



seminar für sprachwissenschaft

# In a Nutshell

- We explored a wide range of features:
  - from *surface* (e.g., n-grams)
  - to deep *linguistic* features (e.g., dependency)
- We created ensemble classifiers by combining multiple singlefeature classifiers, significantly increasing performance.
- Our best accuracy of 83.5% is the *second best* score in the overall ranking of the NLI Shared Task (Tetreault et al., 2013).
  - *Closed* task: 82.2% (rank 5, difference to best result 83.6%
  - *Open-2* task: 83.5% (rank 1)
  - *Open-1* task: 38.5% (rank 2)

# Background

- Early work on NLI has explored different kinds of features ranging from word n-grams to spelling and grammar errors. (e.g., Jarvis et al., 2004; Koppel et al., 2005)
- Wong & Dras (2009) used features based on Contrastive Analysis.
- More recently, complex syntactic constructs were used as features. (e.g., Wong & Dras, 2011; Swanson & Charniak, 2012)
- Brooke & Hirst (2011) studied the effect of training data size on classifier performance.
- Tetreault et al. (2012) used ensemble models that combine multiple feature groups by building a meta-classifier of base classifiers.
- Bykh & Meurers (2012) explored a data driven approach using recurring n-grams with words and POS tag combinations.
  - We started with these features and extended our feature set to include more linguistically motivated features for this task.

# **Corpora used**

**TOEFL11** (Blanchard et al., 2013)

- Main corpus of the shared task
- 1100 essays of English learners with 11 L1 backgrounds.

## **NON-TOEFL11**

- 5843 essays for 11 L1s for the *open-1* and *open-2* tasks
- unevenly distributed across 11 L1s, created from 5 corpora:
  - ICLE corpus (Granger et al., 2009)
  - FCE corpus (Yannakoudakis et al., 2011)
  - BALC Arabic Learner Corpus (Randall & Groom, 2009)
  - ICNALE corpus (Ishikawa, 2011)
  - TÜTEL-NLI: Tübingen Telugu NLI Corpus

# **Combining Shallow and Linguistically Motivated Features in Native Language Identification**

# Serhiy Bykh, Sowmya Vajjala, Julia Krivanek and Detmar Meurers Department of Linguistics, University of Tübingen

# Features

### **Recurring n-gram features**

| 1. rc. word ng.   | recurring word-based         |
|-------------------|------------------------------|
| 2. rc. OCPOS ng.  | recurring n-grams,           |
|                   | replaced by POS tags         |
| 3. rc. word dep.  | rec. word-based deper        |
|                   | its immediate depend         |
|                   | <b>Ex:</b> My own experience |
|                   | experience); (experien       |
| 4. rc. func. dep. | rec. function-based de       |
|                   | replaced by its gramm        |
|                   | $\Rightarrow$ (NMOD,NMOD,exp |
|                   | (NMOD, fact)                 |
|                   |                              |

### **Complexity Features**

| 5. complexity | • text complexity feat  |
|---------------|-------------------------|
|               | I V                     |
|               | lexical richness, synta |
|               | • morphological and l   |
|               |                         |

### **Sublexical Morphological Features**

|                     | —                             |
|---------------------|-------------------------------|
| 6. stemsuffix, bin. | presence/absence of <i>s</i>  |
| 7. stemsuffix, cnt. | number of <i>stem+suffix</i>  |
| 8. suffix, bin.     | presence/absence of v         |
| 9. suffix, cnt.     | number of <i>suffix</i> occur |

### **Constituency Parser-based Features**

| 10. type dep. lm. | lemma-typed Stanford              |
|-------------------|-----------------------------------|
| 10. type dep. m.  | 5 I                               |
|                   | $\Rightarrow$ poss(experience, m) |
| 11. type dep. POS | POS-typed Stanford d              |
|                   | $\Rightarrow poss(NN, PRP$); and$ |
| 12. local trees   | all syntactic trees of d          |
|                   | parse: (ROOT (S (NP (P            |
|                   | (VP (VBZ confirms) (NP            |
|                   | local trees: (S NP VP .)          |

| <b>Ratio Features</b> |                                                  |
|-----------------------|--------------------------------------------------|
| 13. dep. num.         | number of dependen                               |
|                       | lemma normalized by                              |
|                       | <b>Ex:</b> $take=10 \Rightarrow f1$ : $take:$    |
|                       | $\Rightarrow$ f2: take:                          |
| 14. dep. var.         | number of possible dep                           |
|                       | verb lemma, normaliz                             |
|                       | <b>Ex:</b> <i>take:2-deps=3/10</i> $\Rightarrow$ |
|                       | $take:3-deps=7/10 \Rightarrow$                   |
|                       | $\Rightarrow$                                    |
| 15. dep. POS          | POS-based dependent                              |
|                       | <b>Ex:</b> $f1, f2, f3$ from 14. =               |
|                       |                                                  |
|                       |                                                  |
| 16. lm. realiz.       | • lemma counts of a sp                           |
|                       | total count of this PC                           |
|                       | <b>Ex:</b> A document with                       |
|                       | the lemma can 2 times                            |
|                       | $\Rightarrow$ f1: can:VB=2/30, f2                |
|                       | • Type-Lemma ratio: 1                            |
|                       | normalized by total                              |
|                       | • Type-Token ratio: to                           |
|                       | normalized by total                              |
|                       | • Lemma-Token Ratio                              |
|                       | normalized by token                              |

not statistically significant)

### d n-grams

where open class words are

endencies (MATE): a head and all dents, ordered as in the sentence *ce confirms this fact.*  $\Rightarrow$  (my, own, nce, confirms, fact); (this, fact) dependencies: each dependent is matical function

perience); (SBJ, confirms, OBJ);

tures of Vajjala & Meurers (2012): actic complexity, ... POS features from CELEX

stem+suffix. occurrences. valid English *suffixes*. rrences.

rd dependencies y); amod(experience, own) etc., dependencies mod(NN, JJ) etc., lepth one

PRP\$ *My*) (JJ own) (NN experience))  $P(DT this)(NN fact)))(...)) \Rightarrow$ ), (NP PRP), (NP PRP**\$** JJ NN), ...

nts (MATE) realized by a verb v this lemma's count :2-dependents=3/10 e:3-dependents=7/10 ependent-POS combinations for a zed by this lemma's count  $\Rightarrow$  f1: *take:JJ-NN=3/10*  $\Rightarrow$  f2: take:JJ-NN-VB=2/10 - f3: *take:NN-NN-VB=5/10* nt frequency for a verb lemma  $\Rightarrow$  take:JJ=(1/2+1/3)/10  $\Rightarrow$  take:NN=(1/2+1/3+2/3)/10  $\Rightarrow$  take:VB=(1/3+1/3)/10 specific POS normalized by the 30 verbs and 50 nouns includes

es as a verb and 5 times as a noun. f2: can:NN=5/50

lemmas of same category lemma count okens of same category token count o: lemmas of same category

ns of same category

# **Experimental setup & Results**

|                     |         |   |   |   |   |                       | Single feature results |       |  |  |
|---------------------|---------|---|---|---|---|-----------------------|------------------------|-------|--|--|
| Feature type        | systems |   |   |   |   | on T11 <i>dev</i> set |                        |       |  |  |
|                     | 1       | 2 | 3 | 4 | 5 | closed                | open1                  | open2 |  |  |
| 1. rc. word ng.     | x       | X | - | X | - | 81.3                  | 42.0                   | 80.3  |  |  |
| 2. rc. OCPOS ng.    | X       | - | X | X | - | 67.6                  | 26.6                   | 64.8  |  |  |
| 3. rc. word dep.    | X       | - | X | X | - | 67.7                  | 30.9                   | 69.4  |  |  |
| 4. rc. func. dep.   | X       | - | X | X | - | 62.4                  | 28.2                   | 61.3  |  |  |
| 5. complexity       | X       | _ | X | X | X | 37.6                  | 19.7                   | 36.5  |  |  |
| 6. stemsuffix, bin. | X       | _ | X | X | X | 50.3                  | 21.4                   | 48.8  |  |  |
| 7. stemsuffix, cnt. | X       | _ | X | _ | X | 48.2                  | 19.3                   | 47.1  |  |  |
| 8. suffix, bin.     | X       | _ | X | X | X | 20.4                  | 9.1                    | 17.5  |  |  |
| 9. suffix, cnt.     | X       | _ | X | _ | X | 19.0                  | 13.0                   | 17.7  |  |  |
| 10. type dep. lm.   | X       | _ | X | _ | X | 67.3                  | 25.7                   | 67.5  |  |  |
| 11. type dep. POS   | X       | - | X | _ | X | 46.6                  | 27.8                   | 27.6  |  |  |
| 12. local trees     | X       | _ | X | _ | X | 49.1                  | 26.2                   | 25.7  |  |  |
| 13. dep. num.       | X       | _ | X | X | - | 39.7                  | 19.6                   | 41.8  |  |  |
| 14. dep. var.       | X       | _ | X | X | _ | 41.5                  | 18.6                   | 40.1  |  |  |
| 15. dep. POS        | X       | _ | X | X | _ | 47.8                  | 21.5                   | 47.4  |  |  |
| 16. lm. realiz.     | x       | - | X | X | - | 70.3                  | 30.3                   | 66.9  |  |  |

| Task                                 | <b>Overall system results</b> |      |      |      |      |  |  |
|--------------------------------------|-------------------------------|------|------|------|------|--|--|
| $Closed_{test}$                      | 82.2                          | 79.6 | 81.0 | 81.5 | 74.7 |  |  |
| $Closed_{dev}$                       | 85.4                          | 81.3 | 83.5 | 84.9 | 76.3 |  |  |
| $Closed^{10foldCV}_{train \cup dev}$ | 82.4                          | 78.9 | 80.7 | 81.7 | 74.1 |  |  |
| $Open1_{test}$                       | 36.4                          | 38.5 | 33.2 | 37.8 | 21.2 |  |  |
| $Open1_{test}$ *                     | 37.0                          | 38.5 | 35.4 | 37.8 | 29.9 |  |  |
| $Open2_{test}$                       | 83.5                          | 81.0 | 79.3 | 82.5 | 64.8 |  |  |
| $Open2_{test}*$                      | 84.5                          | 81.0 | 83.3 | 82.9 | 79.8 |  |  |

The starred Open task results finished computing after submission.

# Discussion

## **Future Work**

- correlations between them
- proposed in Krivanek (2012)





• We submitted five system results for each of the three tasks.

• The ensembles are meta-classifiers created based on the probability distributions of the base classifiers.

• All systems consisted of classifier ensembles, except system 2.

• Best single feature group: surface-based recurring n-grams

• Ensemble models combining a range of linguistically motivated features clearly outperform individual feature models.

– Even individually weak features significantly contribute.

• Qualitatively analyze feature types in depth and study the

• Explore more linguistic features like syntactic alternations as