
CSC 256/456: Operating Systems

System Calls,Kernel Mode,
and Process
Implementation

John Criswell!
University of Rochester

1

Today
❖ User Mode and Kernel Mode!
❖ System calls and the interrupt interface!
❖ Basic I/O!
❖ Context switches and the scheduling process

2

System Protection
❖ User programs typically not trusted!

❖ May use unfair amount of resources!

❖ May maliciously cause other programs or OS to fail!

❖ System provides two hardware modes:!

❖ User mode: Some access to hardware resources
restricted !

❖ Kernel mode: Full access to hardware resources

3

Transition between User/Kernel Mode
❖ When does the machine run in kernel mode?!

❖ after machine boot!

❖ interrupt handler!

❖ system call!

❖ exception

Kernel User

Interrupt/syscall/exception

To user mode

Bootstrap

4

CPU Protection
❖ Goal of CPU protection!

❖ A user program can’t hold the CPU for ever!

❖ Timer – interrupts computer after specified period to
ensure the OS kernel maintains control!

❖ Timer is decremented every clock tick!

❖ When timer reaches the value 0, an interrupt occurs!

❖ CPU time sharing is implemented in the timer interrupt

5

Memory Protection
❖ Goal of memory protection?!

❖ A user program can’t use arbitrary amount of memory!

❖ A user program can’t access data belonging to the operating system or other user programs!

❖ How to achieve memory protection?!

❖ Indirect memory access!

❖ Memory access with a virtual address which needs to be translated into physical
address!

❖ Add two registers that determine the range of legal addresses a program may access:!

❖ Base register – holds the smallest legal physical memory address!

❖ Limit register – contains the size of the range !

❖ Memory outside the defined range is protected

6

Hardware Address Protection

OS kernel

program 4

program 3

program 2

program 1
300040

120900

base register

limit register

0

256000

300040

420940

880000

1024000

• Address of each memory
address is checked against
“base” and “base+limit”!

• Trap to the OS kernel if it
falls outside of the range
(an exception)

7

I/O Device Controllers
❖ I/O devices have both mechanical component & electronic component!

❖ The electronic component is the device controller!

❖ It contains control logic, command registers, status registers, and on-
board buffer space

8

I/O Ports & Memory-Mapped I/O

❖ Separate I/O and memory space!

❖ Special I/O commands (e.g., IN/OUT)!

❖ Memory-mapped I/O

9

I/O Operations
❖ How is I/O done?!

❖ I/O devices are much slower than CPU!

❖ Synchronous (polling)!

❖ Start I/O!

❖ In a loop, CPU checks the device status register until it shows the operation completed!

❖ Asynchronous (interrupt-driven)!

❖ After I/O starts, control returns to the user program without waiting for I/O completion!

❖ Device controller later informs CPU that it has finished its operation by causing an
interrupt!

❖ When an interrupt occurs, current execution is put on hold; the CPU jumps to a service
routine called an “interrupt handler”

10

Direct Memory Access (DMA)

11

DMA Questions

❖ Does the CPU send virtual or physical addresses to the DMA controller?!

❖ Can the disk controller directly read data into main memory, bypassing its
controller buffer?

12

Protection of I/O Devices
❖ User programs are not allowed to directly access I/O

devices!

❖ Special I/O instructions can only be used in kernel mode!

❖ Controller registers can only be accessed in kernel mode!

❖ So device drivers, I/O interrupt handlers must run in
kernel mode!

❖ User programs perform I/O through requesting the OS
(using system calls)

13

Device-Controller-Software Relationship

14

Application

High-Level OS Kernel
Component

Device Driver

Device Controller Device

User Mode Software

Kernel Mode Software

Hardware

System Call Using the Trap Instruction

15

…
read();
…

read() {
…
trap N_SYS_READ()
…
} sys_read()

sys_read() {
/* system function */
 …
 return;
}

KernelTrap Table

User program

Processes
• Def: A process is an instance of a running program.!

– Not the same as “program” or “processor”!

• Process provides each program with two key abstractions:!
– Logical control flow!

• Each program seems to have exclusive use of the CPU.!
– Private address space!

• Each program seems to have exclusive use of main
memory.!

• How are these Illusions maintained?!
– Process executions interleaved (multitasking)!
– Address spaces managed by virtual memory system

16

Process Management
• A process is a program in execution!

– Unit of work – A process needs certain resources, including CPU time, memory,
files, and I/O devices, to accomplish its task!

– Protection domain!

!

• OS responsibilities for process management:!
– Process creation and deletion!
– Process scheduling, suspension, and resumption!
– Process synchronization, inter-process communication

17

Process and Its Image
❖ A process’s state/image in a computer includes:!

❖ User-mode address space!

❖ Kernel data structures maintained on process’s behalf!

❖ Registers (including program counter and stack pointer)!

❖ Address space and memory protection!

❖ Physical memory is divided into user memory and kernel memory!

❖ Kernel memory can only be accessed when in the kernel mode!

❖ Each process has its own exclusive address space in the user-mode
memory space (sort-of)

18

Process Private Address Space

19

kernel virtual memory!
(code, data, heap, stack)

memory mapped region for!
shared libraries

run-time heap!
(managed by malloc)

user stack!
(created at runtime)

unused0

%esp (stack pointer)

memory!
invisible to!
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment!
(.data, .bss)

read-only segment!
(.init, .text, .rodata)

loaded from the !
executable file

0xffffffff

User-Mode Address Space
❖ Text: Program code!

❖ Data: Initialized global and static
variables!

❖ BSS (Block Stated by Symbol):
Uninitialized global and static
variables!

❖ Heap: Dynamically allocated memory!

❖ Stack: Local variables and function
activation records

20

Text

Data

Heap

Stack

0

0xffffffff

BSS

Process Control Block (PCB)
OS data structure (in kernel memory) for
maintaining information associated with

each process.!

❖ Process state!

❖ Program counter!

❖ CPU registers!

❖ CPU scheduling information!

❖ Memory-management information!

❖ Accounting information!

❖ Information about open files

Pointer for Linked List

Process State

Process ID (pid)

Program Counter

Registers

Exit Status

…

21

Queues for PCBs
• Ready queue – set of

all processes ready
for execution.!

• Device queues – set
of processes waiting
for an I/O device.!

• Process migration
between the various
queues.

22

Process State
❖ As a process executes, it changes state!

❖ new: The process is being created!
❖ ready: The process is waiting to be assigned to a processor!
❖ running: Instructions are being executed!
❖ waiting: The process is waiting for some event to occur!
❖ terminated: The process has finished execution

23

Context Switching
❖ Processes are managed by the OS kernel!

❖ Kernel is “part” of user process; is not its own process!

❖ Control flow passes from one process to another via context switch

24

Process A!
code

Process B!
code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

Scheduling: Transferring Context Blocks

Coroutines!
transfer(other) !

save callee-saved registers on stack !
*current := sp !
current := other !
sp := *current !
pop callee-saved registers (except

sp!) !
return (into different coroutine!)

25

Current

Proc1

Proc2

Cooperative Multitasking
• Use Ready List to reschedule

voluntarily!
• AKA cooperative threading

26

reschedule: !
– t := dequeue(ready_list) !
– transfer(t) !

!

yield: !
– enqueue(ready_list, current) !
– reschedule !

!

sleep_on(q): !
enqueue(q, current)!
reschedule

Preemptive Multitasking
• Use timer interrupts or signals to trigger involuntary yields!
• Protect scheduler data structures by disabling/reenabling

interrupts prior to/after rescheduling

27

yield: !
disable_signals !
enqueue(ready_list,
current) !
reschedule !
re-enable_signals

CPU Switch From Process to Process

CSC 2/456 43

28

When can the
OS switch the
CPU from one

process to
another?

Which one to
switch to?!
Scheduling!

Process Termination
• Process executes last statement and gives the control to

the OS (exit)!
– Notify parent if it is wait-ing!
– Deallocate process’s resources!

!

• The OS may forcefully terminate a process.!
– Software exceptions!
– Receiving certain signals

29

Credits
• Parts of the lecture slides contain original work from

Gary Nutt, Andrew S. Tanenbaum, Dave O’Hallaron,
Randal Bryant, Kai Shen, and Sandhya Dwarkadas. The
slides are intended for the sole purpose of instruction of
operating systems at the University of Rochester. All
copyrighted materials belong to their original owner(s).

30

