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Abstract 

A central challenge for tutorial dialogue 
systems is selecting an appropriate move 
given the dialogue context. Corpus-based 
approaches to creating tutorial dialogue 
management models may facilitate more 
flexible and rapid development of tutorial 
dialogue systems and may increase the 
effectiveness of these systems by allowing 
data-driven adaptation to learning contexts 
and to individual learners. This paper presents 
a family of models, including first-order 
Markov, hidden Markov, and hierarchical 
hidden Markov models, for predicting tutor 
dialogue acts within a corpus. This work takes 
a step toward fully data-driven tutorial 
dialogue management models, and the results 
highlight important directions for future work 
in unsupervised dialogue modeling. 

1 Introduction 

A central challenge for dialogue systems is 
selecting appropriate system dialogue moves 
(Bangalore, Di Fabbrizio, & Stent, 2008; Frampton 
& Lemon, 2009; Young et al., 2009). For tutorial 
dialogue systems, which aim to support learners 
during conceptual or applied learning tasks, 
selecting an appropriate dialogue move is 
particularly important because the tutorial 
approach could significantly influence cognitive 
and affective outcomes for the learner (Chi, 
Jordan, VanLehn, & Litman, 2009). The strategies 
implemented in tutorial dialogue systems have 
historically been based on handcrafted rules 

derived from observing human tutors (e.g., Aleven, 
McLaren, Roll, & Koedinger, 2004; Evens & 
Michael, 2006; Graesser, Chipman, Haynes, & 
Olney, 2005; Jordan, Makatchev, Pappuswamy, 
VanLehn, & Albacete, 2006). While these systems 
can achieve results on par with unskilled human 
tutors, tutorial dialogue systems have not yet 
matched the effectiveness of expert human tutors 
(VanLehn et al., 2007). 

A more flexible model of strategy selection may 
enable tutorial dialogue systems to increase their 
effectiveness by responding adaptively to a broader 
range of contexts. A promising method for 
deriving such a model is to learn it directly from 
corpora of effective human tutoring. Data-driven 
approaches have shown promise in task-oriented 
domains outside of tutoring (Bangalore et al., 
2008; Hardy et al., 2006; Young et al., 2009), and 
automatic dialogue policy creation for tutoring has 
been explored recently (Chi, Jordan, VanLehn, & 
Hall, 2008; Tetreault & Litman, 2008). Ultimately, 
devising data-driven approaches for developing 
tutorial dialogue systems may constitute a key step 
towards achieving the high learning gains that have 
been observed with expert human tutors.  

The work presented in this paper focuses on 
learning a model of tutorial moves within a corpus 
of human-human dialogue in the task-oriented 
domain of introductory computer science. Unlike 
the majority of task-oriented domains that have 
been studied to date, our domain involves the 
separate creation of a persistent artifact by the user 
(the student). The modification of this artifact, in 
our case a computer program, is the focus of the 
dialogues. Our corpus consists of textual dialogue 
utterances and a separate synchronous stream of 



task actions. Our goal is to extract a data-driven 
dialogue management model from the corpus, as 
evidenced by predicting system (tutor) dialogue 
acts.  

In this paper, we present an annotation approach 
that addresses dialogue utterances and task actions, 
and we propose a unified sequential representation 
for these separate synchronous streams of events. 
We explore the predictive power of three 
stochastic models — first-order Markov models, 
hidden Markov models, and hierarchical hidden 
Markov models — for predicting tutor dialogue 
acts in the unified sequences. By leveraging these 
models to capture effective tutorial dialogue 
strategies, this work takes a step toward creating 
data-driven tutorial dialogue management models. 

2 Related Work 

Much of the research on selecting system dialogue 
acts relies on a Markov assumption (Levin, 
Pieraccini, & Eckert, 2000). This formulation is 
often used in conjunction with reinforcement 
learning (RL) to derive optimal dialogue policies 
(Frampton & Lemon, 2009). Sparse data and large 
state spaces can pose serious obstacles to RL, and 
recent work aims to address these issues (Ai, 
Tetreault, & Litman, 2007; Henderson, Lemon, & 
Georgila, 2008; Heeman, 2007; Young et al., 
2009). For tutorial dialogue, RL has been applied 
to selecting a state space representation that best 
facilitates learning an optimal dialogue policy 
(Tetreault & Litman, 2008). RL has also been used 
to compare specific tutorial dialogue tactic choices 
(Chi et al., 2008).  

While RL learns a dialogue policy through 
exploration, our work assumes that a flexible, good 
(though possibly not optimal) dialogue policy is 
realized in successful human-human dialogues. We 
extract this dialogue policy by predicting tutor 
(system) actions within a corpus. Using human 
dialogues directly in this way has been the focus of 
work in other task-oriented domains such as 
finance (Hardy et al., 2006) and catalogue ordering 
(Bangalore et al., 2008). Like the parse-based 
models of Bangalore et al., our hierarchical hidden 
Markov models (HHMM) explicitly capture the 
hierarchical nesting of tasks and subtasks in our 
domain. In other work, this level of structure has 
been studied from a slightly different perspective 
as conversational game (Poesio & Mikheev, 1998).  

For tutorial dialogue, there is compelling 
evidence that human tutoring is a valuable model 
for extracting dialogue system behaviors. The 
CIRCSIM-TUTOR (Evens & Michael, 2006), 
ITSPOKE (Forbes-Riley, Rotaru, Litman, & 
Tetreault, 2007; Forbes-Riley & Litman, 2009), 
and KSC-PAL (Kersey, Di Eugenio, Jordan, & 
Katz, 2009) projects have made extensive use of 
data-driven techniques based on human corpora. 
Perhaps most directly comparable to the current 
work are the bigram models of Forbes-Riley et al.; 
we explore first-order Markov models, which are 
equivalent to bigram models, for predicting tutor 
dialogue acts.  In addition, we present HMMs and 
HHMMs trained on our corpus. We found that 
both of these models outperformed the bigram 
model for predicting tutor moves. 

3 Corpus and Annotation 

The corpus was collected during a human-human 
tutoring study in which tutors and students worked 
to solve an introductory computer programming 
problem (Boyer et al., in press). The dialogues 
were effective: on average, students exhibited a 7% 
absolute gain from pretest to posttest (N=48, paired 
t-test p<0.0001).  

The corpus contains 48 textual dialogues with a 
separate, synchronous task event stream. Tutors 
and students collaborated to solve an introductory 
computer programming problem using an online 
tutorial environment with shared workspace 
viewing and textual dialogue. Each student 
participated in exactly one tutoring session. The 
corpus contains 1,468 student utterances, 3,338 
tutor utterances, and 3,793 student task actions. In 
order to build the dialogue model, we annotated 
the corpus with dialogue act tags and task 
annotation labels. 

3.1 Dialogue Act Annotation  

We have developed a dialogue act tagset inspired 
by schemes for conversational speech (Stolcke et 
al., 2000), task-oriented dialogue (Core & Allen, 
1997), and tutoring (Litman & Forbes-Riley, 
2006). The dialogue act tags are displayed in Table 
1. Overall reliability on 10% of the corpus for two 
annotators was ĸ=0.80. 

 
 



 
Table 1. Dialogue act tags 

DA  Description 

Stu. 
Rel. 
Freq. 

Tut. 
Rel. 
Freq.  κ 

ASSESSING 
QUESTION (AQ) 

Request for feedback on 
task or conceptual 

utterance. 

.20  .11  .91 

EXTRA‐DOMAIN 

(EX) 
Asides not relevant to the 

tutoring task. 
.08  .04  .79 

GROUNDING (G)  Acknowledgement/thanks  .26  .06  .92 

LUKEWARM 
CONTENT 

FEEDBACK (LCF) 

Negative assessment with 
explanation. 

.01  .03  .53 

LUKEWARM 

FEEDBACK (LF) 

Lukewarm assessment of 
task action or conceptual 

utterance. 

.02  .03  .49 

NEGATIVE 
CONTENT 
FEEDBACK 
(NCF) 

Negative assessment with 
explanation. 

.01  .10  .61 

NEGATIVE 
FEEDBACK (NF) 

Negative assessment of 
task action or conceptual 

utterance. 

.05  .02  .76 

POSITIVE 
CONTENT 

FEEDBACK (PCF) 

Positive assessment with 
explanation. 

.02  .03  .43 

POSITIVE 
FEEDBACK (PF) 

Positive assessment of 
task action or conceptual 

utterance. 

.09  .16  .81 

QUESTION (Q) 
Task or conceptual 

question. 
.09  .03  .85 

STATEMENT (S) 
Task or conceptual 

assertion. 
.16  .41  .82 

3.2 Task Annotation 
The dialogues focused on the task of solving an 
introductory computer programming problem. The 
task actions were recorded as a separate but 
synchronous event stream. This stream included 
97,509 keystroke-level user task events. These 
events were manually aggregated and annotated for 
subtask structure and then for correctness. The task 
annotation scheme was hierarchical, reflecting the 
nested nature of the subtasks. An excerpt from the 
task annotation scheme is depicted in Figure 1; the 
full scheme contains 66 leaves. The task annotation 
scheme was designed to reflect the different depth 
of possible subtasks nested within the overall task. 
Each labeled task action was also judged for 
correctness according to the requirements of the 
task, with categories CORRECT, BUGGY, 
INCOMPLETE, and DISPREFERRED (technically 

correct but not accomplishing the pedagogical 
goals of the task). 

Each group of task keystrokes that occurred 
between dialogue utterances was tagged, possibly 
with many subtask labels, by a human judge. A 
second judge tagged 20% of the corpus in a 
reliability study for which one-to-one subtask 
identification was not enforced (giving judges 
maximum flexibility to apply the tags). To ensure a 
conservative reliability statistic, all unmatched 
subtask tags were treated as disagreements. The 
resulting unweighted kappa statistic was ĸsimple= 
0.58, but the weighted Kappa ĸweighted=0.86 is more 
meaningful because it takes into account the 
ordinal nature of the labels that result from 
sequential subtasks. On task actions for which the 
two judges agreed on subtask tag, the agreement 
statistic for correctness was ĸsimple=0.80. 

 
Figure 1. Portion of task annotation scheme 

3.3 Adjacency Pair Joining 

Some dialogue acts establish an expectation for 
another dialogue act to occur next (Schegloff & 
Sacks, 1973). Our previous work has found that 
identifying the statistically significant adjacency 
pairs in a corpus and joining them as atomic 
observations prior to model building produces 
more interpretable descriptive models. The models 
reported here were trained on hybrid sequences of 
dialogue acts and adjacency pairs. A full 
description of the adjacency pair identification 
methodology and joining algorithm is reported in 
(Boyer et al., 2009). A partial list of the most 
highly statistically significant adjacency pairs, 



which for this work include task actions, is 
displayed in Table 2.  
 

Table 2. Subset of significant adjacency pairs 
CORRECTTASKACTION‐CORRECTTASKACTION;  
EXTRADOMAINS‐EXTRADOMAINT; GROUNDINGS‐GROUNDINGT; 
ASSESSINGQUESTIONT‐POSITIVEFEEDBACKS;  
ASSESSINGQUESTIONS‐POSITIVEFEEDBACKT; QUESTIONT‐STATEMENTS; 
ASSESSINGQUESTIONT‐STATEMENTS; EXTRADOMAINT‐EXTRADOMAINS; 
QUESTIONS‐STATEMENTT; NEGATIVEFEEDBACKS‐GROUNDINGT; 
INCOMPLETETASKACTION‐INCOMPLETETASKACTION; 
POSITIVEFEEDBACKS‐GROUNDINGT;  
BUGGYTASKACTION‐BUGGYTASKACTION 

4 Models 

We learned three types of models using cross-
validation with systematic sampling of training and 
testing sets. 

4.1 First-Order Markov Model 
The simplest model we discuss is the first-order 
Markov model (MM), or bigram model (Figure 2). 
A MM that generates observation (state) sequence 
o1o2…ot is defined in the following way. The 
observation symbols are drawn from the alphabet 
∑={σ1, σ2, …, σM}, and the initial probability 
distribution is Π=[πi] where πi is the probability of 
a sequence beginning with observation symbol σi. 
The transition probability distribution is A=[aij], 
where aij is the probability of observation j 
occurring immediately after observation i. 

 
Figure 2. Time-slice topology of MM 

 

We trained MMs on our corpus of dialogue acts 
and task events using ten-fold cross-validation to 
produce a model that could be queried for the next 
predicted tutorial dialogue act given the history.  

4.2 Hidden Markov Model 
A hidden Markov model (HMM) augments the 
MM framework, resulting in a doubly stochastic 
structure (Rabiner, 1989). For a first-order HMM, 
the observation symbol alphabet is defined as 
above, along with a set of hidden states 
S={s1,s2,…,sN}. The transition and initial 
probability distributions are defined analogously to 
MMs, except that they operate on hidden states 

rather than on observation symbols (Figure 3). 
That is, Π=[πi] where πi is the probability of a 
sequence beginning in hidden state si. The 
transition matrix is A=[aij], where aij is the 
probability of the model transitioning from hidden 
state i to hidden state j. This framework constitutes 
the first stochastic layer of the model, which can be 
thought of as modeling hidden, or unobservable, 
structure. The second stochastic layer of the model 
governs the production of observation symbols: the 
emission probability distribution is B=[bik] where 
bik is the probability of state i emitting observation 
symbol k. 

 
Figure 3. Time-slice topology of HMM 

 

The notion that dialogue has an overarching 
unobservable structure that influences the 
observations is widely accepted. In tutoring, this 
overarching structure may correspond to tutorial 
strategies. We have explored HMMs’ descriptive 
power for extracting these strategies (Boyer et al., 
2009), and this paper explores the hypothesis that 
HMMs provide better predictive power than MMs 
on our dialogue sequences. We trained HMMs on 
the corpus using the standard Baum-Welch 
expectation maximization algorithm and applied 
state labels that reflect post-hoc interpretation 
(Figure 4). 
 

 
Figure 4. Portion of learned HMM 



4.3 Hierarchical Hidden Markov Model 
Hierarchical hidden Markov models (HHMMs) 
allow for explicit representation of multilevel 
stochastic structure. A complete formal definition 
of HHMMs can be found in (Fine, Singer, & 
Tishby, 1998), but here we present an informal 
description.  HHMMs include two types of hidden 
states: internal nodes, which do not produce 
observation symbols, and production nodes, which 
do produce observations. An internal node includes 
a set of substates that correspond to its potential 
children, S={s1, s2, …, sN}, each of which is itself 
the root of an HHMM. The initial probability 
distribution Π=[πi] for each internal node governs 
the probability that the model will make a vertical 
transition to substate si from this internal node; that 
is, that this internal node will produce substate si as 
its leftmost child. Horizontal transitions are 
governed by a transition probability distribution 
similar to that described above for flat HMMs. 
Production nodes are defined by their observation 
symbol alphabet and an emission probability 
distribution over the symbols; HHMMs do not 
require a global observation symbol alphabet. The 
generative topology of our HHMMs is illustrated 
in Figure 5. 

 
Figure 5. Generative topology of HHMM 

 
HHMMs of arbitrary topology can be trained using 
a generalized version of the Baum-Welch 
algorithm (Fine et al., 1998). Our HHMMs 
featured a pre-specified model topology based on 
known task/subtask structure. A Bayesian view of 
a portion of the best-fit HHMM is depicted in 
Figure 6.  This model was trained using five-fold 
cross-validation to address the absence of symbols 
from the training set that were present in the 
testing set, a sparsity problem that arose from 
splitting the data hierarchically. 

Figure 6. Portion of learned HHMM 



5 Results 

We trained and tested MMs, HMMs, and HHMMs 
on the corpus and compared prediction accuracy 
for tutorial dialogue acts by providing the model 
with partial sequences from the test set and 
querying for the next tutorial move. The baseline 
prediction accuracy for this task is 41.1%, 
corresponding to the most frequent tutorial 
dialogue act (STATEMENT). As depicted in 
Figure 7, a first-order MM performed worse than 
baseline (p<0.001)1 at 27% average prediction 
accuracy (

€ 

ˆ σ MM=6%). HMMs performed better 
than baseline (p<0.0001), with an average accuracy 
of 48% (

€ 

ˆ σ HMM=3%). HHMMs averaged 57% 
accuracy, significantly higher than baseline 
(p=0.002) but weakly significantly higher than 
HMMs (p=0.04), and with high variation 
(

€ 

ˆ σ HHMM=23%). 

 
Figure 7. Average prediction accuracies of three 

model types on tutor dialogue acts 
 

To further explore the performance of the 
HHMMs, Figure 8 displays their prediction 
accuracy on each of six labeled subtasks. These 
subtasks correspond to the top level of the 
hierarchical task/subtask annotation scheme. The 
UNDERSTAND THE PROBLEM subtask corresponds 
to the initial phase of most tutoring sessions, in 
which the student and tutor agree to some extent 
on a problem-solving plan. Subtasks 1, 2, and 3 
account for the implementation and debugging of 
three distinct modules within the learning task, and 
Subtask 4 involves testing and assessing the 
student’s finalized program. The EXTRA-DOMAIN 
subtask involves side conversations whose topics 
are outside of the domain.  

The HHMM performed as well as or better 
(p<0.01) than baseline on the first three in-domain 
subtasks. The performance on SUBTASK 4 was not 
distinguishable from baseline (p=0.06); relatively 
few students reached this subtask. The model did 

                                                
1 All p-values in this section were produced by two-sample 
one-tailed t-tests with unequal sample variances. 

not outperform baseline (p=0.40) for the 
UNDERSTAND THE PROBLEM subtask, and 
qualitative inspection of the corpus reveals that the 
dialogue during this phase of tutoring exhibits 
limited regularities between students.  

 
Figure 8. Average prediction accuracies of 

HHMMs by subtask 

6 Discussion 

The results support our hypothesis that HMMs, 
because of their capacity for explicitly representing 
dialogue structure at an abstract level, perform 
better than MMs for predicting tutor moves. The 
results also suggest that explicitly modeling 
hierarchical task structure can further improve 
prediction accuracy of the model. The below-
baseline performance of the bigram model 
illustrates that in our complex task-oriented 
domain, an immediately preceding event is not 
highly predictive of the next move. While this 
finding may not hold for conversational dialogue 
or some task-oriented dialogue with a more 
balanced distribution of utterances between 
speakers, the unbalanced nature of our tutoring 
sessions may not be as easily captured.  

In our corpus, tutor utterances outnumber 
student utterances by more than two to one. This 
large difference is due to the fact that tutors 
frequently guided students and provided multi-turn 
explanations, the impetus for which are not 
captured in the corpus, but rather, involve external 
pedagogical goals. The MM, or bigram model, has 
no mechanism for capturing this layer of stochastic 
behavior. On the other hand, the HMM can 
account for unobserved influential variables, and 
the HHMM can do so to an even greater extent by 
explicitly modeling task/subtask structure. 

Considering the performance of the HHMM on 
individual subtasks reveals interesting properties of 
our dialogues. First, the HHMM is unable to 
outperform baseline on the UNDERSTAND THE 
PROBLEM subtask. To address this issue, our 
ongoing work investigates taking into account 



student characteristics such as incoming 
knowledge level and self-confidence. On all four 
in-domain subtasks, the HHMM achieved a 30% to 
50% increase over baseline. For extra-domain 
dialogues, which involve side conversations that 
are not task-related, the HHMM achieved 86% 
prediction accuracy on tutor moves, which 
constitutes a 115% improvement over baseline. 
This high accuracy may be due in part to the fact 
that out-of-domain asides were almost exclusively 
initiated by the student, and tutors rarely engaged 
in such exchanges beyond providing a single 
response. This regularity likely facilitated 
prediction of the tutor’s dialogue moves during 
out-of-domain talk. 

We are aware of only one recent project that 
reports extensively on predicting system actions 
from a corpus of human-human dialogue. 
Bangalore et al.’s (2008) flat task/dialogue model 
in a catalogue-ordering domain achieved a 
prediction accuracy of 55% for system dialogue 
acts, a 175% improvement over baseline. When 
explicitly modeling the hierarchical task/subtask 
dialogue structure, they report a prediction 
accuracy of 35.6% for system moves, 
approximately 75% above baseline (Bangalore & 
Stent, 2009). These findings were obtained by 
utilizing a variety of lexical and syntactic features 
along with manually annotated dialogue acts and 
task/subtask labels. In comparison, our HHMM 
achieved an average 42% improvement over 
baseline using only annotated dialogue acts and 
task/subtask labels. In ongoing work we are 
exploring the utility of additional features for this 
prediction task. 

Our best model performed better than baseline 
by a significant margin. The absolute prediction 
accuracy achieved by the HHMM was 57% across 
the corpus, which at first blush may appear too low 
to be of practical use. However, the choice of 
tutorial move involves some measure of 
subjectivity, and in many contexts there may be no 
uniquely appropriate dialogue act. Work in other 
domains has dealt with this uncertainty by 
maintaining multiple hypotheses (Wright Hastie, 
Poesio, & Isard, 2002) and by mapping to clustered 
sets of moves rather than maintaining policies for 
each possible system selection (Young et al., 
2009). Such approaches may prove useful in our 
domain as well, and may help to more fully realize 

the potential of a learned dialogue management 
model.  

7 Conclusion and Future Work 

Learning models that predict system moves within 
a corpus is a first step toward building fully data-
driven dialogue management models. We have 
presented Markov models, hidden Markov models, 
and hierarchical hidden Markov models trained on 
sequences of manually annotated dialogue acts and 
task events. Of the three models, the hierarchical 
models appear to perform best in our domain, 
which involves an intrinsically hierarchical 
task/subtask structure.  

The models’ performance points to promising 
future work that includes utilizing additional 
lexical and syntactic features along with fixed user 
(student) characteristics within a hierarchical 
hidden Markov modeling framework. More 
broadly, the results point to the importance of 
considering task structure when modeling a 
complex domain such as those that often 
accompany task-oriented tutoring. Finally, a key 
direction for data-driven dialogue management 
models involves learning unsupervised dialogue 
act and task classification models.  
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