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Abstract

In this paper we discuss the relationship between
TimeML, a rich specification language for event and
temporal expressions in text, and the interpretation of
these expressions in a temporal semantics. Specifically,
we propose to demonstrate how a TimeML markup of
text is interpreted within the DAML-Time Ontology
and time framework of Hobbs (2002). We demonstrate
the expressiveness of TimeML in English text, and dis-
cuss the relevance to content specification in the se-
mantic web.

Introduction
The Semantic Web will necessarily require specifica-
tion of temporal information. For example, someone
who does a Web search trying to find a place to buy a
book needed before next Tuesday may or may not be
able to use an online bookstore that promises delivery
within five business days. Someone doing a genealogi-
cal search may want to specify that the birthdate of a
person is between 15 and 45 years before a known mar-
riage date. In response to this need, in connection with
the DARPA-spoonsored DAML program, we have been
developing an ontology of temporal concepts, DAML-
Time, that covers the basic topological temporal rela-
tions on instants and intervals, measures of duration,
and the clock and calendar (Hobbs, 2002). This will
enable the statement of and reasoning about the tem-
poral aspects of the contents and capabilities of web
resources and of the needs of users.

But most of the information on the Web is in natural
language, and there is no chance that it will ever be
marked up for semantic retrieval if that has to be done
by hand. Natural language programs will have to pro-
cess the contents of web pages to produce annotations.
Remarkable progress has been made in the last decade
in the use of statistical techniques for analyzing text.
However, these techniques for the most part depend on
having large amounts of annotated data, and annota-
tions require an annotation scheme. It is for this reason
that the ARDA-funded AQUAINT program has spon-

Copyright c© 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

sored the development of an mark-up language TimeML
for temporal information in texts.

These annotations are most relevant to the Semantic
Web enterprise if the annotation scheme meshes well
with temporal ontologies used in the Semantic Web.
The aim of this paper is to define just such a mapping.
In Section 2 of this paper we present TimeML. In Sec-
tion 3 we present the relevant parts of DAML-Time. In
Section 4 we discuss how TimeML is interpreted within
DAML-Time in order to provide a temporal grounding
for texts that will facilitate reasoning over events, their
orderings, and their relative granularity.

TimeML

The Need for Temporal Annotation
The AQUAINT program is a multi-project effort to im-
prove the performance of question answering systems
over free text, such as that encountered on the Web.
An important component to this effort is the access of
information from text through content rather than key-
words. Named entity recognition [refs] has moved the
fields of information retrieval and information exploita-
tion closer to access by content, by allowing some iden-
tification of names, locations, and products in texts.
Beyond these metadata tags (ontological types), how-
ever, there is only a limited ability at marking up text
for real content. One of the major problems that has
not been solved is the recognition of events and their
temporal anchorings. In this paper, we report on an
AQUAINT project to create a specification language
for event and temporal expressions in text.

Events in articles are naturally anchored in time
within the narrative of a text. For this reason, tem-
porally grounded events are the very foundation from
which we reason about how the world changes. Without
a robust ability to identify and extract events and their
temporal anchoring from a text, the real “aboutness” of
the article can be missed. Moreover, since entities and
their properties change over time, a database of asser-
tions about entities will be incomplete or incorrect if it
does not capture how these properties are temporally
updated. To this end, event recognition drives basic
inferences from text.



For example, currently questions such as those shown
below are not supported by question answering systems.

1. a. Is Gates currently CEO of Microsoft?
b. When did Iraq finally pull out of Kuwait during
the war in the 1990s?
c. Did the Enron merger with Dynegy take place?

What characterizes these questions as beyond the scope
of current systems is the following: they refer, respec-
tively, to the temporal aspects of the properties of the
entities being questioned, the relative ordering of events
in the world, and events that are mentioned in news ar-
ticles, but which have never occurred.

There has recently been a renewed interest in tem-
poral and event-based reasoning in language and text,
particularly as applied to information extraction and
reasoning tasks (cf. Mani and Wilson, 2000, ACL
Workshop on Spatial and Temporal Reasoning, 2001,
Gaizauskas and Setzer, 2002). Several papers from the
workshop point to promising directions for time rep-
resentation and identification (cf. Filatova and Hovy,
2001, Schilder and Habel, 2001, Setzer, 2001). Many
issues relating to temporal and event identification re-
main unresolved, however, and it these issues that
TimeML was designed to address. Specifically, four
basic problems in event-temporal identification are ad-
dressed:

(a) Time stamping of events (identifying an event and
anchoring it in time);

(b) Ordering events with respect to one another (lexical
versus discourse properties of ordering);

(c) Reasoning with contextually underspecified temporal
expressions (temporal functions such as last week and
two weeks before);

(d) Reasoning about the persistence of events (how long
does an event or the outcome of an event last).

The specification language, TimeML, is designed to ad-
dress these issues, in addition to handling basic tense
and aspect features.

The Basics of TimeML
Unlike most previous attempts at event and temporal
specification, TimeML separates the representation of
event and temporal expressions from the anchoring or
ordering dependencies that may exist in a given text.
There are four major data structures that are specified
in TimeML (Ingria and Pustejovsky, 2002, Pustejovsky
et al., 2002): EVENT, TIMEX3, SIGNAL, and LINK. These
are described in some detail below. The features dis-
tinguishing TimeML from most previous attempts at
event and time annotation are summarized below:

1. Extends the TIMEX2 annotation attributes;
2. Introduces Temporal Functions to allow intension-

ally specified expressions: three years ago, last month
3. Identifies signals determining interpretation of tem-

poral expressions;

(a) Temporal Prepositions: for, during, on, at;
(b) Temporal Connectives: before, after, while.

4. Identifies all classes of event expressions;
(a) Tensed verbs: has left, was captured, will resign;
(b) Stative adjectives: sunken, stalled, on board;
(c) Event nominals: merger, Military Operation, Gulf

War;
5. Creates dependencies between events and times:
(a) Anchoring: John left on Monday.
(b) Orderings: The party happened after midnight.
(c) Embedding: John said Mary left.

TimeML considers “events” (and the corresponding tag
<EVENT>) a cover term for situations that happen or oc-
cur. Events can be punctual or last for a period of time.
We also consider as events those predicates describing
states or circumstances in which something obtains or
holds true. Not all stative predicates are marked up,
however, as only those states which participate in an op-
position structure in a given text are marked up. Events
are generally expressed by means of tensed or untensed
verbs, nominalizations, adjectives, predicative clauses,
or prepositional phrases. The specification of EVENT
is shown below:
attributes ::= eid class tense aspect
eid ::= ID
{eid ::= EventID
EventID ::= e<integer>}
class ::= ’OCCURRENCE’ | ’PERCEPTION’ | ’REPORTING’

| ’ASPECTUAL’ | ’STATE’ | ’I_STATE’ |
’I_ACTION’ | ’MODAL’

tense ::= ’PAST’ | ’PRESENT’ | ’FUTURE’ | ’NONE’
aspect ::= ’PROGRESSIVE’ | ’PERFECTIVE’ |

’PERFECTIVE_PROGRESSIVE’ | ’NONE’

Examples of each of these event types are given below:

1. Occurrence: die, crash, build, merge, sell
2. State: on board, kidnapped, love, ..
3. Reporting: say, report, announce,
4. I-Action: attempt, try, promise, offer
5. I-State: believe, intend, want
6. Aspectual: begin, finish, stop, continue.
7. Perception: See, hear, watch, feel.

The TIMEX3 tag is used to mark up explicit tem-
poral expressions, such as times, dates, durations, etc.
It is modelled on both Setzer’s (2001) TIMEX tag, as
well as the TIDES (Ferro, et al. (2002)) TIMEX2 tag.
There are types of TIMEX3 expressions:

(a) Fully Specified Temporal Expressions, June 11,
1989, Summer, 2002; (b) Underspecified Temporal Ex-
pressions, Monday, Next month, Last year, Two days
ago; (c) Durations, Three months, Two years.
attributes ::= tid type [functionInDocument]

[temporalFunction]
(value | valueFromFunction) [mod]
[anchorTimeID | anchorEventID]



tid ::= ID
{tid ::= TimeID
TimeID ::= t<integer>}
type ::= ’DATE’ | ’TIME’ | ’DURATION’
functionInDocument ::=’CREATION_TIME’|’EXPIRATION_TIME’

|’MODIFICATION_TIME’ | ’PUBLICATION_TIME’ |
’RELEASE_TIME’| ’RECEPTION_TIME’ | ’NONE’
temporalFunction ::= ’true’ | ’false’

{temporalFunction ::= boolean}
value ::= CDATA
{value ::= duration | dateTime | time | date |

gYearMonth | gYear | gMonthDay |
gDay | gMonth}

valueFromFunction ::= IDREF
{valueFromFunction ::= TemporalFunctionID
TemporalFunctionID ::= tf<integer>}
anchorTimeID ::= IDREF
{anchorTimeID ::= TimeID}
anchorEventID ::= IDREF
{anchorEventID ::= EventID}

The optional attribute, functionInDocument, indicates
the function of the TIMEX3 in providing a temporal
anchor for other temporal expressions in the document.
If this attribute is not explicitly supplied, the default
value is ”NONE”. The non-empty values take their
names from the temporal metadata tags in the Prism
draft standard (available at www.prismstandard.org/).

The treatment of temporal functions in TimeML al-
lows any time-value dependent algorithms to delay the
computation of the actual (ISO) value of the expres-
sion. The following informal paraphrase of some exam-
ples illustrates this point, where DCT is the Document
Creation Time of the article.

1. last week = (predecessor (week DCT)): That is, we start
with a temporal anchor, in this case, the DCT, coerce it
to a week, than find the week preceding it.

2. last Thursday = (thursday (predecessor (week DCT)):
Similar to the preceding expression, except that we pick
out the day named ’thursday’ in the predecessor week.

3. the week before last = (predecessor (predecessor
(week DCT))): Also similar to the first expression, except
that we go back two weeks.

4. next week = (successor (week DCT)): The dual of the
first expression: we start with the same coercion, but go
forward instead of back.

SIGNAL is used to annotate sections of text, typi-
cally function words, that indicate how temporal ob-
jects are to be related to each other. The material
marked by SIGNAL constitutes several types of linguis-
tic elements: indicators of temporal relations such as
temporal prepositions (e.g on, during) and other tempo-
ral connectives (e.g. when) and subordinators (e.g. if).
The functionality of the SIGNAL tag was introduced
by Setzer (2001). In TimeML it also marks polarity
indicators such as not, no, none, etc., as well as indi-
cators of temporal quantification such as twice, three
times, and so forth. The specification for SIGNAL is
given below:

attributes ::= sid
sid ::= ID
{sid ::= SignalID
SignalID ::= s<integer>

To illustrate the application of these three tags, con-
sider the example annotation shown below.

John left 2 days before the attack.
John
<EVENT eid="e1" class="OCCURRENCE" tense="PAST"
aspect="PERFECTIVE">
left
</EVENT>
<MAKEINSTANCE eiid="ei1" eventID="e1"/>
<TIMEX3 tid="t1" type="DURATION" value="P2D"
temporalFunction="false">
2 days
</TIMEX3>
<SIGNAL sid="s1">
before
</SIGNAL>
the
<EVENT eid="e2" class="OCCURRENCE" tense="NONE"
aspect="NONE">
attack
</EVENT>
<MAKEINSTANCE eiid="ei2" eventID="e2"/>

LINKS
The set of LINK tags encode the various relations that
exist between the temporal elements of a document.
There are three types of link tags.
• TLINK:

A TLINK or Temporal Link represents the tempo-
ral relationship holding between events or between
an event and a time, and establishes a link be-
tween the involved entities making explicit if they
are: simultaneous, before, after, immediately
before, immediately after, including , holds,
beginning, and ending.

• SLINK:
An SLINK or Subordination Link is used for con-
texts introducing relations between two events, or
an event and a signal. SLINKs are of one of the
following sorts: Modal, Factive, Counter-factive,
Evidential, Negative evidential, and Negative.

• ALINK:
An ALINK or Aspectual Link represents the relation-
ship between an aspectual event and its argument
event. Examples of the aspectual relations to be en-
coded are: initiation, culmination, termination,
continuation.

Below, we present the specification for each link rela-
tion.
TLINK:

attributes ::= (eventInstanceID | timeID)
[signalID] (relatedtoEvent
| relatedtoTime) relType [magnitude]

eventInstanceID ::= ei<integer>



timeID ::= t<integer>
signalID ::= s<integer>
relatedToEvent ::= ei<integer>
relatedToTime ::= t<integer>
relType ::= ’BEFORE’ | ’AFTER’ | ’INCLUDES’ |

’IS_INCLUDED’ | ’HOLDS’ ’SIMULTANEOUS’ |
’IAFTER’ | ’IBEFORE’ | ’IDENTITY’ | ’BEGINS’
| ’ENDS’ | ’BEGUN_BY’ | ’ENDED_BY’

magnitude ::= t<integer>

To illustrate the function of this link, let us return to
the sentence above,

John left 2 days before the attack.

now adding the annotation of the TLINK, which or-
ders the two events mentioned in the sentence, with a
magnitude denoted by the temporal expression.
<TLINK eventInstanceID="ei1" signalID="s1"
relatedToEvent="ei2"
relType="BEFORE" magnitude="t1"/>

SLINK:

attributes ::= [eventInstanceID]
(subordinatedEvent |
subordinatedEventInstance)
[signalID] relType [polarity]

eventInstanceID ::= ei<integer>
subordinatedEvent ::= e<integer>
subordinatedEventInstance ::= ei<integer>
signalID ::= s<integer>
relType ::= ’MODAL’ | ’NEGATIVE’ | ’EVIDENTIAL’

| ’NEG_EVIDENTIAL’ | ’FACTIVE’ |
’COUNTER_FACTIVE’

A modally subordinating predicate such as want is
typed as introducing a SLINK, as shown below.

Bill wants to teach on Monday.
Bill
<EVENT eid="e1" class="I_STATE" tense="PRESENT"
aspect="NONE">
wants
</EVENT>
<MAKEINSTANCE eiid="ei1" eventID="e1"/>
<SLINK eventInstanceID="ei1" signalID="s1"
subordinatedEvent="e2" relType="MODAL"/>
<SIGNAL sid="s1">
to
</SIGNAL>
<EVENT eid="e2" class="OCCURRENCE" tense="NONE"
aspect="NONE">
teach
</EVENT>
<MAKEINSTANCE eiid="ei2" eventID="e2"/>
<SIGNAL sid="s2">
on
</SIGNAL>
<TIMEX3 tid="t1" type="DATE" temporalFunction="true"
value="XXXX-WXX-1">
Monday
</TIMEX3>
<TLINK eventInstanceID="ei2" relatedToTime="t1"
relType="IS_INCLUDED"/>

ALINK:

attributes ::= eventInstanceID [signalID]
relatedToEvent relType

eventInstanceID ::= ei<integer>
signalID ::= s<integer>
eventID ::= e<integer>
relType ::= ’INITIATES’ | ’CULMINATES’ |

’TERMINATES’ | ’CONTINUES’

To illustrate the behavior of ALINKs, notice how the as-
pectual predicate begin is a separate event, independent
of the modified event, where the “phase” is introduced
in the relation within the ALINK.

The boat began to sink.

The boat
<EVENT eid="e1" class="ASPECTUAL" tense="PAST"
aspect="NONE">
began
</EVENT>
<MAKEINSTANCE eiid="ei1" eventID="e1"/>
<SIGNAL sid="s1">
to
</SIGNAL>
<EVENT eid="e2" class="OCCURRENCE" tense="NONE"
aspect= "NONE">
sink
</EVENT>
<ALINK eventInstanceID="ei1" signalID="s1"
relatedToEvent="e2" relType="INITIATES"/>

We should point out that the ALINK captures aspec-
tual phase information associated with an event, and
is logically (temporally) distinct from the BEGIN rel-
Type in the TLINK above. For example, in a sentence
The boat began to sink when the torpedo hit it., the tor-
pedo hitting the boat is TLINKed to the sinking event
through the relType BEGIN, while the beginning of the
sinking is ALINKed through the phase relType INITI-
ATE.

In order to provide an interpretation of the TImeML
specification of event and temporal expressions de-
scribed above, we will adopt the DAML-Time ontology
for time as a model.

DAML-Time

DAML-Time is an ontology of temporal concepts, for
describing the temporal content of Web pages and the
temporal properties of Web services. Its development
is being informed by temporal ontologies developed at
a number of sites and is intended to capture the es-
sential features of all of them and make them and
their associated resources easily available to a large
group of Web developers and users. In this paper
we specify the ontology in predicate calculus; on the
daml.org Web site there is a DAML+OIL specifica-
tion of those parts of DAML-Time that are easily ex-
pressible in DAML+OIL, and a complete specification,
due to George Ferguson, in an encoding of logic in
RDF/DAML developed my McDermott et al. (2001).



Topological Temporal Relations
Instants and Intervals There are two subclasses of
temporal-entity: instant and interval.

instant(t) ⊃ temporal-entity(t)1
interval(T ) ⊃ temporal-entity(T )

start-of and end-of are functions from temporal en-
tities to instants.

temporal-entity(T ) ⊃ instant(start-of(T ))
temporal-entity(T ) ⊃ instant(end-of(T ))

For convenience, we can say that the start and end of
an instant is itself.

instant(t) ⊃ start-of(t) = t
instant(t) ⊃ end-of(t) = t

inside is a relation between an instant and an interval.

inside(t, T ) ⊃ instant(t) ∧ interval(T )

This concept of inside is not intended to include starts
and ends of intervals.

interval-between is a relation among a temporal en-
tity and two instants.

interval-between(T, t1, t2)
⊃ temporal-entity(T ) ∧ instant(t1)
∧ instant(t2)

The two instants are the start and end points of the
temporal entity.

interval-between(T, t1, t2)
≡ start-of(T ) = t1 ∧ end-of(T ) = t2

The ontology is silent about whether the interval from
t to t, if it exists, is identical to the instant t.

The ontology is silent about whether intervals consist
of instants.

The ontology is silent about whether intervals are
uniquely determined by their starts and ends.

We can define a proper interval as one whose start
and end are not identical.

proper-interval(t) ≡
interval(t) ∧ start-of(t) 6= end-of(t)

The ontology is silent about whether there are any in-
tervals that are not proper-intervals.

Before There is a before relation on temporal enti-
ties, which gives directionality to time. If temporal en-
tity T1 is before temporal entity T2, then the end of T1

is before the start of T2. Thus, before can be considered
to be basic to instants and derived for intervals.

before(T1, T2)
≡ before(end-of(T1), start-of(T2))

The end of an interval is not before the start of the
interval.

1A note on notation: Conjunction (∧ ) takes precedence
over implication(⊃ ) and equivalence (≡ ). Formulas are
assumed to be universally quantified on the variables ap-
pearing in the antecedent of the highest-level implication.

interval(T )
⊃ before(end-of(T ), start-of(T ))

The start of a proper interval is before the end of the
interval.

proper-interval(T )
⊃ before(start-of(T ), end-of(T ))

If one instant is before another, there is an interval be-
tween them.

instant(t1) ∧ instant(t2) ∧ before(t1, t2)
⊃ (∃T )interval-between(T, t1, t2)

The ontology is silent about whether there is an interval
from t to t.

If an instant is inside a proper interval, then the start
of the interval is before the instant, which is before the
end of the interval. The converse is true as well.

instant(t) ∧ proper-interval(T )
⊃ [inside(t, T )
≡ before(start-of(T ), t)
∧ before(t, end-of(T ))]

Intervals are contiguous with respect to the before re-
lation, in that an instant between two other instants
inside an interval is inside the interval.

before(t1, t2) ∧ before(t2, t3)
∧ inside(t1, T ) ∧ inside(t3, T )

⊃ inside(t2, T )

The before relation is anti-symmetric and transitive.

before(T1, T2) ⊃ ¬before(T2, T1)
before(T1, T2) ∧ before(T2, T3)

⊃ before(T1, T3)

The relation after is defined in terms of before.

after(T1, T2) ≡ before(T2, T1)

The ontology is silent about whether time is linearly
ordered.

Interval Relations The relations between intervals
defined in Allen’s temporal interval calculus (Allen and
Kautz, 1997) can be defined in a straightforward fashion
in terms of before and identity on the start and end
points. We illustrate this with the relations int−meets
and int− finishes.

interval(T1) ∧ interval(T2)
⊃ [int-meets(T1, T2)
≡ end-of(T1) = start-of(T2)

interval(T1) ∧ interval(T2)
⊃ [int-finishes(T1, T2)
≡ before(start-of(T2), start-of(T1))
∧ end-of(T1) = end-of(T2)]

Linking Time and Events The time ontology links
to other things in the world through the predicates at-
time and during. We assume that another ontology
provides for the description of events—either a general
ontology of event structure abstractly conceived, or spe-
cific, domain-dependent ontologies for specific domains.



The term “eventuality” will be used to cover events,
states, processes, propositions, states of affairs, and
anything else that can be located with respect to time.
The possible natures of eventualities would be spelled
out in the event ontologies.

The predicate at-time relates an eventuality to an in-
stant, and is intended to say that the eventuality holds,
obtains, or is taking place at that time.

at-time(e, t) ⊃ instant(t)
The predicate during relates an eventuality to an inter-
val, and is intended to say that the eventuality holds,
obtains, or is taking place during that interval.

during(e, T ) ⊃ interval(T )
If an eventuality obtains during an interval, it obtains
at every instant inside the interval.

during(e, T ) ∧ inside(t, T ) ⊃ at-time(e, t)
Whether a particular process is viewed as instantaneous
or as occuring over an interval is a granularity decision
that may vary according to the context of use, and is
assumed to be provided by the event ontology.

The event ontology could extend temporal functions
and predicates to apply to events in the obvious way,
e.g.,

ev-start-of(e) = t
≡ time-span-of(T, e) ∧ start-of(T ) = t

This would not be part of the time ontology, but would
be consistent with it.

Measuring Durations
Temporal Units This development assumes ordi-
nary arithmetic is available. We can consider tem-
poral units to constitute a set of entities—call it
TemporalUnits—and have a function duration map-
ping Intervals × TemporalUnits into the Reals.

duration([5 : 14, 5 : 17], ∗Minute∗) = 3
The arithmetic relations among the various units can

be stated in axioms like

duration(T, ∗Second∗) = 60 ∗ duration(T, ∗Minute∗)

The relation between days and months (and, to a lesser
extent, years) is specified as part of the ontology of clock
and calendar below. On their own, however, month and
year are legitimate temporal units.

Concatenation and Hath The multiplicative rela-
tions above don’t tell the whole story of the relations
among temporal units. Temporal units are composed of
smaller temporal units. A larger temporal unit is a con-
catenation of smaller temporal units. We first defined
a general relation of concatenation between an interval
and a set of smaller intervals. Then a predicate Hath
is defined that specifies the number of smaller unit in-
tervals that concatenate to a larger interval.

Concatenation: A proper interval x is a concatena-
tion of a set S of proper intervals if and only if S covers
all of x, and all members of S are subintervals of x

and are mutually disjoint. ¿From this definition we can
prove as theorems that there are elements in S that
start and finish x; and except for the first and last
elements of S, every element of S has elements that
precede and follow it.

Hath: The basic predicate for expressing the com-
position of larger intervals out of smaller temporal in-
tervals of unit length is Hath, from statements like “30
days hath September” and “60 minutes hath an hour.”
Its structure is

Hath(N,u, x)

meaning ”N proper intervals of duration one unit u
hath the proper interval x.” That is, if Hath(N,u, x)
holds, then x is the concatenation of N unit intervals
where the unit is u. For example, if x is some month of
September then Hath(30, ∗Day∗, x) would be true.

Hath is defined as follows:

Hath(N,u, x) ≡ (∃S)[card(S) = N ∧
(∀ z)[member(z, S) ⊃ duration(z, u) = 1] ∧
concatenation(x, S)]

That is, x is the concatenation of a set S of N proper
intervals of duration one unit u.

We are now in a position to state the relations be-
tween successive temporal units, by means of axioms
like the following:

duration(T, ∗Minute∗) = 1 ⊃ Hath(60, ∗Second∗, T )

The relations between months and days are dealt
with in after the calendar has been characterized.

Clock and Calendar Units
We take a day as a calender interval to begin at and
include midnight and go until but not include the next
midnight. By contrast, a day as a duration is any in-
terval that is 24 hours in length. The day as a duration
was dealt with in the previous section. This section
deals with the day as a calendar interval.

Including the beginning but not the end of a calen-
dar interval in the interval may strike some as arbi-
trary. But we get a cleaner treatment if, for example,
all times of the form 12:xx a.m., including 12:00 a.m.
are part of the same hour and day, and all times of the
form 10:15:xx, including 10:15:00, are part of the same
minute.

For stating general properties about clock intervals,
we use

clock-int(y, n, u, x)

This expression says that y is the nth clock interval
of type u in x. For example, the proposition clock-
int(10 : 03, 3, ∗Minute∗, [10 : 00, 11 : 00]) holds. Here
u is a member of the set of clock units, that is, one of
*Second*, *Minute*, or *Hour*.

In addition, there is a calendar unit function with
similar structure:

cal-int(y, n, u, x)



This says that y is the nth calendar interval of
type u in x. For example, the proposition cal-
int(12Mar2002, 12, ∗Day∗,Mar2002) holds. Here u is
one of the calendar units *Day*, *Week*, *Month*, and
*Year*.

Each of the calendar intervals is that unit long; a
calendar year is a year long.

cal-int(y, n, u, x) ⊃ duration(y, u) = 1
The distinction between clock and calendar intervals

is because they differ in how they number their unit
intervals. The first minute of an hour is labelled with
0; for example, the first minute of the hour [10:00,11:00]
is 10:00. The first day of a month is labelled with 1;
the first day of March is March 1. We number minutes
for the number just completed; we number days for the
day we are working on. Thus, if the larger unit has N
smaller units, the argument n in clock−int runs from 0
to N−1, whereas in cal-int n runs from 1 to N . To state
properties true of both clock and calendar intervals, we
can use the predicate cal-int and relate the two notions
with the axiom

cal-int(y, n, u, x) ≡ clock-int(y, n− 1, u, x)
DAML-Time includes a treatment of weeks and days

of the week as well.

Months and Years
The months have special names in English, as in

cal-int(y, 9, ∗Month∗, x) ≡ September(y, x)
The number of days in a month have to be spelled out
for individual months, by axioms of the following form:

September(m, y)
⊃ (∃S)Hath(S, 30, ∗Day∗,m)

The definition of a leap year is as follows:
(∀ z)[leap-year(y)

≡ (∃n, x)[year(y, n, (CE(z))
∧ [divides(400, n)
∨ [divides(4, n) ∧ ¬divides(100, n)]]]

Now the number of days in February can be specified.
February(m, y) ∧ leap-year(y)

⊃ (∃S)Hath(S, 29, ∗Day∗,m)
February(m, y) ∧ ¬leap-year(y)

⊃ (∃S)Hath(S, 28, ∗Day∗,m)
Months can now be defined as a duration, namely,

the duration from the nth day of one month to the n
day of the next month.

To say that July 4 is a holiday in the United States
one can write

(∀ d, m, y)[cal-int(d, 4, ∗Day ∗m) ∧ July(m, y)
⊃ holiday(d, USA)]

Time and Duration Stamps
Standard notation for times list the year, month, day,
hour, minute, and second. It is useful to define a pred-
ication for this.

time-of(t, y,m, d, h, n, s, z)

For example, an instant t has the time

5:14:35pm PDT, October 4, 2002

if the following properties hold for t:

time-of(t, 2002, 10, 4, 17, 14, 35, ∗PDT∗)
We can similarly define a predicate that specifies the

duration of an interval in standard units.

duration-of(T, y, m, d, h, n, s)

It is straightforward to translate predications of time-
of and duration-of into ISO 8601 format for dates,
times, and durations.

Interpreting TimeML in DAML-Time

The intended interpretation of the TimeML specifica-
tions can now be provided in terms of the DAML-Time
ontology. This allows one to move back and forth be-
tween the two representations as required for linguistic
analysis and reasoning.

There are some aspects of TimeML that relate not to
a theory of time but a theory of the structure of events.
Among these are aspect, such as “perfective”. We do
not deal with these here.

The information in the SIGNAL tag is of importance
in the automatic recovery of temporal relations, and
therefore it is important that signals be annotated. But
by the time annotation is complete, that information
will have been incorporated into LINK tags, so it is
not necessary to interpret signals with respect to the
DAML-Time ontology.

The SLINK is about grammatical subordination, or
predicate-argument stucture, and the modal or cogni-
tive relation between the dominating and subordinated
events. Thus, it is not concerned with the ontology
of time as such, although it is important in linking the
subordinated possible event into the temporal structure
of the whole text.

The TimeML attribute “functionInDocument” refers
to a concept in a theory of documents and relates it to
times. Essentially, it states an at-time relation between
a document event, such as publication, and the time
referred to by a temporal expression. It is required for
the interpretation of deictic expressions such as “now”
and “last week”. The treatment of deictic time will be
addressed in a future release of DAML-Time.

The “tense” attribute of EVENT tags is expressed in
terms of a before or equality relation, once the deictic
anchor (“now”) is known.

The “value” in a TIMEX3 tag is a date, time, or du-
ration in the ISO 8601 standard format, as extended by
TIDES2. As pointed out above, there is a straightfor-
ward mapping between time-of predications and date
and time formats, and between duration-of predica-
tions and duration formats. The “XX” notation in
the ISO standard corresponds to existentially quanti-
fied variables in the logic.



The “relType” values of the TLINK tag correspond
roughly to the interval relations in Allen’s interval cal-
culus and can be defined either in terms of these or in a
similar manner. For example, an IAFTER relation can
be defined as the interval during which one event oc-
curs meeting the interval during which the other occurs.
IDENTITY is not a temporal relation but is expressed
as equality involving reified events.

The “relType” values of the ALINK tag can be de-
fined similarly. An event that INITIATES another, for
example, occurs at the start of the interval during which
the other occurs. The ALINK tag conveys something
more than just temporal information. As mentioned
above, the beginning of a sinking of a boat is not the
same event as the event of a torpedo hitting the boat,
even if they are simultaneous. This distinction, how-
ever, is not part of a theory of time but a theory of the
structure of events. Similarly, the distinction between
TERMINATES and CULMINATES is not a temporal
one but something that would have to come from event
theory.

The logical representation of the temporal informa-
tion in the sentence

John left 2 days before the attack.

can now be read off the TimeML tags in the markup.
Recall that the ordering between the events is encoded
in a TLINK as:
<TLINK eventInstanceID="ei1" signalID="s1"

relatedToEvent="ei2" relType="BEFORE"

magnitude="t1"/>

Assume e1 is John’s leaving and e2 is the attack. If
the TLINK relType is interpreted as before, and the
magnitude attribute is associated with duration, then
the DAML-Time representation of the temporal infor-
mation from TimeML is as shown below.

at-time(e1, t1) ∧ at-time(e2, t2)
∧ before(t1, t2) ∧ interval-between(T, t1, t2)
∧ duration(T, ∗Day∗) = 2

Relevance to Semantic Web

Significant efforts have been launched to annotate the
temporal information in large textual corpora, resulting
in the development of the mark-up language TimeML.
Significant efforts have also taken place in the Seman-
tic Web community for developing an ontology of time
for expressing the temporal content of web sites and
the temporal properties of web services, resulting in
DAML-Time. There is much to be gained by linking
these two efforts, and that is what we have begun to do
in this paper.
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