Our approach to the NLI Shared Task 2013

Aim: investigate if identifying native language is possible with machine learning methods that work at the c

Advantages:

completely language independent: the texts will be treated as sequences of symbols (strings)

select the important features

Tools:

- kernel-based learning methods
- different string kernels

String Kernels

p-spectrum kernel:

$$k_{
ho}(s,t) = \sum_{v \in \Sigma^{
ho}} \operatorname{num}_{v}(s) \cdot \operatorname{num}_{v}(t)$$

p-grams presence bits kernel:

$$k_p^{0/1}(\boldsymbol{s},t) = \sum_{v \in \Sigma^p} \operatorname{in}_v(\boldsymbol{s}) \cdot \operatorname{in}_v(t)$$

Normalized:

$$\hat{k}_{p}(s,t) = \frac{k_{p}(s,t)}{\sqrt{k_{p}(s,s) \cdot k_{p}(t,t)}}$$
$$\hat{k}_{p}^{0/1}(s,t) = \frac{k_{p}^{0/1}(s,t)}{\sqrt{k_{p}^{0/1}(s,s) \cdot k_{p}^{0/1}(t,t)}}$$

Kernel based on Local Rank Distance

Local Rank Distance (LRD):

$$\Delta_{LRD}(S_1, S_2) = \Delta_{left} + \Delta_{right}$$

$$= \sum_{x_s \in S_1} \min_{x_s \in S_2} \{|pos_{S_1}(x_s) - pos_{S_2}(x_s)|, m\} + \sum_{y_s \in S_2} \min_{y_s \in S_1} \{|pos_{S_1}(y_s) - pos_{S_2}(y_s)|, m\}$$
Kernel:

$$k(s_1, s_2) = e^{-\frac{\Delta_{LRD}(s_1, s_2)}{2\sigma^2}}$$

 $k(s_1, s_2) = e$

Combining Kernels

By summing kernels and by kernel alignment

The Story of the Characters, the DNA and the Native Language

Department of Computer Science, University of Bucharest, Bucharest, Romania

• theory neutral: rather than restricting the feature space according to theoretical or empirical principles let the learning the space according to the space according to the space.

Marius Popescu and Radu Tudor Ionescu

	Parameter Tuning	g for LRD	Kernel				
ing algorithm	Table : Accuracy rates, usin <i>n</i> -grams, with and without negative	Method KRR + KRR + KRR + KRR +	ACC K_{LRD_6} 4 K_{nLRD_4} 7 K_{nLRD_6} 7 S-validation of Jormalized LF	uracy 2.1% 0.8% 4.4% 4.8% n the trainin RD is much	ng set, of better.	LRD with dif	ferent
	Parameter Tuning	g for Kern	el Comb	oination			
ession (KRR)	N K K K Table : Accuracy rates of div training set.	Alethod $RR + K_{nLRD}$ $RR + \hat{k}_{5-8}^{0/1} + \hat{k}_{5-8}^{0/1}$ $RR + (\hat{k}^{0/1} + \hat{k}_{5-8})$ fferent kernel c	$_{6+8}$ - $K_{nLRD_{6+8}}$ + K_{nLRD})6-1 combinations	Accura 75.4 81.6 80.9 using 10-fc	CY % % old cross-v	validation on	the
	Results - Rankeo	I 3rd in th	e closed	NLI Sh	ared T	ask	
on-grams frequencies − n-grams presence	Method $KRR + \hat{k}_{5-8}^{0/1}$ $KRR + K_{nLRD_{6+8}}$ $KRR + \hat{k}_{5-8}^{0/1} + K_{nLRD_{6+8}}$ $KRR + (\hat{k}^{0/1} + K_{nLRD})$ $KRR + \hat{k}_{5-8}^{0/1} + K_{nLRD_{6+8}}$ Table : Accuracy rates of surranked third in the closed NU heuristic to level the predicted	6+8 + heuristic Jomitted syster I Shared Task	Submission Unibuc-1 Unibuc-2 Unibuc-3 Unibuc-4 Unibuc-5 ns on different with the kern ution.	n CV Tr 80.9% 75.4% 81.6% 80.9% -	Dev 85.4% 76.3% 85.7% 85.6% - n sets. Thation impr	CV T+D 82.5% 82 75.7% 74 82.6% 82 82.0% 82 - 82 - 82 - 82 - 82 - 82 - 82	Test 2.0% 5.8% 2.5% 1.4% 2.7%
	Future Work - Ali	ready star	rted				
		Method KLDA + \hat{k}_{5}^{0} KLDA + K_{n} KLDA + \hat{k}_{5}^{0}	/1 - 8 LRD_{6+8} $/1 + KnI RD_{6}$	Test 84.0% 76.4%			
$\frac{1}{9}$ $\frac{1}{10}$ $\frac{1}{11}$	Table: Accuracy rates of sy because of unmasking.	vstems based o	on KLDA (not	submitted)	. KLDA ir	nproves accı	uracy
grams from 5 to 8) 6 (KRR $\lambda = 10^{-5}$)	An explanation for	or these r	esults is	neede	5		
	It will be addressed in	future work.					

