CSC242: Intro to AI

Lecture 5
Administrivia

BlackBoard

- Announcements posted on BB
- You can sign up for notifications from BB
- BB Discussion forum for the course
Topics due to me by today

First draft due Mar 1

Questions, more feedback, etc.?

Get in touch early!
Administrivia
Homework

- TAs will not answer questions about homework if you didn’t hand in the homework
- Optional != at your convenience (the day before the midterm)
Administrivia
Project 1

- Code posted on BB
- Everyone should have it working
Local Search
States + Actions + Transition Model = State Space

The set of all states reachable from the initial state by some sequence of actions
Solution graphSearch(Problem p) {
 Set<Node> frontier = new Set<Node>(p.getInitialState());
 Set<Node> explored = new Set<Node>();
 while (true) {
 if (frontier.isEmpty()) {
 return null;
 }
 Node node = frontier.selectOne();
 if (p.isGoalState(node.getState())) {
 return node.getSolution();
 }
 explored.add(node);
 for (Node n : node.expand()) {
 if (!explored.contains(n)) {
 frontier.add(n);
 }
 }
 }
}
Search Strategies

Uninformed

No additional information about states

Informed (Heuristic)

Can identify “promising” states
Systematic Search

• Enumerates paths from initial state
• Records what alternatives have been explored at each point in the path

Good: Systematic => Exhaustive => optimal
Bad: Exponential time and/or space
Local Search
<table>
<thead>
<tr>
<th>State</th>
<th>Actions</th>
<th>Transition Function</th>
<th>Goal Test</th>
</tr>
</thead>
</table>

The table represents the state and actions of a problem, along with the transition function and goal test.
Local Search

- Evaluates and modifies a small number of current states
- Does not record history of search

Good: Very little (constant) memory
Bad: May not explore all alternatives

=> Incomplete
State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 if (p.isGoalState(node.getState())) {
 return node.getState();
 }
 for (Node n : node.expand()) {
 ???
 }
 }
}
Solution graphSearch(Problem p) {
 Set<Node> frontier = new Set<Node>(p.getInitialState());
 Set<Node> explored = new Set<Node>();
 while (true) {
 if (frontier.isEmpty()) {
 return null;
 }
 Node node = frontier.selectOne();
 if (p.isGoalState(node.getState())) {
 return node.getSolution();
 }
 explored.add(node);
 for (Node n : node.expand()) {
 if (!explored.contains(n)) {
 frontier.add(n);
 }
 }
 }
}

State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 if (p.isGoalState(node.getState())) {
 return node.getState();
 }
 for (Node n : node.expand()) {
 ???
 }
 }
}
\(h(n) \)
Solution graphSearch(Problem p) {
 Set<Node> frontier = new Set<Node>(p.getInitialState());
 Set<Node> explored = new Set<Node>();
 while (true) {
 if (frontier.isEmpty()) {
 return null;
 }
 Node node = frontier.selectOne();
 if (p.isGoalState(node.getState())) {
 return node.getSolution();
 }
 explored.add(node);
 for (Node n : node.expand()) {
 if (!explored.contains(n)) {
 frontier.add(n);
 }
 }
 }
}

State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 if (p.isGoalState(node.getState())) {
 return node.getGameState();
 }
 for (Node n : node.expand()) {
 if (p.value(n) >= p.value(node)) {
 node = n;
 node = n;
 }
 }
 }
}
State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 if (p.isGoalState(node.getState())) {
 return node.getState();
 }
 for (Node n : node.expand()) {
 if (p.value(n) >= p.value(node)) {
 node = n;
 }
 }
 }
}
State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 if (p.isGoalState(node.getState())) {
 return node.getState();
 }
 Node next = null;
 for (Node n : node.expand()) {
 if (p.value(n) >= p.value(node)) {
 node = n;
 }
 }
 if (next == null) {
 return node.getState();
 } else {
 node = next;
 }
 }
}
State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 Node next = null;
 for (Node n : node.expand()) {
 if (p.value(n) >= p.value(node)) {
 node = n;
 }
 }
 if (next == null) {
 return node.getState();
 } else {
 node = next;
 }
 }
}
Hill-climbing Search

- Move through state space in the direction of increasing value ("uphill")
State: $[h_1, \ldots, h_n]$
Action: $<i, j, m>$
$h(n) = \# \text{ of pairs of queens attacking each other}$
$h(n) = 17$
$h(n) = 17$
$h(n) = 12$
State hillClimb(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 Node next = null;
 for (Node n : node.expand()) {
 if (p.value(n) >= p.value(node)) {
 node = n;
 }
 }
 if (next == null) {
 return node.getState();
 } else {
 node = next;
 }
 }
}
$h(n) = 1$
The diagram illustrates a graph of an objective function against a state space. The graph shows a global maximum, a local maximum, a "flat" local maximum, and a shoulder. The current state is marked on the graph, indicating the position within the state space.
If at first you don’t succeed, try again.
State randomRestart(Problem p) {
 while (true) {
 p.setInitialState(new random State);
 State solution = hillClimb(p);
 if (p.isGoal(solution)) {
 return solution;
 }
 }
}

Does it work? Yes (but)

How well does it work?
Prob of success = p
Expected # of tries = $\frac{1}{p}$
= 0.14
State randomRestart(Problem p) {
 while (true) {
 p.setInitialState(new random State);
 State solution = hillClimb(p);
 if (p.isGoal(solution)) {
 return solution;
 }
 }
}
Randomness in Search

Pure random walk

Complete, but horribly slow

Greedy local search

Incomplete, but fast
Simulated Annealing

• Follow landscape down towards global minimum of state cost function

• Occasionally allow an upward move (“shake”) to get out of local minima

• Don’t shake so hard that you bounce out of global minimum
Cost

State space
Annealing

• A heat treatment that alters the microstructure of a material causing changes in properties such as strength and hardness and ductility

• High temp => Atoms jumping around

• Low temp => Atoms settle into position
State simulatedAnnealing(Problem p, Schedule schedule) {
 Node node = new Node(p.getInitialState());
 for (t=1; true; t++) {
 Number T = schedule(t);
 if (T == 0) {
 return node;
 }
 Node next = randomly selected successor of node
 Number deltaE = p.cost(node) - p.cost(next);
 if (deltaE > 0 || Math.exp(-deltaE/T) > new Random(1)) {
 node = next;
 }
 }
}
\[y = e^{-\Delta E} \]
Simulated Annealing

Complete? No.
Optimal? No.

“But if the schedule lowers T slowly enough, simulated annealing will find a global minimum with probability approaching one.”
Local Search

• Evaluates and modifies a small number of current states

• Does not record history of search

Good: Very little (constant) memory

Bad: May not explore all alternatives

=> Incomplete
Local Beam Search

• During hill-climbing:
 • Keep track of k states rather than just one
 • At each step, generate all successors of all k states ($k \times b$ of them)
 • Keep the most promising k of them
Local Search
Parallel Local Search
Parallel Local Search

-8 -5 -7 -2

4 6 9 1

-3 3 0 -9
Local Beam Search
Local Beam Search
“And this report just in. . . . Apparently, the grass is greener on the other side.”
Local Beam Search

- During hill-climbing:
 - Keep track of k states rather than just one
 - At each step, generate all successors of all k states ($k \times b$ of them)
 - Keep the most promising k of them
Binary fission

- DNA replication
- Chromosome segregation
- Cytokinesis
Genetic Algorithms

• Start with k random states
• Select pairs of states and have them “mate” to produce “offspring”
• Most fit (highest-scoring) individuals reproduce more often
Genetic Algorithms

- States encoded as “chromosomes” (linear sequences, a.k.a. strings)
- During mating:
 - Crossover: swap chunks of code
 - Mutation: randomly change bits of code
Genetic Algorithms

• States encoded as “chromosomes” (linear sequences, a.k.a. strings)

• During mating:
 • Crossover: swap chunks of code
 • Mutation: randomly change bits of code
GA Summary

• A version of stochastic local beam search with a special way to generate successor states (motivated by a naive biology analogy)

• “Much work remains to be done to identify the conditions under which genetic algorithms perform well.”
- Evaluates and modifies a small number of current states
- Does not record history of search

Hill-climbing

Good: Very little (constant) memory

Bad: May not explore all alternatives

=> Incomplete

Simulated Annealing

Local Beam Search

Genetic Algorithms
For next time:
AIMA 5.0–5.2.2
Homework due Tue
Project 1 due Wed Feb 15