Probabilistic Reasoning
Hunt The Wumpus

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>START</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stench

Gold

PIT

PIT

PIT

PIT

PIT

PIT

PIT

PIT

PIT
<table>
<thead>
<tr>
<th></th>
<th>1,1</th>
<th>2,1</th>
<th>3,1</th>
<th>4,1</th>
<th>1,2</th>
<th>2,2</th>
<th>3,2</th>
<th>4,2</th>
<th>1,3</th>
<th>2,3</th>
<th>3,3</th>
<th>4,3</th>
<th>1,4</th>
<th>2,4</th>
<th>3,4</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>A</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>1,4</td>
<td></td>
</tr>
</tbody>
</table>

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

P[1][1] = false;
\[
P[1][1] = false; \quad B[1][1] = false;
\]

<table>
<thead>
<tr>
<th></th>
<th>1,4</th>
<th>2,4</th>
<th>3,4</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3</td>
<td>2,3</td>
<td>3,3</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>2,2</td>
<td>3,2</td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td>2,1</td>
<td>3,1</td>
<td>4,1</td>
<td></td>
</tr>
</tbody>
</table>

\(A\) = Agent
\(B\) = Breeze
\(G\) = Glitter, Gold
\(OK\) = Safe square
\(P\) = Pit
\(S\) = Stench
\(V\) = Visited
\(W\) = Wumpus
<table>
<thead>
<tr>
<th></th>
<th>1,1</th>
<th>1,2</th>
<th>1,3</th>
<th>1,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>A</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>1,2</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>1,3</td>
<td>2,3</td>
<td>3,3</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>1,4</td>
<td>2,4</td>
<td>3,4</td>
<td>4,4</td>
<td></td>
</tr>
</tbody>
</table>

- **A** = Agent
- **B** = Breeze
- **G** = Glitter, Gold
- **OK** = Safe square
- **P** = Pit
- **S** = Stench
- **V** = Visited
- **W** = Wumpus

\[
P[1][1] = false; \quad B[1][1] = false; \\
P[2][1] = false; \\
P[1][2] = false;
\]
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>G</th>
<th>P</th>
<th>S</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Agent</td>
<td>B</td>
<td>Glitter, Gold</td>
<td>Pit</td>
<td>Stench</td>
<td>Wumpus</td>
</tr>
<tr>
<td>OK</td>
<td>Safe square</td>
<td>Breeze</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>OK</th>
<th>OK</th>
<th>OK</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>V</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>1,2</td>
<td></td>
<td>2,2</td>
<td>3,2</td>
<td>4,2</td>
</tr>
<tr>
<td>1,3</td>
<td></td>
<td>2,3</td>
<td>3,3</td>
<td>4,3</td>
</tr>
<tr>
<td>1,4</td>
<td></td>
<td>2,4</td>
<td>3,4</td>
<td>4,4</td>
</tr>
</tbody>
</table>

\[
P[1][1] = \text{false}; \quad B[1][1] = \text{false};\\
P[2][1] = \text{false};\\
P[1][2] = \text{false};\\
\]
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>G</th>
<th>P</th>
<th>S</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>= Agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>= Breeze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>= Glitter, Gold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>= Safe square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>= Pit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>= Stench</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>= Visited</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>= Wumpus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1,1</th>
<th>2,1</th>
<th>3,1</th>
<th>4,1</th>
<th>1,2</th>
<th>2,2</th>
<th>3,2</th>
<th>4,2</th>
<th>1,3</th>
<th>2,3</th>
<th>3,3</th>
<th>4,3</th>
<th>1,4</th>
<th>2,4</th>
<th>3,4</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>4,1</td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>3,3</td>
<td></td>
</tr>
<tr>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>4,4</td>
<td></td>
</tr>
</tbody>
</table>

$P[1][1] = false;$ $B[1][1] = false;$ $P[2][1] = false;$ $B[2][1] = true;$ $P[1][2] = false;$
\[
P[1][1] = false; \quad B[1][1] = false; \\
P[2][1] = false; \quad B[2][1] = true; \\
P[1][2] = false; \
\]

Legend
- **A** = Agent
- **B** = Breeze
- **G** = Glitter, Gold
- **OK** = Safe square
- **P** = Pit
- **S** = Stench
- **V** = Visited
- **W** = Wumpus
\[\begin{array}{cccc}
1,4 & 2,4 & 3,4 & 4,4 \\
1,3 & 2,3 & 3,3 & 4,3 \\
1,2 & \text{A} & 2,2 & \text{P}? \\
1,1 & \text{V} & 2,1 & \text{B} \\
\end{array} \]

\[
\text{A} = \text{Agent} \\
\text{B} = \text{Breeze} \\
\text{G} = \text{Glitter, Gold} \\
\text{OK} = \text{Safe square} \\
\text{P} = \text{Pit} \\
\text{S} = \text{Stench} \\
\text{V} = \text{Visited} \\
\text{W} = \text{Wumpus} \\
\]

\[
P[1][1] = \text{false}; \quad B[1][1] = \text{false}; \\
P[2][1] = \text{false}; \quad B[2][1] = \text{true}; \\
P[1][2] = \text{false}; \\
\]

<table>
<thead>
<tr>
<th></th>
<th>1,4</th>
<th>2,4</th>
<th>3,4</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3</td>
<td>2,3</td>
<td>3,3</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>2,2</td>
<td>P?</td>
<td>3,2</td>
<td>4,2</td>
</tr>
<tr>
<td>1,1</td>
<td></td>
<td></td>
<td>3,1</td>
<td>4,1</td>
</tr>
</tbody>
</table>

- A = Agent
- B = Breeze
- G = Glitter, Gold
- OK = Safe square
- P = Pit
- S = Stench
- V = Visited
- W = Wumpus

\[
P[1][1] = false; \quad B[1][1] = false;
\]
\[
P[2][1] = false; \quad B[2][1] = true;
\]
\[
P[1][2] = false; \quad B[1][2] = true;
\]
<table>
<thead>
<tr>
<th></th>
<th>1,4</th>
<th>2,4</th>
<th>3,4</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3</td>
<td>P?</td>
<td>2,3</td>
<td>3,3</td>
<td>4,3</td>
</tr>
<tr>
<td>1,2</td>
<td></td>
<td>2,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td></td>
<td></td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>1,</td>
<td></td>
<td></td>
<td></td>
<td>4,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,4</th>
<th>2,4</th>
<th>3,4</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3</td>
<td>P?</td>
<td>2,3</td>
<td>3,3</td>
</tr>
<tr>
<td>1,2</td>
<td></td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td></td>
<td></td>
<td>3,1</td>
</tr>
<tr>
<td>1,</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1,4</th>
<th>2,4</th>
<th>3,4</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3</td>
<td>P?</td>
<td>2,3</td>
<td>3,3</td>
<td>4,3</td>
</tr>
<tr>
<td>1,2</td>
<td></td>
<td>2,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td></td>
<td></td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>1,</td>
<td></td>
<td></td>
<td></td>
<td>4,1</td>
</tr>
</tbody>
</table>

\[
P[1][1] = false; \quad B[1][1] = false;
\]
\[
P[2][1] = false; \quad B[2][1] = true;
\]
\[
P[1][2] = false; \quad B[1][2] = true;
\]

- \(A\) = Agent
- \(B\) = Breeze
- \(G\) = Glitter, Gold
- \(OK\) = Safe square
- \(P\) = Pit
- \(S\) = Stench
- \(V\) = Visited
- \(W\) = Wumpus
• A pit causes a breeze in all neighboring squares.
• Each square other than [1,1] contains a pit with probability 0.2.
Diagnostic rule: Toothache \Rightarrow Cavity
Diagnostic rule: \(\text{Toothache} \Rightarrow \text{Cavity} \)

\(\text{Toothache} \Rightarrow \text{Cavity} \lor \text{GumProblem} \lor \text{Abcess} \lor \ldots \)
Diagnostic rule: \(\text{Toothache} \Rightarrow \text{Cavity} \)

Toothache \(\Rightarrow \) Cavity \(\lor \) GumProblem \(\lor \) Abcess \(\lor \) ...

Causal rule: \(\text{Cavity} \Rightarrow \text{Toothache} \)
Approach

- Representing uncertain information
- Reasoning with uncertain information
Uncertainty
Sources of Uncertainty

Partial Observability

Nondeterminism
Sources of Uncertainty

Partial Observability and Nondeterminism
Probability
WARNING!

MATH AHEAD
Possible Worlds

Hungry=true, Cranky=false

Hungry=false, Cranky=true

Hungry=true, Cranky=true

Hungry=false, Cranky=false
Possible Worlds

Hungry \lor Cranky

- Hungry=true, Cranky=false
- Hungry=false, Cranky=true
- Hungry=true, Cranky=true
- Hungry=false, Cranky=false
Possible Worlds

Hungry \Rightarrow Cranky

- Hungry=true, Cranky=false
- Hungry=false, Cranky=true
- Hungry=false, Cranky=false
Possible Worlds

• Logical assertions rule out possible worlds
Possible Worlds

• Logical assertions rule out possible worlds
• Probabilistic assertions talk about how probable (likely) the possible worlds are
Sample Space

• In probability theory, the set of all possible worlds is called the sample space:
 \[\Omega = \{ \omega_i \} \]

• Possible worlds \(\omega_i \) are:
 • Mutually exclusive
 • Exhaustive
\[\Omega = \{ \omega_i \} = \{ (1,1), (1,2), (2,1), (3,1), \ldots \} \]
Probability Model

• Assigns a numerical probability $P(\omega)$ to each possible world*, such that:

\[
0 \leq P(\omega) \leq 1 \\
\sum_{\omega \in \Omega} P(\omega) = 1
\]

*Discrete, countable set of worlds
Where Do Probabilities Come From?

- Assigns a numerical probability $P(\omega)$ to each possible world*, such that:

$$0 \leq P(\omega) \leq 1$$

$$\sum_{\omega \in \Omega} P(\omega) = 1$$

*Discrete, countable set of worlds
Degrees of Belief

- The degree to which an agent believes a possible world is the actual world
 - From 0: certainly not the case (i.e., false)
 - To 1: certainly is the case (i.e., true)
- Could come from statistical data, general principles, combination of evidence, ...
Probability Model

• Assigns a numerical probability $P(\omega)$ to each possible world*, such that:

\[0 \leq P(\omega) \leq 1 \]

\[\sum_{\omega \in \Omega} P(\omega) = 1 \]

*Discrete, countable set of worlds
$P(\omega_i) = 1/36$ for all $\omega_i \in \Omega$
\[P(\omega_i) = \frac{2}{36} \text{ if } \omega_i \in \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\} \]

\[P(\omega_i) = \frac{2}{90} \text{ otherwise} \]
Propositions (Events)

• A proposition (event) corresponds to the set of possible worlds in which the proposition holds

\[P(\phi) = \sum_{\omega \in \phi} P(\omega) \]
\[P(\text{Total} = 11) = P((5, 6)) + P((6, 5)) = \frac{1}{36} + \frac{1}{36} = \frac{1}{18} \]
\[P(Doubles) = \frac{1}{4} \]

\[P((1, 1)) + P((2, 2)) + P((3, 3)) + P((4, 4)) + P(5, 5) + P((6, 6)) = \frac{1}{4} \]
Probability (so far)

- Sample space (possible worlds)
- Probability model (degrees of belief in worlds)
- Propositions (subsets of worlds in which proposition holds)
Programming Language for Uncertainty

Propositions + Probabilities \implies Probability Statements
Unconditional (Prior) Probabilities

• Degrees of belief in propositions in the absence of any other information

\[P(Doubles) = \frac{1}{4} \]

\[P(cavity) = 0.2 \]
Conditional (Posterior) Probability

- Degree of belief in a proposition given some information (evidence)

\[P(SnakeEyes \mid Die_1 = 1) = \frac{1}{4} \]
\[P(\text{cavity} \mid \text{toothache}) = 0.6 \]

- Whenever evidence is true and we have no further information, conclude probability of proposition
Conditional Probability

\[P(a \mid b) = \frac{P(a \land b)}{P(b)} \quad \text{when } P(b) > 0 \]
20 equally likely possible worlds
12 possible worlds where \(b \) is true \(P(b) = 12/20 \)
\(a \) is true in 6 of those 12 \(P(a \mid b) = 6/12 = 1/2 \)
20 equally likely possible worlds
12 possible worlds where \(b \) is true \(P(b) = 12/20 \)
6 worlds where \(a \land b \) is true: \(P(a \land b) = 6/20 \)

\[
P(a \mid b) = \frac{P(a \land b)}{P(b)} = \frac{6/20}{12/20} = \frac{1}{2}
\]
Conditional Probability

\[P(a \mid b) = \frac{P(a \land b)}{P(b)} \quad \text{when } P(b) > 0 \]
Product Rule

\[P(a \land b) = P(a \mid b)P(b) \]
Probability

Probability: Degree of belief in possible world

0 \leq P(\omega) \leq 1

\sum_{\omega \in \Omega} P(\omega) = 1

Probability of a proposition: Conditional probability:

P(\phi) = \sum_{\omega \in \phi} P(\omega)

P(a \mid b) = \frac{P(a \land b)}{P(b)} \text{ when } P(b) > 0

P(a \land b) = P(a \mid b)P(b)
Incomplete Information

Factored Representation

Variables & Values (domains)
Random Variables

- Take on values from a domain
- Boolean random variables have domain \{ true, false \}
- Domains can be finite or infinite
 - Discrete, infinite: integers
 - Continuous, infinite: reals
Random Variables

\[\text{Die}_1 : \{1, 2, 3, 4, 5, 6\} \]

\[\text{Total} : \{2, \ldots, 12\} \]

\[\text{Doubles} : \{\text{true, false}\} \]

\[\text{Weather} : \{\text{sunny, rain, cloudy, snow}\} \]
Atomic Propositions

• Restriction on possible values of a random variable (a.k.a. constraint)

• Including statement that a random variable takes on a particular value (i.e., domain restricted to a single value)
Atomic Propositions

Boolean random variables:

\[\text{Doubles} = \text{true} \rightarrow \text{doubles} \]
\[\text{Doubles} = \text{false} \rightarrow \neg \text{doubles} \]

Symbolic (unambiguous) value:

\[\text{Weather} = \text{sunny} \rightarrow \text{sunny} \]

Ordered domains:

\[50 \leq \text{Weight} < 100 \]
\[\text{NumberOfAtomsInUniverse} \geq 10^{70} \]
Connectives

Same connectives as propositional logic:

\(\land, \lor, \Rightarrow, \Leftrightarrow \)

\(Cavity = \{ \text{true, false} \} \)
\(Toothache = \{ \text{true, false} \} \)
\(Age = \{ \text{baby, child, teen, adult, senior} \} \)

\(P(cavity \mid \neg toothache \land \text{teen}) = 0.1 \)

\(P(Cavity = \text{true} \mid Toothache = \text{false} \land Age = \text{teen}) = 0.1 \)
The Language of Probability Assertions

- Random variables (and domains)
- Atomic propositions:
 - $Var = value$ (or $<, \leq, >, \geq$)
- Connectives
Probabilities and Propositions

\[P(\phi) = \sum_{\omega \in \phi} P(\omega) \]
The Language of Probability Assertions

Weather : \{sunny, rain, cloudy, snow\}

\[P(Weather = \text{sunny}) = 0.6 \]
\[P(Weather = \text{rain}) = 0.1 \]
\[P(Weather = \text{cloudy}) = 0.29 \]
\[P(Weather = \text{snow}) = 0.01 \]
Probability Distributions

- Describe the probabilities of all the possible values of a random variable

\[P(\text{Weather} = \text{sunny}) = 0.6 \]
\[P(\text{Weather} = \text{rain}) = 0.1 \]
\[P(\text{Weather} = \text{cloudy}) = 0.29 \]
\[P(\text{Weather} = \text{snow}) = 0.01 \]

\[\mathbf{P}(\text{Weather}) = \langle 0.6, 0.1, 0.29, 0.01 \rangle \]
Joint Distributions

- Distributions over multiple variables
- Describe probabilities of all combinations of the values of the variables
Joint Distributions

\[P(\text{Weather, Cavity}) \]

<table>
<thead>
<tr>
<th>Weather</th>
<th>Cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>true</td>
</tr>
<tr>
<td>sunny</td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td></td>
</tr>
<tr>
<td>cloudy</td>
<td></td>
</tr>
<tr>
<td>snow</td>
<td></td>
</tr>
</tbody>
</table>
Joint Distributions

\[P(\text{sunny}, \text{Cavity}) \]

<table>
<thead>
<tr>
<th>Weather</th>
<th>Sunny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity</td>
<td>True</td>
</tr>
</tbody>
</table>

\[P(\text{sunny}, \text{Cavity}) \]
Joint Distributions

\[P(\text{sunny, cavity}) \]

<table>
<thead>
<tr>
<th>Weather</th>
<th>sunny</th>
<th>Cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>true</td>
</tr>
</tbody>
</table>

\[P(\text{sunny, cavity}) = P(\text{sunny, cavity}) = P(\text{sunny} \land \text{cavity}) \]
Joint Distributions

- Distributions over multiple variables
- Describe probabilities of all combinations of the values of the variables
Conditional Distribution

\[P(X \mid Y) \] gives the values of \[P(X = x_i \mid Y = y_i) \]
for each \(i, j \) pair
Continuous Distributions

- Probability density functions (PDFs)

\[P(x) = \lim_{dx \to 0} \frac{P(x \leq X \leq x + dx)}{dx} \]
Full Joint Probability Distribution

- Joint probability distribution over all the random variables
- Probabilities for every possible combination of values assigned to random variables
- Probabilities for every possible world
Full Joint Probability Distribution

\[P(Cavity, Toothache, Weather) \]

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬toothache</th>
<th>cavity</th>
<th>¬cavity</th>
<th>cavity</th>
<th>¬cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cloudy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>snow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Programming Language for Knowledge 3.0

- Probabilities
- Language of probability assertions
- Distributions, conditional distributions, joint distributions, full joint distributions
SO WHAT!
THE GOOD, THE MAD AND THE UGLY

EDITED BY STEFAN SCHRAJER
Probabilistic Inference
Probabilistic Inference

• Computing posterior probabilities for propositions given prior probabilities and observed evidence
\[P(\text{Cavity}, \text{Toothache}, \text{Catch}) \]

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>\negtoothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>\negcatch</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>\negcatch</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td>\negcavity</td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>\negcavity</td>
<td>0.144</td>
<td>0.576</td>
</tr>
</tbody>
</table>
Probability of a Proposition

\[P(\text{cavity} \lor \text{toothache}) = 0.28 \]

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>(\neg\text{toothache})</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{cavity}</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>\text{(\neg\text{cavity})}</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>0.144</td>
<td>0.576</td>
</tr>
</tbody>
</table>
Probability of a Proposition

\[P(\text{cavity} \land \text{toothache}) = 0.12 \]

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬catch</td>
<td>0.012</td>
<td>0.072</td>
</tr>
<tr>
<td>cavity</td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>¬cavity</td>
<td>0.008</td>
<td>0.576</td>
</tr>
</tbody>
</table>

Here, the probability of having a cavity and toothache together is 0.12.
Conditional Probability

\[
P(cavity \mid toothache) = \frac{P(cavity \land toothache)}{P(toothache)}
\]

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬toothache</th>
<th>catch</th>
<th>¬catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>cavity</td>
<td>0.108</td>
<td>0.012</td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>¬cavity</td>
<td>0.016</td>
<td>0.064</td>
<td>0.144</td>
<td>0.576</td>
</tr>
</tbody>
</table>
Conditional Probability

\[
P(\text{cavity} \mid \text{toothache}) = \frac{P(\text{cavity} \land \text{toothache})}{P(\text{toothache})} = 0.12
\]

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬catch</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td>catch</td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>¬catch</td>
<td>0.144</td>
<td>0.576</td>
</tr>
</tbody>
</table>
Conditional Probability

\[P(\text{cavity} \mid \text{toothache}) = \frac{P(\text{cavity} \land \text{toothache})}{P(\text{toothache})} = \frac{0.12}{0.2} \]

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>(\neg)toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>cavity</td>
<td>catch</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td>(\neg)catch</td>
<td>0.012</td>
</tr>
<tr>
<td>(\neg)cavity</td>
<td>catch</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>(\neg)catch</td>
<td>0.008</td>
</tr>
</tbody>
</table>
Conditional Probability

\[P(\text{cavity} \mid \text{toothache}) = \frac{P(\text{cavity} \land \text{toothache})}{P(\text{toothache})} = 0.6 \]

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬catch</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td>cavity</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬cavity</td>
<td>0.016</td>
<td>0.064</td>
</tr>
</tbody>
</table>
Conditional Probability

\[
P(\text{cavity} \mid \text{toothache}) = \frac{P(\text{cavity} \land \text{toothache})}{P(\text{toothache})} = 0.6
\]

\[
P(\neg\text{cavity} \mid \text{toothache}) = \frac{P(\neg\text{cavity} \land \text{toothache})}{P(\text{toothache})}
\]
Conditional Probability

\[
P(\neg \text{cavity} \mid \text{toothache}) = \frac{P(\neg \text{cavity} \land \text{toothache})}{P(\text{toothache})} = 0.4
\]

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬catch</td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>cavity</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td>¬cavity</td>
<td>0.144</td>
<td>0.576</td>
</tr>
</tbody>
</table>
\[P(\text{cavity} \mid \text{toothache}) = \frac{P(\text{cavity} \land \text{toothache})}{P(\text{toothache})} = 0.6 \]

\[P(\neg \text{cavity} \mid \text{toothache}) = \frac{P(\neg \text{cavity} \land \text{toothache})}{P(\text{toothache})} = 0.4 \]

\[P(\text{Cavity} \mid \text{toothache}) = \langle 0.6, 0.4 \rangle \]
Probabilistic Inference

\[P(\text{cavity} \mid \text{toothache}) = \frac{P(\text{cavity} \land \text{toothache})}{P(\text{toothache})} = 0.6 \]

\[P(\neg\text{cavity} \mid \text{toothache}) = \frac{P(\neg\text{cavity} \land \text{toothache})}{P(\text{toothache})} = 0.4 \]
Normalization

\[P(\text{cavity} | \text{toothache}) = \alpha P(\text{cavity} \land \text{toothache}) = \alpha \ 0.12 \]

\[P(\neg\text{cavity} | \text{toothache}) = \alpha P(\neg\text{cavity} \land \text{toothache}) = \alpha \ 0.08 \]
Normalization

\[P(\text{cavity} \mid \text{toothache}) = \alpha P(\text{cavity} \land \text{toothache}) = \alpha 0.12 \]

\[P(\neg \text{cavity} \mid \text{toothache}) = \alpha P(\neg \text{cavity} \land \text{toothache}) = \alpha 0.08 \]

\[P(\text{Cavity} \mid \text{toothache}) = \alpha \langle 0.12, 0.08 \rangle \]
Normalization

\[P(\text{cavity} \mid \text{toothache}) = \alpha P(\text{cavity} \land \text{toothache}) = \alpha 0.12 \]

\[P(\neg \text{cavity} \mid \text{toothache}) = \alpha P(\neg \text{cavity} \land \text{toothache}) = \alpha 0.08 \]

\[P(\text{Cavity} \mid \text{toothache}) = \frac{1}{0.12 + 0.08} \langle 0.12, 0.08 \rangle \]
Normalization

\[P(\text{cavity} \mid \text{toothache}) = \alpha P(\text{cavity} \land \text{toothache}) = \alpha 0.12 \]

\[P(\neg\text{cavity} \mid \text{toothache}) = \alpha P(\neg\text{cavity} \land \text{toothache}) = \alpha 0.08 \]

\[P(\text{Cavity} \mid \text{toothache}) = \langle 0.6, 0.4 \rangle \]

We didn’t know \(P(\text{toothache}) \)!
Inference
(Single Variable)

\[
P(X \mid e) = \alpha P(X, e) = \alpha \sum_y P(X, e, y)
\]

Query variable \(X : \text{Domain}(X) = \{x_1, \ldots, x_m\}\)

Evidence variables \(E : \{E_1, \ldots, E_k\}\)

Observations \(e : \{e_1, \ldots, e_k\} \text{ s.t. } E_i = e_i\)

Unobserved variables \(Y : \{Y_1, \ldots, Y_l\}\)

\(\text{Domain}(Y_i) = \{y_{i,1}, \ldots, y_{i,n_i}\}\)
Inference (Single Variable)

\[P(X \mid e) = \alpha P(X, e) = \alpha \sum_y P(X, e, y) \]

For each possible value \(x_i \) for \(X \)

For each possible combination of values \(y \) for \(Y \)

Add \(P(x_i, e, y) \)

Result: vector \(P(X \mid e) = \langle P(x_i \mid e) \rangle = \langle P(X = x_i \mid e) \rangle \)
Inference (Single Variable)

\[P(X \mid e) = \alpha P(X, e) = \alpha \sum_y P(X, e, y) \]

For each possible value \(x_i \) for \(X \)

For each possible combination of values \(y \) for \(Y \)

Add \(P(x_i, e, y) \)

\[P(X = x_i, E_1 = e_1, \ldots, E_k = e_k, \ldots, Y_1 = y_{1, i_1}, \ldots, Y_l = y_{l, i_l}) \]

Result: vector \(P(X \mid e) = \langle P(x_i \mid e) \rangle = \langle P(X = x_i \mid e) \rangle \)
Inference (Single Variable)

$$P(X \mid e) = \alpha P(X, e) = \alpha \sum_y P(X, e, y)$$

```c
int m;    // Number of values in domain of query variable X
int k;    // Number of evidence variables E
int[k] e; // e[i]: index of i’th evidence value in domain of Ei
int[l] n; // n[i]: number of values in domain of Yi
double[l][n[l]] D; // D[i][j]: j’th value of domain for Yi

for i from 1 to m
    PXe[i] = 0
    for i1 from 1 to n[1]
        for i2 from 1 to n[2]
            ...
            for il from 1 to n[l]
                PXe[i] += JPDF[i][e[1]]...[e[k]][D[1][i1]]...[D[l][il]]
return PXe // vector of length m
```

Full joint prob. dist.

l nested loops
Inference
(Single Variable)

\[P(X \mid e) = \alpha P(X, e) = \alpha \sum_y P(X, e, y) \]

Time Complexity \(O(m^n) \)

Space Complexity \(O(m^n) \)
Summary

- Uncertainty arises from partial observability and/or non-determinism
- Probability model (for us) assigns a degree of belief to possible worlds; satisfies axioms of probability theory
- Probabilities:
 - Unconditional (prior)
 - Conditional (posterior, given evidence)
Summary

• Factored representation: Random variables, $Var=value$ (atomic props), connectives

• Distributions: probabilities for all the values of a variable

• Set of variables: Joint distribution

• Inference: Computing posterior (conditional) probabilities for propositions given observed evidence
For Next Time:
AIMA Ch 14-14.5