
Server side basics

CSC 210

1

Be careful

¨  Do not type any command starting with “sudo” into
a terminal attached to a university computer.

¨  You have complete control over you AWS server,
just as you have complete control over your laptop.

¨  University computers are shared—”sudo” overrides
protection of other users of the computer.XS

CSC 210

2

SM: Initialize Git on Betaweb

AWS$ pwd!

/home/ec2-user/!

AWS$ git clone <you>@betaweb.csug.rochester.edu:/p/
csc210/<your team repo>!

AWS$ cd <your team repo>!

AWS$ cp -r /var/www/html/* .!

AWS$ git add .!

AWS$ git status!

AWS$ git commit!

AWS$ git push origin master!

Send email to team telling them that you have set up
the master directory on Betaweb
CSC 210

3

Everyone: Getting Betaweb to AWS

AWS> pwd!

/home/ec2-user/!

AWS> git clone <you>@betaweb.csug.rochester.edu:/p/
csc210/<your team repo>!

AWS> cd <your team repo>!

AWS> ls!

!

Is everything there?

CSC 210

4

Everyone: Create personal branch

$ git branch!

* master!

$ git branch martin!

$ git branch!

 martin!

* master!

$ git checkout martin!

Switched to branch 'martin’!

$ git branch!

* martin!

 master!

!
CSC 210

5

Git diagram

CSC 210

6

Everyone: Editing a file

$ cd 0!

$ emacs index.html!

$ cat index.html!

...!

 <p>!

(describe what you did, including any extra credit,
here.)!

 !

Added this to my branch on AWS!

 </p>!

...!

!

!CSC 210

7

Everyone: Checking in work

$ git add index.html!

$ git status!

On branch martin!

Changes to be committed:!

…!

$ git commit!

$ git push origin martin!

martin@betaweb.csug.rochester.edu’s password:!

!

!

CSC 210

8

SM: Setting up as SM

betaweb$ pwd!

/home/<scrum master’s home>!

betaweb $ git clone /p/csc210/<your team repo>!

betaweb $ git branch!

* master!

betaweb $ git branch staging!

betaweb $ git branch -a!

* master!

 staging!

 remotes/origin/HEAD -> origin/master!

 remotes/origin/martin!

 remotes/origin/master!

!

!

CSC 210

9

SM: Merging work

$ git checkout <branch with new work>!

$ git pull origin martin!

$ git checkout staging!

$ git merge martin!

$ git push origin staging!

!

CSC 210

10

SM: Testing new work in staging

$ pwd!

/home/ec2-user/<your team repo>!

$ git branch staging!

$ git checkout staging!

$ git pull origin staging!

$ cp –r ./* /var/www/html/!

!

!

CSC 210

11

SM: Testing new work

CSC 210

12

SM: Testing new work in staging

$ pwd!

/home/ec2-user/<your team repo>!

$ emacs index.html!

...!

 <p>!

(describe what you did, including any extra credit,
here.)!

<p>!

</p>!

Added this to my branch on AWS!

</p>!

!

!CSC 210

13

SM: Testing new work in staging

CSC 210

14

SM: Merging into Master

$ git add index.html!

$ git commit!

$ git push origin staging!

<user>@betaweb .. Password:!

$ git checkout master!

$ git merge staging!

$ git push origin master!

Betaweb password:!

!

Send email to team saying that the Master has
been updated
CSC 210

15

Quiz

¨  Write CSS code put a paragraph: in the horizontal
center of the page, occupying half the page’s width,
and right-aligning the paragraph’s text?

¨  What is the difference between “display: none” and
visibility: “hidden”

¨  Is PHP code static or dynamic web content?
¨  Given <?php $bar = “foo” ? > write a php block

that will put “foo” on the page.

CSC 210

16

Quiz Answers

1.  p {
 margin-left: auto;
 margin-right: auto;
 width: 50%;

}

2.  “display: none” leaves no space; “visibility:
hidden” leaves space.

3.  PHP is dynamic web content?
4.  <?php $bar ?>

CSC 210

17

Server side basics

CSC 210

18

URLs and web servers

¨  Usually when you type a URL in your browser:
¤ Your computer looks up the server's IP address using

DNS
¤ Your browser connects to that IP address and requests

the given file
¤ The web server software (e.g. Apache) grabs that file

from the server's local file system
¤ The server sends back its contents to you

CSC 210

19

http://server/path/file

URLs and web servers (cont.)
20

Web/Application Server

Apache, Websphere
SW(Java Servlets,

XML Files)

Database

CSC 210

URLs and web servers (cont.)

¨  Some URLs actually specify programs that the web
server should run, and then send their output back
to you as the result:
¤ The above URL tells the server facebook.com to run the

program home.php and send back its output

CSC 210

21

http://www.facebook.com/home.php

Server-Side web programming

¨  Server-side pages are programs written using one
of many web programming languages/frameworks
¤ examples: PHP, Java/JSP, Ruby on Rails, ASP.NET,

Python, Perl

CSC 210

22

Server-Side web programming (cont.)

¨  Also called server side scripting:
¤ Dynamically edit, change or add any content to a Web

page
¤ Respond to user queries or data submitted from HTML

forms
¤ Access any data or databases and return the results to

a browser
¤ Customize a Web page to make it more useful for

individual users
¤ Provide security since your server code cannot be

viewed from a browser

23

CSC 210

Server-Side web programming (cont.)

¨  Web server:
¤ contains software that allows it to run server side

programs
¤  sends back their output as responses to web requests

¨  Each language/framework has its pros and cons
¤ we use PHP

CSC 210

24

What is PHP?

¨  PHP stands for "PHP Hypertext Preprocessor"
¨  Server-side scripting language
¨  Used to make web pages dynamic:

¤ provide different content depending on context
¤  interface with other services: database, e-mail, etc.
¤ authenticate users
¤ process form information

¨  PHP code can be embedded
 in XHTML code

CSC 210

25

Lifecycle of a PHP web request
26

Hello world!

User’s computer Server computer

Hello.php

CSC 210

Why PHP?

¨  Free and open source
¨  Compatible

¤ as of November 2006, there were
more than 19 million websites (domain names) using
PHP.

¨  Simple

CSC 210

27

Hello World!

CSC 210

28

<?php
print "Hello, world!";
?> PHP	

Hello world! 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 output	

Viewing PHP output
29

Hello world!

CSC 210

PHP Basic Syntax 30

CSC 210

PHP syntax template
31

¨  Contents of a .php file between <?php and ?> are executed
as PHP code

¨  All other contents are output as pure HTML

¨  We can switch back and forth between HTML and PHP
"modes"

HTML content
<?php
PHP code
?>
HTML content
<?php
PHP code
?>
HTML content ... PHP	

CSC 210

Console output: print

CSC 210

32

print "Hello, World!\n";
print "Escape \"chars\" are the SAME as in Java!\n";
print "You can have
line breaks in a string.";
print 'A string can use "single-quotes". It\'s cool!';

 PHP	

Hello world!	 Escape "chars" are the SAME as in Java! You can have line
breaks in a string. A string can use "single-quotes". It's cool! 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 output	

print "text";
 PHP	

Variables
33

$user_name = “mundruid78";
$age = 16;
$drinking_age = $age + 5;
$this_class_rocks = TRUE; PHP	

$name = expression; PHP	

¨  names are case sensitive
¨  names always begin with $, on both declaration

and usage
¨  always implicitly declared by assignment (type is

not written)
¨  a loosely typed language (like JavaScript or

Python) CSC 210

Variables
34

¨  basic types: int, float, boolean, string, array, object,
NULL
¤  test type of variable with is_type functions, e.g.
is_string

¤ gettype function returns a variable's type as a string

¨  PHP converts between types automatically in many
cases:
¤  string → int auto-conversion on +
¤  int → float auto-conversion on /

¨  type-cast with (type):
¤ $age = (int) "21"; CSC 210

Arithmetic operators
35

¨  + - * / % . ++ --
¨  = += -= *= /= %= .=
¨  many operators auto-convert types: 5 + "7" is 12

CSC 210

Comments
36

single-line comment
// single-line comment
/*
multi-line comment
*/ PHP	

¨  like Java, but # is also allowed
¤ a lot of PHP code uses # comments instead of //

CSC 210

String Type
37

¨  zero-based indexing using bracket notation
¨  there is no char type; each letter is itself a String

¨  string concatenation operator is . (period), not +
¤  5 + "2 turtle doves" === 7

¤  5 . "2 turtle doves" === "52 turtle doves"

¨  can be specified with "" or ''

$favorite_food = "Ethiopian";
print $favorite_food[2];
$favorite_food = $favorite_food . " cuisine";
print $favorite_food;

 PHP	

CSC 210

String Functions
38

index 0123456789012345
$name = "Stefanie Hatcher";
$length = strlen($name);
$cmp = strcmp($name, "Brian Le");
$index = strpos($name, "e");
$first = substr($name, 9, 5);
$name = strtoupper($name);

 PHP	

CSC 210

String Functions (cont.)
39

CSC 210

Name Java Equivalent

strlen length

strpos indexOf

substr substring

strtolower, strtoupper toLowerCase, toUpperCase

trim trim

explode, implode split, join

strcmp compareTo

Interpreted Strings
40

$age = 16;
print "You are " . $age . " years old.\n";
print "You are $age years old.\n"; # You are 16 years old.

 PHP	

¨  strings inside " " are interpreted
¤ variables that appear inside them will have their values

inserted into the string

¨  strings inside ' ' are not interpreted:

CSC 210

print ' You are $age years old.\n '; # You are $age years
old. \n PHP	

Interpreted Strings (cont.)
41

print "Today is your $ageth birthday.\n"; # $ageth not
found
print "Today is your {$age}th birthday.\n";

 PHP	

¨  if necessary to avoid ambiguity, can enclose
variable in {}

CSC 210

Interpreted Strings (cont.)
42

$name = “Xenia";
$name = NULL;
if (isset($name)) {
print "This line isn't going to be reached.\n";
} PHP	

¨  a variable is NULL if
¤  it has not been set to any value (undefined variables)
¤  it has been assigned the constant NULL
¤  it has been deleted using the unset function

¨  can test if a variable is NULL using the isset function
¨  NULL prints as an empty string (no output)
CSC 210

for loop (same as Java)
43

for (initialization; condition; update) {
 statements;

}
 PHP	

CSC 210

for ($i = 0; $i < 10; $i++) {
 print "$i squared is " . $i * $i . ".\n";

}
 PHP	

bool (Boolean) type
44

$feels_like_summer = FALSE;
$php_is_great = TRUE;
$student_count = 7;
$nonzero = (bool) $student_count; # TRUE

 PHP	

CSC 210

¨  the following values are considered to be FALSE (all
others are TRUE):
¤ 0 and 0.0 (but NOT 0.00 or 0.000)
¤ "", "0", and NULL (includes unset variables)
¤ arrays with 0 elements

¨  FALSE prints as an empty string (no output); TRUE
prints as a 1

if/else statement
45

if (condition) {
 statements;

} elseif (condition) {
 statements;

} else {
 statements;

}
 PHP	

CSC 210

while loop (same as Java)
46

while (condition) {
 statements;

} PHP	

CSC 210

do {
 statements;

} while (condition);
 PHP	

Math operations
47

$a = 3;
$b = 4;
$c = sqrt(pow($a, 2) + pow($b, 2));

 PHP	

CSC 210

abs ceil cos floor log log10 max

min pow rand round sin sqrt tan

math functions

M_PI M_E M_LN2
math constants

Int and Float Types
48

¨  int for integers and float for reals
¨  division between two int values can produce a float

$a = 7 / 2; # float: 3.5
$b = (int) $a; # int: 3
$c = round($a); # float: 4.0
$d = "123"; # string: "123"
$e = (int) $d; # int: 123 PHP	

CSC 210

PHP exercise 1

¨  For your first PHP exercise, echo the following
statement to the browser:

“Twinkle, Twinkle little star.”
¨  Next, create two variables, one for the word

“Twinkle” and one for the word “star”. Echo the
statement to the browser, this time substituting the
variables for the relevant words. Change the value
of each variable to whatever you like, and echo the
statement a third time. Remember to include code to
show your statements on different lines.

CSC 210

49

PHP exercise 2

¨  PHP includes all the standard arithmetic operators. For this PHP exercise,
you will use them along with variables to print equations to the browser. In
your script, create the following variables:
$x=10;
$y=7;

¨  Write code to print out the following:

10 + 7 = 17
10 - 7 = 3
10 * 7 = 70
10 / 7 = 1.4285714285714
10 % 7 = 3

¨  Use numbers only in the above variable assignments, not in the echo
statements.

CSC 210

50

PHP exercise 3

¨  Arithmetic-assignment operators perform an arithmetic operation on the
variable at the same time as assigning a new value. For this PHP exercise,
write a script to reproduce the output below. Manipulate only one variable
using no simple arithmetic operators to produce the values given in the
statements.

¨  Hint: In the script each statement ends with "Value is now $variable."

Value is now 8.
Add 2. Value is now 10.
Subtract 4. Value is now 6.
Multiply by 5. Value is now 30.
Divide by 3. Value is now 10.
Increment value by one. Value is now 11.
Decrement value by one. Value is now 10.

CSC 210

51

PHP exercise 4

¨  When you are writing scripts, you will often need to
see exactly what is inside your variables. For this PHP
exercise, think of the ways you can do that, then write
a script that outputs the following, using the echo
statement only for line breaks.

string(5) "Harry"
Harry
int(28)
NULL

CSC 210

52

PHP exercise 5

¨  For this PHP exercise, write a script using the following
variable:
$around="around";

¨  Single quotes and double quotes don't work the same
way in PHP. Using single quotes (' ') and the
concatenation operator, echo the following to the
browser, using the variable you created:
What goes around, comes around.

CSC 210

53

PHP exercise 5

¨  In this PHP exercise, you will use a conditional
statement to determine what gets printed to the
browser. Write a script that gets the current month
and prints one of the following responses, depending
on whether it's August or not:

It's August, so it's really hot.
Not August, so at least not in the peak of the heat.
¨  Hint: the function to get the current month is 'date('F',

time())' for the month's full name.

CSC 210

54

PHP exercise 6

¨  Loops are very useful in creating lists and tables. In
this PHP exercise, you will use a loop to create a list
of equations for squares.

¨  Using a for loop, write a script that will send to the
browser a list of squares for the numbers 1-12.
Use the format, "1 * 1 = 1", and be sure to include
code to print each formula on a different line.

CSC 210

55

PHP exercise 7

¨  HTML tables involve a lot of repetitive coding - a perfect
place to use for loops. You can do even more if you nest the
for loops.

¨  In this PHP exercise, use two for loops, one nested inside
another. Create the following multiplication table:

CSC 210

56

1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

