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Topics
❖ Processes, Signals, and Pipes!

❖ System calls!

❖ Threads and Inter-process communication (IPC)!

❖ Synchronization and Deadlocks!

❖ Scheduling algorithms!

❖ Memory management!

❖ File systems!

❖ Security and Protection
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More Topics
❖ Network protocol implementation!

❖ Operating system security!

❖ Hardware support for operating systems!

❖ Multi-processor issues!

❖ Microkernels!

❖ Hypervisors
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Prerequisites from CSC 252
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Basic Unix File I/O
❖ Understand what a file descriptor is!

❖ Be able to use the following system calls!

❖ open()!

❖ close()!

❖ read()!

❖ write()!

❖ Further reading: Advanced Programming in the Unix Environment!

❖ Chapter 3: File I/O
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The Main Event
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Today
❖ Process management!

❖ Process concept!

❖ Operations on processes!

❖ Signals!

❖ Pipes

8



Programming Assignment #1
❖ Exclusively outside the OS kernel!

❖ Can write and test on the standard Unix system 
accounts!

❖ Build a shell (command-line interpreter)!

❖ Support foreground/background processes!

❖ Support pipes!

❖ Support controlling terminals

9



Operating-System User Interface
❖ Command interpreter – special program initiated when 

a user first logs on!

❖ Graphical user interface!

❖ Common desktop environment (CDE)!

❖ K desktop environment (KDE)!

❖ GNOME desktop (GNOME)!

❖ Aqua (MacOS X)
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Processes
❖ Def: A process is an instance of a running program.!

❖ One of the most profound ideas in computer science.!

❖ Not the same as “program” or “processor”!

❖ Process provides each program with two key abstractions:!

❖ Logical control flow!

❖ Each program seems to have exclusive use of the CPU.!

❖ Private address space!

❖ Each program seems to have exclusive use of main memory.!

❖ How are these illusions maintained?!

❖ Process executions interleaved (multitasking)!

❖ Address spaces managed by virtual memory system
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Process Control Block (PCB)
OS data structure (in kernel memory) for 
maintaining information associated with 

each process.!

❖ Process state!

❖ Program counter!

❖ CPU registers!

❖ CPU scheduling information!

❖ Memory-management information!

❖ Accounting information!

❖ Information about open files

Pointer for Linked List

Process State

Process ID (pid)

Program Counter

Registers

Exit Status

…
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Process Creation
❖ When a process (parent) creates a new process (child)!

❖ Execution sequence?!

❖ Address space sharing?!

❖ Open files inheritance?!

❖ … …!

❖ UNIX examples!

❖ fork system call creates new process with a duplicated copy of everything.!

❖ exec system call replaces process’ memory space with a new program!

❖ typically used after a call to fork!

❖ child and parent compete for CPU like two normal processes
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The fork() system call
Duplicates a process

Linked List Ptr

Process State

Process ID (pid)

Program Counter

Registers

Open Files

…

Linked List Ptr

Process State

Process ID (pid)

Program Counter

Registers

Open Files

…
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If you connect parents to children with 
arrows, what data structure do you get?
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Process Tree
Parent process creates children processes, which, in turn create other processes, 

forming a tree of processes.
init !

(pid=1)

System !
daemon x

System !
daemon z

System !
daemon y

KDE-init !
user 1

sshd!
user 2

shell 1a shell 1b shell 2c

… … … … … …

Unix: fork, exec; Win32API: CreateProcess
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fork: Creating new processes
• int fork(void)!

❖ creates a new process (child process) that is identical to the calling process (parent 
process)!

❖ returns 0 to the child process!
❖ returns child’s pid to the parent process 

if (fork() == 0) {!
   printf("hello from child\n");!
} else { !
   printf("hello from parent\n");!
}

Fork is interesting!
(and often confusing)!

because it is called!
once but returns twice
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exec: Running new programs
• int execl(char *path, char *arg0, char *arg1, …, 0)!

❖ loads and runs executable at path with args arg0, arg1, …!
• path is the complete path of an executable!
• arg0 becomes the name of the process!

❖ typically arg0 is either identical to path, or else it contains only 
the executable filename from path!

❖ “real” arguments to the executable start with arg1, etc.!
❖ list of args is terminated by a (char *)0 argument!

❖ returns -1 if error, otherwise doesn’t return!
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exec() Example
❖ Create a file named foo!

❖ Compile and run the following program

main() {!
   if (fork() == 0) {!
      execl("/usr/bin/ls", "ls", “-al", “/tmp", 0);!
   }!
   wait(NULL);!
   printf(“directory listed\n");!
   exit();!
}
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exit: Destroying Process
❖ void exit(int status)!

❖ exits a process!

❖ Normally return with status 0!

❖ atexit() registers functions to be executed upon exit

void cleanup(void) {!
   printf("cleaning up\n");!
}!
!
void fork6() {!
   atexit(cleanup);!
   fork();!
   exit(0);!
}
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wait: Synchronizing with children
❖ int wait (int *child_status)!

❖ suspends current process until one of its children 
terminates!

❖ return value is the pid of the child process that 
terminated!

❖ if child_status != NULL, then the object it points to 
will be set to  a status indicating why the child 
process terminated

21



Puzzle Time!

22



wait: Synchronizing with children
❖ What does puzzle() print?!

❖ Assume that I/O is sent 
immediately to the display

void puzzle (void) {!
   int child_status;  !
!
   if (fork() == 0) {!
      printf("HC: hello from child\n");!
   } else {!
      printf("HP: hello from parent\n");!
      wait(&child_status);!
      printf("CT: child has terminated\n");!
   }!
   printf("Bye\n");!
   exit();!
}
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wait: Synchronizing with children

void fork9() {!
   int child_status;  !
!
   if (fork() == 0) {!
      printf("HC: hello from child\n");!
   } else {!
      printf("HP: hello from parent\n");!
      wait(&child_status);!
      printf("CT: child has terminated\n");!
   }!
   printf("Bye\n");!
   exit();!
}

HP

HC Bye

CT
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Waitpid
❖ waitpid(pid, &status, options)!

❖ Can wait for specific process!

❖ Various options
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waitpid Example
void fork11()!
{!
    pid_t pid[N];!
    int i;!
    int child_status;!
    for (i = 0; i < N; i++)!
! if ((pid[i] = fork()) == 0)!
!     exit(100+i); /* Child */!
    for (i = 0; i < N; i++) {!
! pid_t wpid = waitpid(pid[i], &child_status, 0);!
! if (WIFEXITED(child_status))!
!     printf("Child %d terminated with exit status %d\n",!
! !    wpid, WEXITSTATUS(child_status));!
! else!
!     printf("Child %d terminated abnormally\n", wpid);!
    }
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Simple Shell eval Function
void eval (char *cmdline) {!
    char *argv[MAXARGS]; /* argv for execve() */!
    int bg;              /* should the job run in bg or fg? */!
    pid_t pid;           /* process id */!
!
    bg = parseline(cmdline, argv); !
    if (!builtin_command(argv)) { !
! if ((pid = Fork()) == 0) {   /* child runs user job */!
!     if (execve(argv[0], argv, environ) < 0) {!
! ! printf("%s: Command not found.\n", argv[0]);!
! ! exit(0);!
!     }!
! }!
!
! if (!bg) {   /* parent waits for fg job to terminate */!
           int status;!
!     if (waitpid(pid, &status, 0) < 0)!
! ! unix_error("waitfg: waitpid error");!
! } else {        /* otherwise, don’t wait for bg job */!
!     printf("%d %s", pid, cmdline);!
! }!
    }!
}
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Problem with Simple Shell Example
❖ Shell correctly waits for and reaps foreground jobs.!

❖ But what about background jobs?!

❖ Will become zombies when they terminate.!

❖ Will never be reaped because shell (typically) will not 
terminate.!

❖ Creates a memory leak that will eventually crash the kernel 
when it runs out of memory.!

❖ Solution: Reaping background jobs requires a mechanism called a 
signal.
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Why do zombies exist?
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The Process Control Block!
❖ PCB contains exit status!

❖ Kernel keeps PCB around until 
the exit status is “picked up” 
by wait() or waitpid()
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Pointer for Linked List

Process State

Process ID (pid)

Program Counter

Registers

Exit Status

…



Signals
❖ A signal is a small message that notifies a process that an 

event of some type has occurred in the system.!

❖ Kernel abstraction for exceptions and interrupts.!

❖ Sent from the kernel (sometimes at the request of 
another process) to a process.!

❖ Different signals are identified by small integer ID’s!

❖ The only information in a signal is its ID and the fact 
that it arrived.
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Common Signal Numbers

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt from keyboard (ctl-c)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated
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Signal Concepts  
❖ Sending a signal!

❖ Kernel sends (delivers) a signal to a destination process by 
updating some state in the context of the destination process.!

❖ Kernel sends a signal for one of the following reasons:!

❖ Kernel has detected a system event such as divide-by-zero 
(SIGFPE) or the termination of a child process (SIGCHLD)!

❖ Another process has invoked the kill system call to 
explicitly request the kernel to send a signal to the 
destination process.
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Signal Concepts (cont)
❖ Receiving a signal!

❖ A destination process receives a signal when it is forced by the kernel to 
react in some way to the delivery of the signal.!

❖ Three possible ways to react:!

❖ Ignore the signal (do nothing)!

❖ Terminate the process.!

❖ Catch the signal by executing a user-level function called a signal 
handler.!

❖ Akin to a hardware exception handler being called in response to 
an asynchronous interrupt.
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Pending Signals and Blocking
❖ A signal is pending if it has been sent but not yet received.!

❖ There can be at most one pending signal of any particular type.!

❖ Important: Signals are not queued!

❖ If a process has a pending signal of type k, then subsequent 
signals of type k that are sent to that process are discarded.!

❖ A process can block the receipt of certain signals.!

❖ Blocked signals can be delivered, but will not be received until the 
signal is unblocked.!

❖ A pending signal is received at most once.
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Why might a signal be pending?  What can’t it 
be delivered to the target process right away?

36



Signal Concepts (contd) 
❖ Kernel maintains pending and blocked bit vectors in the context of each 

process.!

❖ pending – represents the set of pending signals!

❖ Kernel sets bit k in pending whenever a signal of type k is 
delivered.!

❖ Kernel clears bit k in pending whenever a signal of type k is 
received !

❖ blocked – represents the set of blocked signals!

❖ Can be set and cleared by the application using the sigprocmask 
function.

37



Process Groups
❖ Every process belongs to exactly one process group!

❖ Can send signal to an entire group!

❖ getpgrp() – Return process group of current process!

❖ setpgid() – Change process group of a process
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Process Groups

Fore-!
ground!

job

Back-!
ground!
job #1

Back-!
ground!
job #2

Shell

Child Child

pid=10!
pgid=10

Foreground!
process group 20

Background!
process group 32

Background!
process group 40

pid=20!
pgid=20

pid=32!
pgid=32

pid=40!
pgid=40

pid=21!
pgid=20

pid=22!
pgid=20
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Sending Signals with kill Program
❖ kill program sends arbitrary signal 

to a process or process group!

❖ Examples!

❖ kill –9 24818!

❖ Send SIGKILL to process 
24818!

❖ kill –9 –24817!

❖ Send SIGKILL to every 
process in process group 
24817. 

linux> ./forks 16 !
linux> Child1: pid=24818 pgrp=24817 !
Child2: pid=24819 pgrp=24817 !
 !
linux> ps !
  PID TTY          TIME CMD !
24788 pts/2    00:00:00 tcsh !
24818 pts/2    00:00:02 forks !
24819 pts/2    00:00:02 forks !
24820 pts/2    00:00:00 ps !
linux> kill -9 -24817 !
linux> ps  !
  PID TTY          TIME CMD !
24788 pts/2    00:00:00 tcsh !
24823 pts/2    00:00:00 ps !
linux> 
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Sending Signals from the Keyboard
❖ Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every 

job in the foreground process group.!

❖ SIGINT – default action is to terminate each process !

❖ SIGTSTP – default action is to stop (suspend) each 
process

41



Sending Signals from the Keyboard

Fore-!
ground!

job

Back-!
ground!
job #1

Back-!
ground!
job #2

Shell

Child Child

pid=10!
pgid=10

Foreground!
process group 20

Background!
process group 32

Background!
process group 40

pid=20!
pgid=20

pid=32!
pgid=32

pid=40!
pgid=40

pid=21!
pgid=20

pid=22!
pgid=20
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Example of ctrl-c and ctrl-z
linux> ./forks 17 !
Child: pid=24868 pgrp=24867 !
Parent: pid=24867 pgrp=24867 !
 <typed ctrl-z>!
Suspended !
linux> ps a !
  PID TTY      STAT   TIME COMMAND !
24788 pts/2    S      0:00 -usr/local/bin/tcsh -i !
24867 pts/2    T      0:01 ./forks 17 !
24868 pts/2    T      0:01 ./forks 17 !
24869 pts/2    R      0:00 ps a !
bass> fg !
./forks 17 !
<typed ctrl-c> !
linux> ps a !
  PID TTY      STAT   TIME COMMAND !
24788 pts/2    S      0:00 -usr/local/bin/tcsh -i !
24870 pts/2    R      0:00 ps a 
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Sending Signals with kill Function
void fork12()!
{!
    pid_t pid[N];!
    int i, child_status;!
    for (i = 0; i < N; i++)!
! if ((pid[i] = fork()) == 0)!
!     while(1); /* Child infinite loop */!
!
    /* Parent terminates the child processes */!
    for (i = 0; i < N; i++) {!
! printf("Killing process %d\n", pid[i]);!
! kill(pid[i], SIGINT);!
    }!
!
    /* Parent reaps terminated children */!
    for (i = 0; i < N; i++) {!
! pid_t wpid = wait(&child_status);!
! if (WIFEXITED(child_status))!
!     printf("Child %d terminated with exit status %d\n",!
! !    wpid, WEXITSTATUS(child_status));!
! else!
!     printf("Child %d terminated abnormally\n", wpid);!
    }!
}
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Receiving Signals
❖ Suppose  kernel is returning from exception handler and is ready to pass control to 

process p.!

❖ Kernel computes pnb = pending & ~blocked!

❖ The set of pending nonblocked signals for process p !

❖ If  (pnb == 0) !

❖ Pass control to next instruction in the logical flow for p.!

❖ Else!

❖ Choose least nonzero bit k in pnb and force process p to receive signal k.!

❖ The receipt of the signal triggers some action by p!

❖ Repeat for all nonzero k in pnb.!

❖ Pass control to next instruction in logical flow for p.
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Default Actions
❖ Each signal type has a predefined default action, which 

is one of:!

❖ The process terminates!

❖ The process terminates and dumps core.!

❖ The process stops until restarted by a SIGCONT 
signal.!

❖ The process ignores the signal.
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Installing Signal Handlers
❖ The signal function modifies the default action associated with the receipt of signal signum:!

❖ handler_t *signal(int signum, handler_t *handler)!

❖ Different values for handler:!

❖ SIG_IGN: ignore signals of type signum!

❖ SIG_DFL: revert to the default action on receipt of signals of type signum.!

❖ Otherwise, handler is the address of a signal handler (i.e., a function)!

❖ Called when process receives signal of type signum!

❖ Referred to as “installing” the handler.!

❖ Executing handler is called “catching” or “handling” the signal.!

❖ When the handler executes its return statement, control passes back to instruction in 
the control flow of the process that was interrupted by receipt of the signal.
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Signal Handling Example
void int_handler(int sig)!
{!
    printf("Process %d received signal %d\n", !
            getpid(), sig);!
    exit(0);!
}!
!
void fork13()!
{!
    pid_t pid[N];!
    int i, child_status;!
    signal(SIGINT, int_handler);!
!
    . . .!
}

linux> ./forks 13 !
Killing process 24973 !
Killing process 24974 !
Killing process 24975 !
Killing process 24976 !
Killing process 24977 !
Process 24977 received signal 2 !
Child 24977 terminated with exit status 0 !
Process 24976 received signal 2 !
Child 24976 terminated with exit status 0 !
Process 24975 received signal 2 !
Child 24975 terminated with exit status 0 !
Process 24974 received signal 2 !
Child 24974 terminated with exit status 0 !
Process 24973 received signal 2 !
Child 24973 terminated with exit status 0 !
linux> 
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Signal Handler Funkiness
• Pending signals are not 

queued!

– For each signal type, just 
have single bit indicating 
whether or not signal is 
pending!

– Even if multiple processes 
have sent this signal

int ccount = 0;!
void child_handler(int sig)!
{!
    int child_status;!
    pid_t pid = wait(&child_status);!
    ccount--;!
    printf("Received signal %d from process %d\n", !
           sig, pid);!
}!
!
void fork14()!
{!
    pid_t pid[N];!
    int i, child_status;!
    ccount = N;!
    signal(SIGCHLD, child_handler);!
    for (i = 0; i < N; i++)!
! if ((pid[i] = fork()) == 0) {!
!     /* Child: Exit */!
!     exit(0);!
! }!
    while (ccount > 0)!
! pause();/* Suspend until signal occurs */!
}
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How do we prevent Zombies?
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Living With Nonqueuing Signals
❖ Must check for all terminated jobs!

❖ Typically loop with wait

void child_handler2(int sig)!
{!
    int child_status;!
    pid_t pid;!
    while ((pid = wait(&child_status)) > 0) {!
! ccount--;!
! printf("Received signal %d from process %d\n", sig, pid);!
    }!
}!
!
void fork15()!
{!
    . . .!
    signal(SIGCHLD, child_handler2);!
    . . .!
}
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A Program That Reacts to Externally Generated Events (ctrl-c)

#include <stdlib.h> !
#include <stdio.h> !
#include <signal.h> !
!
void handler(int sig) { !
  printf("You think hitting ctrl-c will stop the bomb?\n"); !
  sleep(2); !
  printf("Well..."); !
  fflush(stdout); !
  sleep(1); !
  printf("OK\n"); !
  exit(0); !
} !
 !
main() { !
  signal(SIGINT, handler); /* installs ctl-c handler */!
  while(1) { !
  } !
} 
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A Program That Reacts to Internally Generated Events

#include <stdio.h> !
#include <signal.h> !
 !
int beeps = 0; !
 !
/* SIGALRM handler */!
void handler(int sig) { !
  printf("BEEP\n"); !
  fflush(stdout); !
 !
  if (++beeps < 5)   !
    alarm(1); !
  else { !
    printf("BOOM!\n"); !
    exit(0); !
  } !
} 

main() { !
  signal(SIGALRM, handler);  !
  /* Send SIGALRM in 1 second */!
  alarm(1);!
!
  while (1) { !
    /* handler returns here */ !
  } !
} 

linux> a.out  !
BEEP !
BEEP !
BEEP !
BEEP !
BEEP !
BOOM! !
linux> 

53



Interprocess Communication: Pipes
• Conduit allowing two processes to communicate!

– Unidirectional or bidirectional!
– Full-duplex or half-duplex two-way communication!
– Is parent-child relationship required?!
– Is communication across a network allowed?

54



Traditional Unix Pipes
❖ A unidirectional data channel that can be used for interprocess 

communication!

❖ Treated as a special type of file, accessed using read() and write()!

❖ Cannot be accessed from outside the process that created it unless 
inherited (by a child)!

❖ Pipe ceases to exist once closed or when process terminates!

❖ System calls !

❖ pipe (int fd[])!

❖ dup2
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Example
❖ pipe(int fd[])!

❖ fd[0] = read_end!

❖ fd[1] = write_end

int fd[2];!
pid_t pid;!
!
pipe(fd);!
pid = fork();!
if (pid > 0) {!
    /* Parent Process */!
    close (fd[0]);!
!
    /* Write a message to the child process */  !
    write (fd[1], write_msg, strlen(write_msg)+1);!
    close (fd[1]);!
} else {!
    /* Child Process */!
    close(fd[1]);!
!
    /* Read a message from the parent process */!
    read(fd[0], read_msg, BUFFER_SIZE);!
    printf(“read %s”, read_msg);!
    close(fd[0];!
}
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dup2() System Call
❖ Make one file descriptor point to the same file as another!

❖ dup2 (old_fd, new_fd)!

❖ Returns value is -1 on error and new_fd on success!

❖ dup(1,2)
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Why do you need dup2()?
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Standard In, Out, and Error
❖ By convention, file descriptors 0, 1, and 2 are used for:!

❖ Standard Input!

❖ Standard Output!

❖ Standard Error
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How many pipes do you need for: 
ls -al | grep foo | wc -l
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