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Dear Sir or Madam, May I introduce the GYAFC Dataset:
Corpus, Benchmarks and Metrics for Formality Style Transfer

(Supplementary Material)

Anonymous ACL submission

1 Introduction

In this supplementary material, we add additional
details supporting the dataset §2, models §3 and
results §4 we introduce in the main paper. In §4,
we also discuss results of our models on the formal
to informal task.

2 Dataset

In Section 3.2 of the main paper, we perform a
qualitative analysis to understand the types of ed-
its people made for making a sentence more for-
mal. Table 1 shows the frequency of each types of
edits and example sentence pairs for the same. In
addition, for a subset of the categories for which
we can count the edits automatically, we show the
frequency of edits on the entire train split of our
GYAFC dataset where we observe a higher per-
centage of capitalization and punctuation edits as
compared to manual counting and a much higher
percentage of normalizations.

3 Models

3.1 Rule-based Model
We use the analysis described in Section 3.2 of the
main paper to construct the following set of rules
to automatically make an informal sentence more
formal:
Capitalization: We capitalize the first letter of
a sentence, we capitalize the pronoun ‘I’ and we
capitalize proper nouns by identifying words with
parts of speech NNP or NNPS.
Lowercase words with all upper cases: In sev-
eral informal sentences, words are often capital-
ized for emphasis, e.g. “ARE YOU KIDDING
ME????” We lowercase such sentences or words.
Expand contractions: Informal sentences con-
tain contractions like ‘wasn’t’, ‘haven’t’, etc. We
handcraft a list of expansions for all such contrac-
tions.

Replace slang words: Informal sentences con-
tain slang word usage like ‘juz’, ‘wanna’, etc. We
handcraft a list of slang replacements.
Replace swear words: Informal sentences fre-
quently contain swear words. We handcraft a list
of swear words and replace all but their first char-
acter with asterisks. Example, ‘suck’ is replaced
with ‘s***’.
Remove character repetition: Informal sen-
tences contain several instances of repeated char-
acters for emphasis. For example, ‘nooooo’,
‘yayyyyy’, ‘!!!!’, ‘???’. We use regular expres-
sions to replace such repeated occurrences with a
single occurrence.

The rule-based model for the second direction
of style transfer i.e. from formal to informal con-
sists of the same rules as above but in the reverse
direction. The rules of capitalization, contractions
and slang usage are applied always whereas the
rules of uppercasing and character repetition are
applied proportionally to their occurrences in the
GYAFC train split.

3.2 PBMT Model

The different ideas combined together to obtain
the PBMT model in Section 4.2 of the main paper
are described in detail below:

PBMT on rule-based: When we use the
50K sentence pairs in our GYAFC train set to
train a baseline PBMT model, we observe that
the model mainly learns to replicate the rules we
crafted in our rule-based approach. Hence, in
order to force the PBMT model to learn gener-
alizations beyond the rules, we train the PBMT
model on the output of our rule-based approach
such that the source side of the parallel data is
now the output of the rule-based approach. For all
of our subsequent models we use this parallel data.
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Category Manual Auto Original Informal Formal Rewrite
Paraphrase 47% – he iss wayyyy hottt He is very attractive.
Capitalization 46% 51% yes, exept for episode iv. Yes, but not for episode IV.
Punctuation 40% 69% I’ve watched it and it is AWESOME!!!! I viewed it and I believe it is a quality

program.
Delete fillers 26% – Well... Do you talk to that someone much? do you talk to that person often?
Completion 15% – Haven’t seen the tv series, but R.O.D. I have not seen the television series,

however I have seen the R.O.D
Spelling 14% – that page did not give me viroses (i think) I don’t think that page gave me viruses.
Contractions 12% 8% I didn’t know they had an HBO in the 80’s I did not know HBO existed in the 1980s.
Normalization 10% 61% my exams r not over yet My exams are not over yet.
Lowercase 7% 8% But you will DEFINALTELY know You will definitely know

when you are in love! when you are in love.
Split Sentences 4% – it wouldnt be a word, It would not be a word.

it would be me singing operah. It would be a singing opera.
Repetitions 2% 5% i’d find out what realllllllllllllly I would determine what really

happened to marilyn monroe happened to Marilyn Monroe.

Table 1: Categories of frequent edits calculated using manual and automatic counting and examples of each. Note
that the categories are not mutually exclusive.

Train Test Spearman(ρ)
PT16 PT16 0.68
PT16 E&M 0.39
PT16 F&R 0.38
E&M E&M 0.56
F&R F&R 0.51

Table 2: Spearman rank correlation between formality
classifier predictions and human judgments on 10-fold
cross validation on 5000 sentences.

Self-training: The amount of parallel data
in our formality dataset is orders of magnitude
smaller than the amount typically used for training
translation models. We therefore increase the size
of our train set by way of self-training where we
use the PBMT model to translate the large number
of in-domain sentences from GYAFC belonging
to the the source style and use the resultant output
to retrain the PBMT model.

Sub-selection using Edit Distance: A large
portion of the training data obtained via self-
training consists of parallel sentences where the
two sides are almost identical. In order to push
the PBMT model towards translations that involve
higher number of edits, we sub-select the addi-
tional training data generated using self-training
to include only those where the edit distance
between the two sides is more than 10. Further, to
ensure the equal proportion of the original parallel
data and the additional data, we up-weight the
original parallel data via duplication.

Larger Language Model with Data Selec-
tion: The Yahoo Answers corpus contains a
large number of target style sentences spanning
across different domains that we could potentially

Model Training data
E&M

PBMT Baseline 50K
PBMT Combined 50K*6+0.3M
NMT Combined 50K*6+0.3M+0.7M

F&R
PBMT Baseline 50K
PBMT Combined 50K*10+0.3M
NMT Combined 50K*10+0.6M+1.8M

Table 3: Sizes of the training data used in the different
models for the two domains

use to train a larger language model, but at the
cost of domain mismatch. To sub sample from
large out-of-domain data, we use intelligent data
selection method and train a language model
on sentences that are closer to the target style
in-domain data.

Table 3 contains the sizes of the training data
used in the main models across the two domains.

3.3 Details of NMT model

We use the OpenNMT-py (Klein et al., 2017)
toolkit with default parameters with a vocabulary
size of 50K and embeddings of size 300. At test
time, we replace unknown tokens with the source
token that has the highest attention weight. The
input word embeddings are pretrained on Yahoo
Answers using GloVE (Pennington et al., 2014).

4 Results

4.1 Results on F&R domain

In the main paper, we include results for only the
E&M domain. Here we discuss the results on
the F&R domain. Table 6, similar to Table 4 in
the main paper, shows the results of the models
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E&M F&R
(2.33) PBMT Combined (2.24) Rule-based
(2.40) NMT Combined (2.28) PBMT Combined
(2.44) Rule-based (2.36) NMT Combined
(2.52) Reference (2.44) Reference
(2.69*) NMT Copy (2.50*) NMT Baseline
(2.72*) NMT Baseline (2.53*) NMT Copy

Table 4: Ranking of different models on formal to in-
formal task. Rankings marked with * are significantly
different from the rule-based ranking with p < 0.001.

Automatic Human E&M F&R
BLEU Overall -0.10* -0.01
TERp Overall 0.06 0.02
PINC Overall 0.17* 0.15*
Formality Formality 0.55* 0.57*
Fluency Fluency 0.46* 0.43*
Meaning Meaning 0.28* 0.28*
Combined Combined 0.38* 0.38*

Table 5: Spearman rank correlation between automatic
metrics and human judgments. The first three metrics
are correlated with the overall ranking human judg-
ments and the last four are correlated with the hu-
man judgments on the respective three axes. Corre-
lations marked with * are statistically significant with
p < 0.001

on 500 test sentences evaluated using both human
judgments and automatic metrics. The main ob-
servations regarding model performances across
all metrics are similar to the E&M domain. One
difference is that the formality score of the origi-
nal informal sentences in F&R are higher than in
E&M and consequently the formality scores of the
formal rewrites from both human references and
model outputs are higher than in E&M.

4.2 Results on Formal to Informal task

In the main paper, we focus on the informal to for-
mal direction of style transfer. In this section we
discuss the results of our models on the other di-
rection. It should be noted that this experimenta-
tion is fundamentally different from the first di-
rection in a way that instead of identifying for-
mal sentences from Yahoo Answers and collecting
their informal rewrites, we reuse the data created
for the first direction.

In Table 7, we show the results of the five main
models on the formal to informal task. The main
observation is that, in contrast to the first direc-
tion, the rule-based model beats all other models
across all three criteria of formality, fluency and
meaning as per human judgments and automatic
metrics (with the exception of meaning automatic
metric where PBMT Combined beats rule-based).

NMT Combined and PBMT Combined win as per
BLEU and TERp and NMT Baseline wins as per
PINC. As in Section 6.3 of the main paper, in Ta-
ble 5, we report the correlation of these metrics
with human judgments. In contrast to the first di-
rection, the formality classifier obtains a higher
correlation which might be because the classifier
is trained on informal data and so it is better at as-
sessing informal model outputs than formal model
outputs. The fluency and meaning correlation are
about the same. In contrast, BLEU, TERp and
PINC all three correlate very poorly with the over-
all ranking. This difference might be explained
by the fact that informal reference rewrites vary
highly in that there are much higher number of
ways of making a sentence more informal as com-
pared to making it more formal. Therefore, met-
rics that make use of references might be ill-suited
for this style transfer task.

In Table 8, we show some sample model out-
puts for the E&M and F&M domain sentences.
We can see that rule-based method uses simple
lexical transformations like ‘just’ to ‘juz’, ‘you’
to ‘u’, ‘because’ to ‘cuz’, ‘love’ to ‘luv’, etc and
wins over other models. The intent of evaluating
our models on this direction of task was to under-
stand how well the same model would do the re-
verse task. We find that the second direction has
different set of challenges and requires models that
cater to those specifically if we wish to beat simple
rule-based methods.
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Formality Fluency Meaning Combined Overall
Model Human PT16 Human H14 Human HE15 Human Auto BLEU TERp PINC
Original Informal -0.90 -0.80 3.92 3.09 – – – – 52.61 0.34 0.00
Formal Reference 0.41 0.22 4.43 3.74 4.56 3.54 5.68 4.76 100.0 0.37 67.83
Rule-based -0.18 -0.15 4.08 3.26 4.82 4.29 5.41 4.78 68.17 0.27 26.89
PBMT Combined 0.05* 0.11* 4.15 3.48* 4.65* 4.02* 5.45 4.88* 74.32* 0.25* 44.77*
NMT Baseline 0.19* 0.13* 4.18 3.56* 3.88* 3.91* 5.20* 4.89* 69.09* 0.31* 51.00*
NMT Copy 0.33* 0.15* 4.21* 3.55* 3.97* 3.88* 5.30 4.88* 69.41 0.30 50.93
NMT Combined 0.20* 0.10* 4.27* 3.45* 4.69* 4.06* 5.57* 4.88* 74.60* 0.24* 41.52*

Table 6: Results of models on 500 test sentences for informal to formal task evaluated using human judgments
and automatic metrics for three criteria of evaluation: formality, fluency and meaning preservation on the F&R
domain. Scores marked with * are significantly different from the rule-based scores with p < 0.001.

System Formality Fluency Meaning Combined Overall
Human PT16 Human H14 Human HE15 Human Auto BLEU TERp PINC

Entertainment & Music
Original Formal 0.73 0.26 4.50 3.39 – – – – 29.54 0.83 0.00
Informal Ref -0.88 -0.89 4.00 3.00 3.92 3.09 0.97 0.80 100.0 0.64 81.14
Rule-based -0.96 -0.88 3.92 2.99 4.80 3.95 0.55 0.46 22.41 0.85 47.00
PBMT Combined -0.16* -0.15* 4.15* 3.32* 4.56* 4.28* 1.03* 0.73* 32.66* 0.80* 37.38*
NMT Baseline -0.59* -0.61* 3.94 3.32* 3.55* 3.90 1.19* 0.73* 29.87* 0.83* 58.38*
NMT Copy -0.53* -0.53* 3.98 3.30* 3.53* 3.96 1.24* 0.72* 31.29* 0.80* 55.42*
NMT Combined -0.34* -0.39* 4.08* 3.27* 4.32* 4.12* 1.03* 0.69* 34.07* 0.78* 42.31

Family & Relationships
Original Formal 0.73 0.36 4.47 3.49 – – – – 28.64 0.84 0.00
Informal Ref -0.60 -0.87 4.09 3.21 3.82 3.25 1.15 0.85 100.0 0.65 80.69
Rule-based -1.05 -0.94 3.89 2.93 4.46 3.98 0.65 0.40 19.56 0.87 45.95
PBMT Combined -0.17* -0.19* 4.18* 3.36* 4.45 4.43* 1.09* 0.68* 31.20* 0.82* 26.74*
NMT Baseline -0.16* -0.46* 4.08* 3.34* 3.80* 4.11 1.30* 0.71* 34.69* 0.78* 48.68
NMT Copy -0.19* -0.36* 4.08* 3.34* 3.74* 4.14 1.32* 0.73* 33.76* 0.78* 47.52
NMT Combined -0.12* -0.34* 4.17* 3.33* 4.22* 4.26* 1.19* 0.69* 33.57* 0.79* 36.76

Table 7: Results of models on 500 test sentences for formal to informal task evaluated using human judgments and
automatic metrics for three criteria of evaluation: formality, fluency and meaning preservation on E&M and F&R
domains. Scores marked with * are significantly different from the rule-based scores with p < 0.001.

Entertainment & Music
Original Formal I am just glad they didn ’t show us the toilets .
Reference Informal IM GLAD THEY PASSED THE TOILETS
Rule-based i am juz glad they didn ’t show us the toilets .....
PBMT Combined I am just glad they didnt show us the toilets .
NMT Baseline I ’m just glad they didn ’t show us the restroom .
NMT Copy I ’m just glad they didn ’t show us the brids .
NMT Combined I ’m just glad they didn ’t show us the toilets .
Family & Relationship
Original Formal Hopefully , you married your husband because you love him .
Reference Informal you married your hubby hopefully because you love him .
Rule-based hopefully , u MARRIED ur husband coz u luv him .....
PBMT Combined hopefully , you married your husband because you love him .
NMT Baseline you married your husband because you love him .
NMT Copy Hopefully you married your husband because you love him .
NMT Combined Hopefully you married your husband because you love him .

Table 8: Sample model outputs with references from both E&M and F&R domains on the formal to informal task


