Midterm Exam

CSC 252
26 February 2009

Directions; PLEASE READ

This exam has 7 questions, all of which have subparts. Each question indicates its point
value. The total is 90 points. Questions 3(d) and 7(e) are for extra credit only, and not
included in the 90; they won’t factor into your exam score, but may help to raise your letter
grade at the end of the semester.

This is a closed-book exam. You must put away all books and notes (except for a dictio-
nary, if you want one). Please confine your answers to the space provided.

In the interest of fairness, I will decline to answer questions during the exam. If you are
unsure what a question is asking, make a reasonable assumption and state it as part of your
answer.

You must complete the exam in class. [ will collect any remaining exams promptly at
4:40 pm. Good luck!

1. (3 points) Put your name on every page (so if I lose a staple I won'’t lose your answers).
2. Warm-up.

(a) (3 points) How many bytes are in a kilobyte?
Answer: 1024.
(b) (3 points) How many milliseconds are in a second?

Answer: 1000.

(c¢) (3 points) To the nearest power of ten, how many milliseconds does it take to
access data on a modern hard disk?

Answer: About 10.
3. Integer arithmetic.

(a) (4 points) Express the bit pattern 101101101001 0101 in hexadecimal.
Answer: 0xb695.

(b) (6 points) Interpret this bit pattern as a 16-bit 2’s complement number. What is
its decimal value?
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Answer: Flipping the bits and adding one we get 01001001 01101011. So the
answer is (—1) x (4 x 4096 + 9 x 256 4+ 6 x 16 + 11) = —18795.

(8 points) What is the largest magnitude negative number that can be added to
this value without causing 16-bit 2’s complement overflow? (Feel free to calculate
your answer in decimal or in hex.)

Answer: We want to add up to the largest magnitude negative number that can
be expressed in 16-bit 2’s complement, namely —2' = —32768. So the answer is
—32768 — (—18795) = —13973.

Alternatively, if you prefer to think in bit patterns, you can “fill in the holes”
in the original value, flip the “sign” bit, and add one: 1100100101101011 =
0xc96b. When this is added to the original bit pattern we’ll get 8000, which is
the largest magnitude negative number expressible.

(Extra Credit; 10 points max) Prove that first decrementing and then comple-
menting is equivalent to complementing and then incrementing. That is, for any
signed value x, the C expressions “x+1 and ~(x-1) yield identical results.

Answer: Assume we are working with n-bit numbers. Suppose —2"7! + 1 <
xr < 2"! — 1. In this range, —(z — 1) does not overflow, and equals ~(z — 1) + 1.
Subtracting 1 from both terms, we have —x = ~(x — 1). But we also know that
in this range —oz = "2+ 1. So "z +1="(z — 1).

The only values of x we have not considered are the two most negative values,
represented by the binary strings 10...00 and 10...01. It is easy to verify that the
equality holds for these as well, though the computations above would overflow.

4. Floating point.

(a)

(7 points) Give the bit pattern for the value —9.25, encoded as a single-precision
IEEE floating point number. Remember that single precision has 8 bits of expo-
nent (with a bias of 127) and 23 bits of significand.

Answer: —1001.01 = —1.00101 x 23 = —1.00101 x 230-127
significand = 001 0100 0000 0000 0000 0000

sign = 1

exponent = 130 = 10000010

answer = 1 10000010 001 0100 0000 0000 0000 0000

= 11000001 0001 0100 0000 0000 0000 0000 = 0xc1140000.

(3 points) Which is larger, when interpreted as a single-precision IEEE floating-
point number, 0x43210000 or 0x123400007 Justify your answer. (Hint: this is
not a difficult problem!)

Answer: 0x43210000. As long as the sign bit is zero, floating-point numbers
are ordered the same as integers with the same bit pattern.



5. C arrays. Consider the following global variable declarations in C:

int A[3]1[3] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
// contiguous layout

int r1[3] = {1, 2, 33};

int r2[3] = {4, 5, 6};

int r3[3] = {7, 8, 9};

int *B[3] = {r1, r2, r3};
// row-pointer layout

(a) (3 points) What syntax would you use to access element 1 of row 2 (the value 8)
in each of A and B?

Answer: The same: A[2] [1] and B[2] [1].
(b) (7 points) Suppose we have declared

int *p = A[0];
int **xq = B;

Show how to access the same elements of A and B (the 8s) using pointer arithmetic
on p and q, respectively.

Answer: *(p+7); *(x(gq+2)+1).

6. ISA and assembler.

(a) (3 points) What is the most likely purpose of the x86 instruction
movl 8(%ebp), %eax? (Express the answer in high-level terms if you can.)

Answer: Load an argument of the current subroutine (specifically, the first
argument) into register %eax.

(b) (10 points) Consider the following C code (left) and assembler (right):

struct S { .globl _foo
int a; _foo:
int b; movl $0, Y%ecx
int c; L3:
}; movl Yecx, %edx
imull $12, Y%edx
void foo(struct S[] A, int v) { addl 4(%esp), %hedx
int i; movl 8(%esp), %eax
for (i = 0; i < 10; i++) { movl ‘eax, (%hedx)
Ali].a = v; addl $1, %ecx
} cmpl $9, Yecx
¥ jle L3
ret

The assembler is a correct but sub-optimal translation of the C. Identify two ways
the compiler could make the loop faster. (You don’t have to show new code; just
sketch the answer in words.)



Answer: (1) Hoist invariants out of the loop. Trivially, there is no need to load
%heax from memory in every iteration. We could load it before the loop and just
keep it in the register. With the allocation of one additional register (which we
would need to save at the beginning of the routine, because we’ve already used
all three caller-saves registers), we could also keep the address of A in a register,
and avoid loading it on every iteration.

(2) Strength reduce the index calculation. Instead of setting %edx to 12 times
%hecx on every iteration, add 12 to it at the bottom of the loop. If we do that, we
could test for %edx == 108 at the bottom of the loop, instead of testing for %ecx
== 9. Then we wouldn’t need %ecx at all, and could use it instead of a caller-
saves register to hold the address of A. Better yet, we could initialize %ecx with
the address of A and %edx with the address of the last element to be modified, at
which point we wouldn’t have to add the two registers in every iteration.

(3) Unroll the loop.

You didn’t have to show new code to get full credit on this question, but if you
did the version without unrolling might look like this:

.globl _foo

_foo:
movl 4(%esp), hecx
movl Y%ecx, %edx
addl $108, Yedx
movl 8(%esp), ‘%heax

L3:
movl Y%eax, (%ecx)
addl $12, %ecx
cmpl  %edx, ‘%ecx
jle L3
ret

(5 points) The MIPS, SPARC, and PowerPC instruction sets have 32 integer
registers each. The x86 has only 8. Why?

Answer: Because the x86 was designed a long time ago, when it was more
important to economize on the number of bits devoted to register names in each
instruction than to provide the compiler with a lot of scratch registers.

7. Processor implementation.

(a)

(b)

(3 points) What is the principal source of pipeline bubbles in a modern processor?
Answer: Cache misses.
(8 points) Explain the basic idea behind out-of-order execution.

Answer: Instead of forcing instructions to execute in order, keep a set of upcom-
ing instructions in the processor, each tagged with an indication of the inputs it
needs. On every cycle, choose one or more instructions whose inputs are available
and execute those instructions, even if there are earlier instructions that have not
yet been able to execute (e.g., because they are waiting on a cache miss).
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(5 points) What is the principal downside of out-of-order execution? Why isn’t
it used in, say, the recent Sun Niagara processors?

Answer: [t requires a lot of bookkeeping, which consumes chip area and, cru-
cially, energy. The increase in performance achieved by out-of-order processing is
significantly less than the increase in energy consumption (and heat dissipation).
The Niagara processor improves performance per joule by using in-order cores.

(6 points) In the pipelined version of the Y86 processor (see next page), the data
memory takes three inputs: a control signal that indicates whether to read, write
or neither in the current cycle; an address signal that indicates the location (if
any) to be accessed; and a data signal that indicates the value (if any) to be
written. Consider the circuit that generates the address signal (the “Addr” box
in the processor diagram). When does it take its input from the valE field of the
M register? When does it take its input from the valA field? What control input
(not shown) does it need to make this decision?

Answer: For push, call, rmmov, and mrmov instructions, Addr tells the memory
to access the location specified by valE. This will have been computed by the
Execute state in the previous cycle, by adding 4 to %esp (in the case of push and
call), or (for rmmov and mrmov) by adding a displacement (possibly zero) to a
value from a register or the immediate field of the instruction. For pop and ret
instructions, Addr tells the memory to access the location specified by valA. All
it needs for a control input is the icode field of the M register.

(Extra Credit; 8 points max) Suppose we were developing a new generation of
Y86 processor. As part of our design effort, we might study programs run on
the current model to find sequences of instructions that are frequently executed
together. For each such sequence, we could introduce a new instruction that does
the work of the entire sequence. We might, for example, replace

mrmov (%ebp), %ebp

ith
rrmov %ebp, %esp wit leave

(as in the x86). Or we might replace

irmov val, regl . .

1, 2
op regl, reg?2 with P vat, reg
Under what circumstances could we expect such extensions to the instruction set

to lead to better performance?

Answer: If every stage of the new instruction can be completed as quickly as the
slowest stage of any existing instruction, then programs should run faster, because
they’ll execute fewer instructions. If the new instruction lengthens the slowest
stage, we’ll have to decide whether the improvement in number of instructions
outweighs the reduction in cycle time (it probably won’t). But the impact may
also be more subtle: By consuming chip area, the new instruction may force the
use of longer wires, which at some point in the future (in a new generation of
chips) may become the bottleneck on cycle time. By increasing the complexity
of instruction encodings, the new instruction (or a set of new instructions) may
preclude subdividing the decode stage and building a deeper pipeline.
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