

seminar für sprachwissenschaft

Overview

- We developed an approach to perform proficiency classification for learners of Estonian as a second language.
- Using a publicly accessible Estonian learner corpus, we show that
 - morpho-syntactic features in learner texts are useful predictors.
 - cascades of binary classifiers perform better than performing the classification in a single step.

Related Work

- SLA researchers studied the characteristic features of learner texts at different proficiency levels. (e.g., Tono, 2000; Vyatkina, 2012; Lu, 2012)
- Automated assessment of student essays is also an active research area. (e.g., Yannakoudakis, Briscoe & Medlock, 2011; Burstein, 2013)
- Contemporary research primarily focused on learner errors across proficiency levels. (e.g., Dickinson, Kübler & Meyer, 2012)
- But, the role of morpho-syntactic features in proficiency classification was not explored before.

Estonian Morphology

- Estonian is agglutinative. Word forms can be formed by joining the morphemes together.
- e.g., *jalgades* –>*jalga*+*de*+*s* (stem for foot +plural marker+inessive case marker)
- It is fusional i.e., word forms can be formed by changing the stem. - e.g., *jalg* (foot, nominative), *jala* (genitive), *jalga* (partitive)
- It has 14 productive cases (grammatical and semantic cases). - Cases express relations between words and are sometimes used instead of postpositions (*jalal* and *jala peal* have the same meaning: *on the foot*)
- Cases have different alternative case endings. - e.g., Valid allative plural forms for *jalg* (foot) are: *jalgadele*, *jalule*, *jalgele*

- We model some of these morphological characteristics as features for the learner proficiency classification task.

The Corpus

- The Estonian Interlanguage Corpus (EIC) consists of texts written by learners of Estonian as a Second Language (Eslon, 2007).
- It mainly consists of short answers, essays and personal letters.
- It also has error annotations but we did not use them in this paper.
- Here is a numeric description of the corpus:

Proficiency Level	# Docs	Avg. tokens per
А	807	182.9
В	876	260.3
С	307	431.8

• We created a randomly picked held-out test set with 50 documents per class from this dataset.

Role of Morpho-Syntactic Features in Estonian Proficiency Classification

doc.

Features

Morphological Features

- Nominal inflection features: proportion of nouns and adjectives tagged with various cases.
- Verbal inflection features: proportion of verbs belonging to various tense, mood, voice, number and person categories.

Other Features

- POS features: proportion of words of various parts of speech
- Lexical variation features: ratio of nouns, verbs, adjectives and adverbs to lexical words (Lu, 2012)
- Text length: number of word tokens per text

BEST10FEATURES were determined automatically.

- selection method: Correlation based Feature Subset (CFS) selection
- ranking method: Information Gain

Feature	C
Nominative case	N
Impersonal Voice	V
Personal Voice	V
Num. words	Τ
Present tense	V
2nd person verbs	V
Prepositions	
Allative case	N
Imperatives	
Translative case	

Eight of the ten best features are from morphological features group.

Experimental setup

• We approached three class classification using

- a single classifier (SMO) with various feature combinations.
- a Stacking ensemble with SMO, Logistic Regression and Random Forest classifiers (with all features).
- two class cascade combinations (SMO with all features) : since binary classification was more accurate.
 - * Cascade-1: using the classifiers AC, AB and BC.
 - 1. Classify the instance using the classifier (A,C).
 - 2. If A, re-classify using (A,B). Else, re-classify using (B,C).
 - * Cascade-2: using the classifiers A-NotA, B-NotB, C-NotC.
 - 1. Classify the instance using the classifier (C,NotC).
 - 2. If NotC, re-classify using (A,NotA).
 - * The choice of these cascades was primarily heuristic.
- Evaluation Metric: classification accuracy (with both CV and test set) • All the classifiers had equal number of documents belonging to the
- classes they are made of.
- The held-out test set was not used in any training stage.

Sowmya Vajjala and Kaidi Lõo Department of Linguistics, University of Tübingen

Group

NounMorph /erbMorph /erbMorph **FextLength** /erbMorph /erbMorph **POS** JounMorph /erbMorph JounMorph

Results

- Binary classification
 - A $\frac{B}{A}$ Βι

Classifer	Accuracy on Test Set
With All Features	59.33%
Noun+Verb Morph. Features	58%
Best 10 Features	56.66%
Ensemble classifier	57.33%
Cascade Classifier 1	64.66%
Cascade Classifier 2	66.66%
	1

• Experimenting with different training data sizes showed that it did not have a major impact on classification accuracy.

Conclusions

Future Work

- error rate, coherence etc.

References

Burstein, J. (2013). Automated Essay Evaluation and Scoring. In The Encyclopedia of Applied Linguistics, Blackwell Publishing Ltd. Dickinson, M., S. Kübler & A. Meyer (2012). Predicting Learner Levels for Online Exercises of Hebrew. In *Proceedings of the Seventh BEA Workshop*. pp. 95–104. Eslon, P. (2007). Õppijakeelekorpused ja keeleõpe. In Tallinna Ülikooli keelekorpuste optimaalsus, *töötlemine ja kasutamine*. pp. 87–120. Lu, X. (2012). The Relationship of Lexical Richness to the Quality of ESL Learners' Oral Narratives. The Modern Languages Journal. Tono, Y. (2000). A corpus-based analysis of interlanguage development: analysing POS tag sequences of EFL learner corpora. In PALC'99: Practical Applications in Language Corpora. pp. 323-340. Vyatkina, N. (2012). The development of second language writing complexity in groups and

individuals: A longitudinal learner corpus study. The Modern Language Journal . Yannakoudakis, H., T. Briscoe & B. Medlock (2011). A new dataset and method for automatically grading ESOL texts. In *Proceedings of ACL-HLT*. pp. 180–189.

EBERHARD KARLS UNIVERSITÄT TÜBINGE

assifer	Accuracy (10 fold CV)
vs B	70.8%
vs C	74.59%
vs C	85.93%
vs NotA	74.20%
vs NotB	60.04%
vs NotC	79.69%

• Three class classification - a comparison of features and approaches

• Morphological complexity based features indeed play an important role in Estonian proficiency classification.

• Reformulating the three-class classification problem as a cascade of binary classifiers improved the classification accuracy.

• Increasing the training data did not improve the classification accuracy. So, the morphological features are good but not self-sufficient.

• The accuracies we achieved (60-65%) are a good starting point in moving towards a real word application.

• Explore other classes of features for this task. e.g., syntactic complexity,

• Apply insights from SLA research in proficiency classification.

• Explore cascade models better in this context.