Chapter 2
Understanding and Conceptualizing Interaction

Anna Loparev
Intro HCI
University of Rochester
01/29/2013

Problem space

- Concepts and facts relevant to the problem

Users
Current UX
Technology
Improvements
Problem space

- **Think about**
 - Usability goals
 - Ex: Learnability
 - User experience goals
 - Ex: Exciting
 - Assumptions and claims

What is an assumption?

- **Take for granted when shouldn’t**
 - e.g. TV while driving
What is a claim?

• Say true when still unclear
 – Ex: Speech interface while driving is safe

Problem space

• Ask
 – Are there problems with existing system?
 – Why are there problems?
 – How will you overcome these?
 – If new experience: how support, change, or extend current ways of doing things?
Example

• Radio newspaper

Design space

• Concepts relevant to design
 – Variables
 – How they interact
 – Alternate designs

• Problem space can inform design space
 – Ex: Kind of
 • Interface
 • Behavior
 • Functionality

• Understand via conceptual model
Conceptual model

- High-level description
 - Organization
 - Operations
 - Concepts required for interaction

- In general, obvious models are best
- Designers “straighten out their thinking”

Pros of early conceptualization

- Orientation
 - Can ask questions about how conceptual model will be understood
- Open-minded
 - Prevents narrow focused early on
- Common ground
 - Can establish commonly agreed terms
Interface metaphors

• Designed to be similar to physical entity but has own properties
 – Ex: Desktop metaphor

• Based on
 – Activity
 – Object
 – Combo of both

• Exploit user’s familiar knowledge

Interface metaphors

• Conceptualize activity
 – Ex: Surfing the web

• Conceptual model instantiated at interface
 – Ex: Desktop metaphor

• Visualising an operation
 – Ex: Shopping cart icon
The Good

- Makes learning new systems easier
- Helps users understand conceptual model
- Enhance accessibility

Problem space

- Concepts and facts relevant to the problem

Users

Current UX

Technology

Improvements
The Bad

- Constrain conceptualization of problem space
- Break conventional and cultural rules
 - Ex: Recycle bin on desktop
- Limits designers’ imagination
- Inadvertently reuse bad existing designs
 - Conflict with design principles
- Users only understand in terms of metaphor

Components

- Metaphors and analogies
 - Understand what product for
 - Understand how to use
- Concepts people exposed to through product
 - Task–domain objects
 - Their attributes
 - Their operations
- Relationships between concepts
- Mappings between concepts and user experience
Activity

• Components of the conceptual model underlying online shopping websites

How to formulate

• How users perform tasks
• How system will support
• What metaphors, if any, appropriate?
• What interaction type to use?
Interaction types

• Way user interacts with product
 • Instructing
 – Issuing commands
 – Selecting options
 • Conversing
 – Interacting with system via “conversation”
 • Manipulating
 – Interacting with objects via manipulation
 • Exploring
 – Moving through environment

Interaction vs. interface type

• Interaction type:
 – What doing when interacting with a system

• Interface type:
 – the kind of interface used to support the mode
1. Instructing

- Users tell system what to do
 - Ex:
 - Tell the time (date +"%T")
 - Print a file (press button)
 - Save a file (ctrl+s)

- Used in lots of devices and systems
 - Ex:
 - Word processors
 - VCRs
 - Vending machines

- The Good
 - Supports quick and efficient interaction

Which is easiest and why?
2. Conversing

- User and computer have conversation
- Large range
 - Voice recognition menu-driven systems
 - 'Natural language' dialogs
- **Ex:**
 - Search engines
 - Advice-giving systems
 - Pet robots

Pros and Cons

- **The Good**
 - Allows users to interact in familiar way
- **The Bad**
 - System does not always understand user
3. Manipulating

- Interact with virtual objects
 - Drag
 - Select
 - Open/Close
 - Zoom
- Exploit knowledge of physical world
- Virtual or both physical and virtual
- Interaction with physical objects results in physical/digital events

Direct Manipulation

- Shneiderman (1983) coined the term DM, came from his fascination with computer games at the time
 - Continuous representation of objects and actions of interest
 - Rapid reversible actions with immediate feedback on object of interest
 - Physical actions and button pressing instead of issuing commands with complex syntax
Pros

• Novices learn basic functionality quickly
• Experienced users have efficiency and breath
• Average users retain operational concepts
• Error messages rarely needed
• Immediate feedback
• Less anxiety
• Gain confidence and mastery
• Feel in control

Cons

• People take metaphor too literally
• Not all tasks can be described by objects
• Not all actions can be done directly
• Some tasks better done via delegating
 – Ex: spell checking
• Some tasks faster via other methods
 – Ex: mouse vs function key
• Screen space ‘gobblers’
4. Exploring

- Move through virtual/physical environments
- Physical environments + embedded sensors
 - Context aware
- Exploit how navigate in real world
- Ex:

Hybrid

- Support different ways of doing same actions
 - Ex:

 - The Bad
 - Takes longer to learn
Best interaction type

• **Instruction**
 - Repetitive actions on multiple objects
 - Ex: spell-checking, file management

• **Manipulation**
 - ‘doing’ types of tasks
 - Ex: drawing, flying, driving, sizing windows

• **Conversation**
 - Children
 - Computer-phobic
 - Disabled users
 - Specialised applications
 - Phone services

Best interaction type

• Determine requirements and user needs
• Take budget and other constraints
• Suitability of technology
Inspirations for Conceptual Models

Paradigm

- General approach adopted by a community for carrying out research
 - Assumptions
 - Concepts
 - Values
 - Practices

- Ex:
 - Desktop
 - Ubiquitous computing
Examples of new paradigms

• Wearable computing

• Tangible

• Augmented reality

Theory

• Explanation of a phenomenon
 – Ex: Information processing

• Can analyse and predict user performance

• Can help identify factors
 – Cognitive
 – Social
 – Emotional
Models

- Simplification of an aspect of HCI
- Easier to predict and evaluate alt. designs
- Abstracted from a contributing discipline
- Ex: Psychology - keystroke model

Framework

- Set of interrelated concepts
- Advice in the form of
 - Steps
 - Challenges
 - Principles
 - Etc.
- Help constrain and scope
Examples

- How to conceptualize
 - Learning
 - Working
 - Socializing
 - Emotion
- How to evoke certain responses
- Show differences in perspective

Norman

- Relationship between design of conceptual model and user’s understanding

Designer
Designer’s Model

System
System Image

User
User’s Model
Garrett

- Software design life-cycle
- Intended to convey bigger picture

Who should be in control?

- User
 - Command-based interfaces
- System
 - Elderly movement detection
- When switch between
 - GPS

©2011

©2011