
CSC 256/456: Operating Systems

Processes, Signals,
and Pipes

John Criswell!
University of Rochester

1

Syllabus

2

Topics
❖ Processes, Signals, and Pipes!

❖ System calls!

❖ Threads and Inter-process communication (IPC)!

❖ Synchronization and Deadlocks!

❖ Scheduling algorithms!

❖ Memory management!

❖ File systems!

❖ Security and Protection

3

More Topics
❖ Network protocol implementation!

❖ Operating system security!

❖ Hardware support for operating systems!

❖ Multi-processor issues!

❖ Microkernels!

❖ Hypervisors

4

Prerequisites from CSC 252

5

Basic Unix File I/O
❖ Understand what a file descriptor is!

❖ Be able to use the following system calls!

❖ open()!

❖ close()!

❖ read()!

❖ write()!

❖ Further reading: Advanced Programming in the Unix Environment!

❖ Chapter 3: File I/O

6

The Main Event

7

Today
❖ Process management!

❖ Process concept!

❖ Operations on processes!

❖ Signals!

❖ Pipes

8

Programming Assignment #1
❖ Exclusively outside the OS kernel!

❖ Can write and test on the standard Unix system
accounts!

❖ Build a shell (command-line interpreter)!

❖ Support foreground/background processes!

❖ Support pipes!

❖ Support controlling terminals

9

Operating-System User Interface
❖ Command interpreter – special program initiated when

a user first logs on!

❖ Graphical user interface!

❖ Common desktop environment (CDE)!

❖ K desktop environment (KDE)!

❖ GNOME desktop (GNOME)!

❖ Aqua (MacOS X)

10

Processes
❖ Def: A process is an instance of a running program.!

❖ One of the most profound ideas in computer science.!

❖ Not the same as “program” or “processor”!

❖ Process provides each program with two key abstractions:!

❖ Logical control flow!

❖ Each program seems to have exclusive use of the CPU.!

❖ Private address space!

❖ Each program seems to have exclusive use of main memory.!

❖ How are these illusions maintained?!

❖ Process executions interleaved (multitasking)!

❖ Address spaces managed by virtual memory system

11

Process Control Block (PCB)
OS data structure (in kernel memory) for
maintaining information associated with

each process.!

❖ Process state!

❖ Program counter!

❖ CPU registers!

❖ CPU scheduling information!

❖ Memory-management information!

❖ Accounting information!

❖ Information about open files

Pointer for Linked List

Process State

Process ID (pid)

Program Counter

Registers

Exit Status

…

12

Process Creation
❖ When a process (parent) creates a new process (child)!

❖ Execution sequence?!

❖ Address space sharing?!

❖ Open files inheritance?!

❖ … …!

❖ UNIX examples!

❖ fork system call creates new process with a duplicated copy of everything.!

❖ exec system call replaces process’ memory space with a new program!

❖ typically used after a call to fork!

❖ child and parent compete for CPU like two normal processes

13

The fork() system call
Duplicates a process

Linked List Ptr

Process State

Process ID (pid)

Program Counter

Registers

Open Files

…

Linked List Ptr

Process State

Process ID (pid)

Program Counter

Registers

Open Files

…
14

If you connect parents to children with
arrows, what data structure do you get?

15

Process Tree
Parent process creates children processes, which, in turn create other processes,

forming a tree of processes.
init !

(pid=1)

System !
daemon x

System !
daemon z

System !
daemon y

KDE-init !
user 1

sshd!
user 2

shell 1a shell 1b shell 2c

… … … … … …

Unix: fork, exec; Win32API: CreateProcess

16

fork: Creating new processes
• int fork(void)!

❖ creates a new process (child process) that is identical to the calling process (parent
process)!

❖ returns 0 to the child process!
❖ returns child’s pid to the parent process

if (fork() == 0) {!
 printf("hello from child\n");!
} else { !
 printf("hello from parent\n");!
}

Fork is interesting!
(and often confusing)!

because it is called!
once but returns twice

17

exec: Running new programs
• int execl(char *path, char *arg0, char *arg1, …, 0)!

❖ loads and runs executable at path with args arg0, arg1, …!
• path is the complete path of an executable!
• arg0 becomes the name of the process!

❖ typically arg0 is either identical to path, or else it contains only
the executable filename from path!

❖ “real” arguments to the executable start with arg1, etc.!
❖ list of args is terminated by a (char *)0 argument!

❖ returns -1 if error, otherwise doesn’t return!

18

exec() Example
❖ Create a file named foo!

❖ Compile and run the following program

main() {!
 if (fork() == 0) {!
 execl("/usr/bin/ls", "ls", “-al", “/tmp", 0);!
 }!
 wait(NULL);!
 printf(“directory listed\n");!
 exit();!
}

19

exit: Destroying Process
❖ void exit(int status)!

❖ exits a process!

❖ Normally return with status 0!

❖ atexit() registers functions to be executed upon exit

void cleanup(void) {!
 printf("cleaning up\n");!
}!
!
void fork6() {!
 atexit(cleanup);!
 fork();!
 exit(0);!
}

20

wait: Synchronizing with children
❖ int wait (int *child_status)!

❖ suspends current process until one of its children
terminates!

❖ return value is the pid of the child process that
terminated!

❖ if child_status != NULL, then the object it points to
will be set to a status indicating why the child
process terminated

21

Puzzle Time!

22

wait: Synchronizing with children
❖ What does puzzle() print?!

❖ Assume that I/O is sent
immediately to the display

void puzzle (void) {!
 int child_status; !
!
 if (fork() == 0) {!
 printf("HC: hello from child\n");!
 } else {!
 printf("HP: hello from parent\n");!
 wait(&child_status);!
 printf("CT: child has terminated\n");!
 }!
 printf("Bye\n");!
 exit();!
}

23

wait: Synchronizing with children

void fork9() {!
 int child_status; !
!
 if (fork() == 0) {!
 printf("HC: hello from child\n");!
 } else {!
 printf("HP: hello from parent\n");!
 wait(&child_status);!
 printf("CT: child has terminated\n");!
 }!
 printf("Bye\n");!
 exit();!
}

HP

HC Bye

CT

24

Bye
Parent:

Child:

Waitpid
❖ waitpid(pid, &status, options)!

❖ Can wait for specific process!

❖ Various options

25

waitpid Example
void fork11()!
{!
 pid_t pid[N];!
 int i;!
 int child_status;!
 for (i = 0; i < N; i++)!
! if ((pid[i] = fork()) == 0)!
! exit(100+i); /* Child */!
 for (i = 0; i < N; i++) {!
! pid_t wpid = waitpid(pid[i], &child_status, 0);!
! if (WIFEXITED(child_status))!
! printf("Child %d terminated with exit status %d\n",!
! ! wpid, WEXITSTATUS(child_status));!
! else!
! printf("Child %d terminated abnormally\n", wpid);!
 }

26

Simple Shell eval Function
void eval (char *cmdline) {!
 char *argv[MAXARGS]; /* argv for execve() */!
 int bg; /* should the job run in bg or fg? */!
 pid_t pid; /* process id */!
!
 bg = parseline(cmdline, argv); !
 if (!builtin_command(argv)) { !
! if ((pid = Fork()) == 0) { /* child runs user job */!
! if (execve(argv[0], argv, environ) < 0) {!
! ! printf("%s: Command not found.\n", argv[0]);!
! ! exit(0);!
! }!
! }!
!
! if (!bg) { /* parent waits for fg job to terminate */!
 int status;!
! if (waitpid(pid, &status, 0) < 0)!
! ! unix_error("waitfg: waitpid error");!
! } else { /* otherwise, don’t wait for bg job */!
! printf("%d %s", pid, cmdline);!
! }!
 }!
}

27

Problem with Simple Shell Example
❖ Shell correctly waits for and reaps foreground jobs.!

❖ But what about background jobs?!

❖ Will become zombies when they terminate.!

❖ Will never be reaped because shell (typically) will not
terminate.!

❖ Creates a memory leak that will eventually crash the kernel
when it runs out of memory.!

❖ Solution: Reaping background jobs requires a mechanism called a
signal.

28

Why do zombies exist?

29

The Process Control Block!
❖ PCB contains exit status!

❖ Kernel keeps PCB around until
the exit status is “picked up”
by wait() or waitpid()

30

Pointer for Linked List

Process State

Process ID (pid)

Program Counter

Registers

Exit Status

…

Signals
❖ A signal is a small message that notifies a process that an

event of some type has occurred in the system.!

❖ Kernel abstraction for exceptions and interrupts.!

❖ Sent from the kernel (sometimes at the request of
another process) to a process.!

❖ Different signals are identified by small integer ID’s!

❖ The only information in a signal is its ID and the fact
that it arrived.

31

Common Signal Numbers

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt from keyboard (ctl-c)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

32

Signal Concepts
❖ Sending a signal!

❖ Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process.!

❖ Kernel sends a signal for one of the following reasons:!

❖ Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)!

❖ Another process has invoked the kill system call to
explicitly request the kernel to send a signal to the
destination process.

33

Signal Concepts (cont)
❖ Receiving a signal!

❖ A destination process receives a signal when it is forced by the kernel to
react in some way to the delivery of the signal.!

❖ Three possible ways to react:!

❖ Ignore the signal (do nothing)!

❖ Terminate the process.!

❖ Catch the signal by executing a user-level function called a signal
handler.!

❖ Akin to a hardware exception handler being called in response to
an asynchronous interrupt.

34

Pending Signals and Blocking
❖ A signal is pending if it has been sent but not yet received.!

❖ There can be at most one pending signal of any particular type.!

❖ Important: Signals are not queued!

❖ If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded.!

❖ A process can block the receipt of certain signals.!

❖ Blocked signals can be delivered, but will not be received until the
signal is unblocked.!

❖ A pending signal is received at most once.

35

Why might a signal be pending? What can’t it
be delivered to the target process right away?

36

Signal Concepts (contd)
❖ Kernel maintains pending and blocked bit vectors in the context of each

process.!

❖ pending – represents the set of pending signals!

❖ Kernel sets bit k in pending whenever a signal of type k is
delivered.!

❖ Kernel clears bit k in pending whenever a signal of type k is
received !

❖ blocked – represents the set of blocked signals!

❖ Can be set and cleared by the application using the sigprocmask
function.

37

Process Groups
❖ Every process belongs to exactly one process group!

❖ Can send signal to an entire group!

❖ getpgrp() – Return process group of current process!

❖ setpgid() – Change process group of a process

38

Process Groups

Fore-!
ground!

job

Back-!
ground!
job #1

Back-!
ground!
job #2

Shell

Child Child

pid=10!
pgid=10

Foreground!
process group 20

Background!
process group 32

Background!
process group 40

pid=20!
pgid=20

pid=32!
pgid=32

pid=40!
pgid=40

pid=21!
pgid=20

pid=22!
pgid=20

39

Sending Signals with kill Program
❖ kill program sends arbitrary signal

to a process or process group!

❖ Examples!

❖ kill –9 24818!

❖ Send SIGKILL to process
24818!

❖ kill –9 –24817!

❖ Send SIGKILL to every
process in process group
24817.

linux> ./forks 16 !
linux> Child1: pid=24818 pgrp=24817 !
Child2: pid=24819 pgrp=24817 !
 !
linux> ps !
 PID TTY TIME CMD !
24788 pts/2 00:00:00 tcsh !
24818 pts/2 00:00:02 forks !
24819 pts/2 00:00:02 forks !
24820 pts/2 00:00:00 ps !
linux> kill -9 -24817 !
linux> ps !
 PID TTY TIME CMD !
24788 pts/2 00:00:00 tcsh !
24823 pts/2 00:00:00 ps !
linux>

40

Sending Signals from the Keyboard
❖ Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every

job in the foreground process group.!

❖ SIGINT – default action is to terminate each process !

❖ SIGTSTP – default action is to stop (suspend) each
process

41

Sending Signals from the Keyboard

Fore-!
ground!

job

Back-!
ground!
job #1

Back-!
ground!
job #2

Shell

Child Child

pid=10!
pgid=10

Foreground!
process group 20

Background!
process group 32

Background!
process group 40

pid=20!
pgid=20

pid=32!
pgid=32

pid=40!
pgid=40

pid=21!
pgid=20

pid=22!
pgid=20

42

Example of ctrl-c and ctrl-z
linux> ./forks 17 !
Child: pid=24868 pgrp=24867 !
Parent: pid=24867 pgrp=24867 !
 <typed ctrl-z>!
Suspended !
linux> ps a !
 PID TTY STAT TIME COMMAND !
24788 pts/2 S 0:00 -usr/local/bin/tcsh -i !
24867 pts/2 T 0:01 ./forks 17 !
24868 pts/2 T 0:01 ./forks 17 !
24869 pts/2 R 0:00 ps a !
bass> fg !
./forks 17 !
<typed ctrl-c> !
linux> ps a !
 PID TTY STAT TIME COMMAND !
24788 pts/2 S 0:00 -usr/local/bin/tcsh -i !
24870 pts/2 R 0:00 ps a

43

Sending Signals with kill Function
void fork12()!
{!
 pid_t pid[N];!
 int i, child_status;!
 for (i = 0; i < N; i++)!
! if ((pid[i] = fork()) == 0)!
! while(1); /* Child infinite loop */!
!
 /* Parent terminates the child processes */!
 for (i = 0; i < N; i++) {!
! printf("Killing process %d\n", pid[i]);!
! kill(pid[i], SIGINT);!
 }!
!
 /* Parent reaps terminated children */!
 for (i = 0; i < N; i++) {!
! pid_t wpid = wait(&child_status);!
! if (WIFEXITED(child_status))!
! printf("Child %d terminated with exit status %d\n",!
! ! wpid, WEXITSTATUS(child_status));!
! else!
! printf("Child %d terminated abnormally\n", wpid);!
 }!
}

44

Receiving Signals
❖ Suppose kernel is returning from exception handler and is ready to pass control to

process p.!

❖ Kernel computes pnb = pending & ~blocked!

❖ The set of pending nonblocked signals for process p !

❖ If (pnb == 0) !

❖ Pass control to next instruction in the logical flow for p.!

❖ Else!

❖ Choose least nonzero bit k in pnb and force process p to receive signal k.!

❖ The receipt of the signal triggers some action by p!

❖ Repeat for all nonzero k in pnb.!

❖ Pass control to next instruction in logical flow for p.

45

Default Actions
❖ Each signal type has a predefined default action, which

is one of:!

❖ The process terminates!

❖ The process terminates and dumps core.!

❖ The process stops until restarted by a SIGCONT
signal.!

❖ The process ignores the signal.

46

Installing Signal Handlers
❖ The signal function modifies the default action associated with the receipt of signal signum:!

❖ handler_t *signal(int signum, handler_t *handler)!

❖ Different values for handler:!

❖ SIG_IGN: ignore signals of type signum!

❖ SIG_DFL: revert to the default action on receipt of signals of type signum.!

❖ Otherwise, handler is the address of a signal handler (i.e., a function)!

❖ Called when process receives signal of type signum!

❖ Referred to as “installing” the handler.!

❖ Executing handler is called “catching” or “handling” the signal.!

❖ When the handler executes its return statement, control passes back to instruction in
the control flow of the process that was interrupted by receipt of the signal.

47

Signal Handling Example
void int_handler(int sig)!
{!
 printf("Process %d received signal %d\n", !
 getpid(), sig);!
 exit(0);!
}!
!
void fork13()!
{!
 pid_t pid[N];!
 int i, child_status;!
 signal(SIGINT, int_handler);!
!
 . . .!
}

linux> ./forks 13 !
Killing process 24973 !
Killing process 24974 !
Killing process 24975 !
Killing process 24976 !
Killing process 24977 !
Process 24977 received signal 2 !
Child 24977 terminated with exit status 0 !
Process 24976 received signal 2 !
Child 24976 terminated with exit status 0 !
Process 24975 received signal 2 !
Child 24975 terminated with exit status 0 !
Process 24974 received signal 2 !
Child 24974 terminated with exit status 0 !
Process 24973 received signal 2 !
Child 24973 terminated with exit status 0 !
linux>

48

Signal Handler Funkiness
• Pending signals are not

queued!

– For each signal type, just
have single bit indicating
whether or not signal is
pending!

– Even if multiple processes
have sent this signal

int ccount = 0;!
void child_handler(int sig)!
{!
 int child_status;!
 pid_t pid = wait(&child_status);!
 ccount--;!
 printf("Received signal %d from process %d\n", !
 sig, pid);!
}!
!
void fork14()!
{!
 pid_t pid[N];!
 int i, child_status;!
 ccount = N;!
 signal(SIGCHLD, child_handler);!
 for (i = 0; i < N; i++)!
! if ((pid[i] = fork()) == 0) {!
! /* Child: Exit */!
! exit(0);!
! }!
 while (ccount > 0)!
! pause();/* Suspend until signal occurs */!
}

49

How do we prevent Zombies?

50

Living With Nonqueuing Signals
❖ Must check for all terminated jobs!

❖ Typically loop with wait

void child_handler2(int sig)!
{!
 int child_status;!
 pid_t pid;!
 while ((pid = wait(&child_status)) > 0) {!
! ccount--;!
! printf("Received signal %d from process %d\n", sig, pid);!
 }!
}!
!
void fork15()!
{!
 . . .!
 signal(SIGCHLD, child_handler2);!
 . . .!
}

51

A Program That Reacts to Externally Generated Events (ctrl-c)

#include <stdlib.h> !
#include <stdio.h> !
#include <signal.h> !
!
void handler(int sig) { !
 printf("You think hitting ctrl-c will stop the bomb?\n"); !
 sleep(2); !
 printf("Well..."); !
 fflush(stdout); !
 sleep(1); !
 printf("OK\n"); !
 exit(0); !
} !
 !
main() { !
 signal(SIGINT, handler); /* installs ctl-c handler */!
 while(1) { !
 } !
}

52

A Program That Reacts to Internally Generated Events

#include <stdio.h> !
#include <signal.h> !
 !
int beeps = 0; !
 !
/* SIGALRM handler */!
void handler(int sig) { !
 printf("BEEP\n"); !
 fflush(stdout); !
 !
 if (++beeps < 5) !
 alarm(1); !
 else { !
 printf("BOOM!\n"); !
 exit(0); !
 } !
}

main() { !
 signal(SIGALRM, handler); !
 /* Send SIGALRM in 1 second */!
 alarm(1);!
!
 while (1) { !
 /* handler returns here */ !
 } !
}

linux> a.out !
BEEP !
BEEP !
BEEP !
BEEP !
BEEP !
BOOM! !
linux>

53

Interprocess Communication: Pipes
• Conduit allowing two processes to communicate!

– Unidirectional or bidirectional!
– Full-duplex or half-duplex two-way communication!
– Is parent-child relationship required?!
– Is communication across a network allowed?

54

Traditional Unix Pipes
❖ A unidirectional data channel that can be used for interprocess

communication!

❖ Treated as a special type of file, accessed using read() and write()!

❖ Cannot be accessed from outside the process that created it unless
inherited (by a child)!

❖ Pipe ceases to exist once closed or when process terminates!

❖ System calls !

❖ pipe (int fd[])!

❖ dup2

55

Example
❖ pipe(int fd[])!

❖ fd[0] = read_end!

❖ fd[1] = write_end

int fd[2];!
pid_t pid;!
!
pipe(fd);!
pid = fork();!
if (pid > 0) {!
 /* Parent Process */!
 close (fd[0]);!
!
 /* Write a message to the child process */ !
 write (fd[1], write_msg, strlen(write_msg)+1);!
 close (fd[1]);!
} else {!
 /* Child Process */!
 close(fd[1]);!
!
 /* Read a message from the parent process */!
 read(fd[0], read_msg, BUFFER_SIZE);!
 printf(“read %s”, read_msg);!
 close(fd[0];!
}

56

fd[1] fd[0]

dup2() System Call
❖ Make one file descriptor point to the same file as another!

❖ dup2 (old_fd, new_fd)!

❖ Returns value is -1 on error and new_fd on success!

❖ dup(1,2)

57

1

2

3

terminal

pipe

Why do you need dup2()?

58

Standard In, Out, and Error
❖ By convention, file descriptors 0, 1, and 2 are used for:!

❖ Standard Input!

❖ Standard Output!

❖ Standard Error

59

How many pipes do you need for:
ls -al | grep foo | wc -l

60

Credits
Parts of the lecture slides contain original work from Gary
Nutt, Andrew S. Tanenbaum, Dave O’Hallaron, Randal
Bryant, Abraham Silberschatz, Peter B. Galvin, Greg
Gagne, Kai Shen, and Sandhya, Dwarkadas. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

61

