
CSC 2/453 Dynamic Languages and Software
Development

Chen Ding

Department of Computer Science
University of Rochester

(draft document in preparation)



ii



Chapter 1

Introduction

1.1 Pre-lecture Preparation

1. Consider your answer or someone’s answer that you find by a web search for the following
questions

• What is design?

• What makes one design better than another?

• How is designing software different from designing hardware, buildings, graphical user
interface, etc?

2. Of the software you have used,

• What is your favorite example?

• What are the necessarily qualities for its success?

• Do you have a favorite inventor/designer or a favorite quote?

3. Try downloading the class repository following the instructions in this chapter. Bring to class
any problems and questions.

1.2 What is Design

The content will be added after the lecture.

1.3 Why 2/453

The content will be added after the lecture.

1.4 Characteristics of a Great Designer

The content will be added after the lecture.

iii



iv CHAPTER 1. INTRODUCTION

1.5 Testimonials

These are some of the comments my past students made through the anonymous course evaluation
about my style of teaching in related courses. Since this document is a written record, I include
only the positive comments. Be aware that for almost every course you can find a student who
likes it. Still it is useful to see a few views from the other side of the lecturer table/lectern.

• “[the lectures] make student think in class,”

• “The Prof. is really good at teaching the essence of ideas interactively without getting into
boring details. I learned a lot from the class,”

• “In-class constructive examples are very very helpful. Open, collaborative atmosphere.”

• “I was able to participate very well in the class. The lecture part of where the professor is
speaking and the interactive part where we all collaborate in class to write a class worked
out very well. The balance between the two was very well that I never spaced out.”

• “This is the first time I’ve enjoyed a systems course. It was engaging, challenging, and
attending the lectures was actually nontrivially useful”

• “Working on a large project, planning and working together, was a useful experience. I
appreciated the freedom we had in the work.”

1.6 Grading

• midterm and final exams are 15% each

• the projects total to 60%

• written assignments are 10%

Ruby will be the language used in class instruction and demonstration. However for all projects
students are free to use any programming language of their choice, including non-dynamic languages
C/C++/Java if they choose.

Graphical user interface (GUI) is nice but can take a significant amount of time to implement.
This is not the emphasis of the course. It is preferable if the submitted projects have well-defined
text-based interface. An assignment may specify such interface for automatic testing/grading.

1.7 Class Repository

The class repository is managed by the distributed version control system called Mercurial. It is
distributed because your local machine has a copy of the repository. You check out files from the
local repository and check in changes into it, all on the local machine without connecting to a
network. To communicate between repositories on different machines, you use hg push and hg pull
(hg is the chemical symbol of mercurial).

If you have not used Mercurial before, it is easy to follow one of the many on-line tutorials.
The basic commands you need are as follows.

Before you start, make sure that you have an account on cycle1.csug.rochester.edu. Create
your local repository in a directory, which we use cs253hg as an example. It is easiest to use a
command-line interface through either the terminal program on Linux, Mac OS, or Cygwin on
Windows. The sequence of commands are



1.8. CORE MATERIAL v

mkdir cs253hg
cd cs253hg
hg init

Next link the new repository with the shared class repository on cycle1.csug. Create the file
cs253hg/.hg/hgrc and add the following (if your repository is not on the same network as cycle1,
e.g. on your laptop). Otherwise use file://u/cding/cs253hg instead of the ssh address below. If ssh
is used, you will need to type in your password each time you synchronize with server repository
(your local commits never require a password).

[paths]
default = ssh://[uid]@cycle1.csug.rochester.edu//u/cding/cs253hg

Set up your user name by creating the file in your home directory /.hgrc and add the
following. Note this is not the same file as .hg/hgrc inside cs253hg.

[ui]
username = First, Last <email>

Now you are ready to connect to cycle1.csug and download the content. Inside cs253hg, use
the following two commands first to download the content into the local repository and then check
out the current version of files.

hg pull
hg update

After the two steps, you will see a copy of this draft book in cs253hg/dynbook/.

1.8 Core Material

The core material falls in four categories:

• Languages: lambda, iterator, mix-in, meta-class, type, stream, lazy evaluation.

• Tools and processes: distributed version control, test-driven dev, code coverage, test genera-
tion, type checking, teamwork, code review, software process and lifetime.

• Design and construction: design principles, design patterns, component and composition.

• Dynamic systems: Ruby interpreter, Jruby, web server, memory and caching, other systems
such as WebWork.

1.9 Course Outline

The content will be added after the lecture.



vi CHAPTER 1. INTRODUCTION



Chapter 2

Dynamic Languages

2.1 Pre-lecture Preparation

1. Take a look at the on-line TIOBE programming community index at
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

• How does it quantify usage or popularity?

• Of the top 20 languages, how many of them are dynamic languages? What makes them
dynamic?

2. Try downloading Ruby to your desktop or notebook computer. You need the interpreter ruby,
the interactive shell irb, and the package manager gem. You can also download JRuby, which
is a more recent implementation based on Java. (Ruby will be the language used in class
instruction and demonstration, but students are free to use other programming languages in
assignments).

• Try the following in irb. It should take no more than a few short lines of code.

– Write a hello-world function
– Define a class and create an object
– Inspect files in a directory
– Connect to www.cs.rochester.edu
– Open a dialog box on the screen (JRuby)
– Open a page on your browser

• Can you compose a program interactively?

• Can you write self-inspecting, self-modifying code?

2.2 Main Features

The content will be added after the lecture.

2.3 Dynamic Code Inspection and Construction

The content will be added after the lecture.

vii



viii CHAPTER 2. DYNAMIC LANGUAGES

2.4 More Complex Operations

The content will be added after the lecture.

2.5 Language Popularity Index

The content will be added after the lecture.

2.6 Exercises

1. Can you extend the Ruby Array class to add similar support as in R to construct a continuous
number sequence and to index through an array?

2. Compare the supported operations for arrays in other languages.

3. An array may be large, so it is useful to have a search method. In Ruby, we inquire whether
an array supports a method such as grep. Let’s take a leap of faith and try grep on the
method array. Running Array.public methods.grep ‘‘grep’’ you will find the answer is
no. The returned array is empty. But this seems contradictory. Haven’t we just used grep
on an array?



Bibliography

ix


