CSUG

- Tutoring: bit.ly/csug-tutoring
- League of Legends LAN Party:
 - Sat 2/2 @ 2PM in CSB 209
 - $2 to benefit Big Brothers Big Sisters
- bit.ly/URLoL
ULW

Topics due to me by tomorrow
First draft due Mar 1
Questions, more feedback, etc.?
Get in touch early!
Project 1

- Code posted on BB
- Everyone should have it working
Local Search
States + Actions + Transition Model
= State Space

The set of all states reachable from the initial state by some sequence of actions
Solution graphSearch(Problem p) {
 Set<Node> frontier = new Set<Node>(p.getInitialState());
 Set<Node> explored = new Set<Node>();
 while (true) {
 if (frontier.isEmpty()) {
 return null;
 }
 Node node = frontier.selectOne();
 if (p.isGoalState(node.getState())) {
 return node.getSolution();
 }
 explored.add(node);
 for (Node n : node.expand()) {
 if (!explored.contains(n)) {
 frontier.add(n);
 }
 }
 }
}
Search Strategies

Uninformed

- No additional information about states

Informed (Heuristic)

- Can identify “promising” states
Search Strategies

<table>
<thead>
<tr>
<th>Complet</th>
<th>BFS</th>
<th>DFS</th>
<th>IDS</th>
<th>Greedy</th>
<th>A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓†</td>
</tr>
<tr>
<td>Optimal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓†</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^d)$</td>
<td>$O(b^m)$</td>
<td>$O(b^d)$</td>
<td>$O(b^m)$</td>
<td>$O(b^{ed})$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^d)$</td>
<td>$O(bm)$</td>
<td>$O(bd)$</td>
<td>$O(b^m)$</td>
<td>$O(b^d)$</td>
</tr>
</tbody>
</table>

* If step costs are identical
† With an admissible heuristic
Systematic Search

• Enumerates paths from initial state
• Records what alternatives have been explored at each point in the path

Good: Systematic \rightarrow Exhaustive

Bad: Exponential time and/or space
Local Search
N-Queens as State-Space Search Problem

- State
- Actions
- Transition Model
- Initial State
- Goal State(s)/Test
- Step costs
Local Search

• Evaluates and modifies a small number of current states

• Does not record history of search (paths, explored set, etc.)

Good: Very little (constant) memory

Bad: May not explore all alternatives

=> Incomplete
State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {

 if (p.isGoalState(node.getState())) {
 return node.getState();
 }

 for (Node n : node.expand()) {

 }
 }
}

State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {

 if (p.isGoalState(node.getState())) {
 return node.getState();
 }

 for (Node n : node.expand()) {
 ???
 }
 }
}
Solution graphSearch(Problem p) {
 Set<Node> frontier = new Set<Node>(p.getInitialState());
 Set<Node> explored = new Set<Node>();
 while (true) {
 if (frontier.isEmpty()) {
 return null;
 }
 Node node = frontier.selectOne();
 if (p.isGoalState(node.getState())) {
 return node.getSolution();
 }
 explored.add(node);
 for (Node n : node.expand()) {
 if (!explored.contains(n)) {
 frontier.add(n);
 }
 }
 }
}

State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 if (p.isGoalState(node.getState())) {
 return node.getState();
 }
 for (Node n : node.expand()) {
 if (p.value(n) >= p.value(node)) {
 node = n;
 }
 }
 }
}
State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 if (p.isGoalState(node.getState())) {
 return node.getState();
 }

 for (Node n : node.expand()) {
 if (p.value(n) >= p.value(node)) {
 node = n;
 }
 }
 }
}
State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 if (p.isGoalState(node.getState())) {
 return node.getState();
 }
 Node next = null;
 for (Node n : node.expand()) {
 if (p.value(n) >= p.value(node)) {
 next = n;
 }
 }
 if (next == null) {
 return node.getState();
 } else {
 node = next;
 }
 }
}
State localSearch(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 Node next = null;
 for (Node n : node.expand()) {
 if (p.value(n) >= p.value(node)) {
 next = n;
 }
 }
 if (next == null) {
 return node.getState();
 } else {
 node = next;
 }
 }
}
Hill-climbing Search

- Move through state space in the direction of increasing value ("uphill")

State-space landscape
State: $[r_0, \ldots, r_7]$

Action: $<i, r_i>$

$h(n) = \# \text{ of pairs of queens attacking each other}$
\[h(n) = 17 \]
\[h(n) = 17 \]
\[h(n) = 12 \]
State hillClimb(Problem p) {
 Node node = new Node(p.getInitialState());
 while (true) {
 Node next = null;
 for (Node n : node.expand()) {
 if (p.value(n) >= p.value(node)) {
 next = n;
 }
 }
 if (next == null) {
 return node.getState();
 } else {
 node = next;
 }
 }
}
\[h(n) = 1 \]
current state

objective function

shoulder

global maximum

local maximum

“flat” local maximum

state space
If at first you don’t succeed, try again.
State randomRestart(Problem p) {
 while (true) {
 p.setInitialState(new random State);
 State solution = hillClimb(p);
 if (p.isGoal(solution)) {
 return solution;
 }
 }
}

Does it work? Yes (but)

How well does it work?
Prob of success = p Expected # of tries = $1/p$
 = 0.14 ≈ 7
State randomRestart(Problem p) {
 while (true) {
 p.setInitialState(new random State);
 State solution = hillClimb(p);
 if (p.isGoal(solution)) {
 return solution;
 }
 }
}
Randomness in Search

Pure random walk
Complete, but horribly slow

Greedy local search
Incomplete, but fast
Simulated Annealing

• Follow landscape down towards global minimum of state cost function

• Occasionally allow an upward move ("shake") to get out of local minima

• Don’t shake so hard that you bounce out of global minimum
Annealing

• A heat treatment that alters the microstructure of a material causing changes in properties such as strength and hardness and ductility

• High temp => Atoms jumping around

• Low temp => Atoms settle into position
State simulatedAnnealing(Problem p, Schedule schedule) {
 Node node = new Node(p.getInitialState());
 for (t=1; true; t++) {
 Number T = schedule(t);
 if (T == 0) {
 return node;
 }
 Node next = randomly selected successor of node
 Number deltaE = p.cost(node) - p.cost(next);
 if (deltaE > 0 || Math.exp(-deltaE/T) > new Random(1)) {
 node = next;
 }
 }
}

\[
e = \frac{\Delta E}{T}
\]
$y = e^{-\Delta E}$
Simulated Annealing

Complete? No.

Optimal? No.

“But if the schedule lowers T slowly enough, simulated annealing will find a global minimum with probability approaching one.”
Local Search

- Evaluates and modifies a small number of current states
- Does not record history of search

Good: Very little (constant) memory

Bad: May not explore all alternatives

=> Incomplete
Local Beam Search

• During hill-climbing:
 • Keep track of k states rather than just one
 • At each step, generate all successors of all k states (k^*b of them)
 • Keep the most promising k of them
Local Search
Parallel Local Search
Parallel Local Search

-8 -5 -7 -2

4 6 9 1

-3 3 0 -9
Local Beam Search
Local Beam Search
“And this report just in. ... Apparently, the grass is greener on the other side.”
Local Beam Search

- During hill-climbing:
 - Keep track of k states rather than just one
 - At each step, generate all successors of all k states (k^b of them)
 - Keep the most promising k of them
Mitosis

DNA replication → Mitosis → Two diploid cells
Meiosis

Interphase

Meiosis I

Homologous Chromosomes

Daughter Nuclei

Meiosis II

Daughter Nuclei II

Nuclei II

Wikipedia
Genetic Algorithms

• Start with \(k \) random states
• Select pairs of states and have them “mate” to produce “offspring”
• Most fit (highest-scoring) individuals reproduce more often
Genetic Algorithms

• States encoded as “chromosomes” (linear sequences, a.k.a. strings)

• During mating:
 • Crossover: swap chunks of code
 • Mutation: randomly change bits of code
Genetic Algorithms

• States encoded as “chromosomes” (linear sequences, a.k.a. strings)

• During mating:
 • Crossover: swap chunks of code
 • Mutation: randomly change bits of code
GA Summary

• A version of stochastic local beam search with a special way to generate successor states (motivated by a naive biology analogy)

• “Much work remains to be done to identify the conditions under which genetic algorithms perform well.”
- **Evaluates and modifies a small number of current states**
- **Does not record history of search**

Hill-climbing

Good: Very little (constant) memory

Bad: May not explore all alternatives

=> Incomplete

Local Beam Search

Simulated Annealing

Genetic Algorithms

- Evaluates and modifies a small number of current states
- Does not record history of search

Good: Very little (constant) memory

Bad: May not explore all alternatives

=> Incomplete
For next time:
AIMA 5.0–5.2.2

Quiz?

Project 1: Get Going!