.48	0.40	0.51	0.50
contradictory	0.27	0.45	0.47	0.51
irrelevant	0.21	0.08	0.22	0.22
non_domain	0.65	0.78	0.83	0.83
macro average	0.45	0.48	0.55	0.55

Outline

Approach

Experiment

Conclusions

• Investigated using a classifier to provide robustness where rule-based semantic interpretation fails

- Investigated using a classifier to provide robustness where rule-based semantic interpretation fails
- Utterances causing interpretation failures look different from interpretable utterances

- Investigated using a classifier to provide robustness where rule-based semantic interpretation fails
- Utterances causing interpretation failures look different from interpretable utterances
- The "non-interpretable" subset can be exploited to help system robustness
 - Retain the benefits of dynamic feedback generation on interpretable utterances
 - Target annotation to utterances known to be difficult for the symbolic interpreter

- Show that the pattern we observed (contradictory utterances more problematic, can be used to train a classifier) applies to other domains
- Test classifiers with more sophisticated features
- Evaluate the combined system in user trials

Further Work on Understanding Student Explanations

Come see the posters from Student Response Analysis and Recognizing Textual Entailment Challenge on Saturday!