
CSC 256/456: Operating Systems

Threads and
Interprocess Communication

John Criswell!
University of Rochester

1

Today
❖ Inter-process Communication (IPC)!

❖ Shared Memory!

❖ Message Passing!

❖ Threads!

❖ Thread Concept!

❖ Multi-threading Models!

❖ Types of Threads

2

But first, a note about
commenting…

3

Comments Not for Judging Future Self

4

XKCD Comic #1421	

By Randall Munroe	

xkcd.com

http://xkcd.com

Function Comments
/*
 * Intrinsic: sva_swap_integer()
 *
 * Description:
 * This intrinsic saves the current integer state and swaps in a new one.
 *
 * Inputs:
 * newint - The new integer state to load on to the processor.
 * statep - A pointer to a memory location in which to store the ID of the
 * state that this invocation of sva_swap_integer() will save.
 *
 * Return value:
 * 0 - State swapping failed.
 * 1 - State swapping succeeded.
 */
uintptr_t
sva_swap_integer (uintptr_t newint, uintptr_t * statep) {
 /* Old interrupt flags */
 uintptr_t rflags = sva_enter_critical(); !
 /* Pointer to the current CPU State */
 struct CPUState * cpup = getCPUState(); !
 /*
 * Get a pointer to the memory buffer into which the integer state should be
 * stored. There is one such buffer for every SVA thread.
 */
 struct SVAThread * oldThread = cpup->currentThread;

5

What about the programming
assignment handin procedure?

6

Still Working on It
❖ Handin process will be announced on Blackboard by

Thursday lecture!

❖ Programming Assignment #1!

❖ Due Thursday at 11:59 pm!

7

Where’s the PCB?!

8

It Depends!

9

FreeBSD

Thread

Registers
(PCB)

Linux

Kernel
Stack

Registers
(PCB)

Scheduling: Transferring Context Blocks

Coroutines!
transfer(other) !

push callee-saved registers !
*current := sp !
current := other !
sp := *current !
pop callee-saved registers (sans sp)!
return (into different coroutine!)

10

Current

Proc1

Proc2

Scheduling: Transferring Context Blocks

Coroutines!
transfer(other) !

push callee-saved registers !
*current := sp !
current := other !
sp := *current !
pop callee-saved registers (sans sp)!
return (into different coroutine!)

10

Current

Proc1

Proc2

Scheduling: Transferring Context Blocks

Coroutines!
transfer(other) !

push callee-saved registers !
*current := sp !
current := other !
sp := *current !
pop callee-saved registers (sans sp)!
return (into different coroutine!)

10

Current

Proc1

Proc2

Scheduling: Transferring Context Blocks

Coroutines!
transfer(other) !

push callee-saved registers !
*current := sp !
current := other !
sp := *current !
pop callee-saved registers (sans sp)!
return (into different coroutine!)

10

Current

Proc1

Proc2

Scheduling: Transferring Context Blocks

Coroutines!
transfer(other) !

push callee-saved registers !
*current := sp !
current := other !
sp := *current !
pop callee-saved registers (sans sp)!
return (into different coroutine!)

10

Current

Proc1

Proc2

Interprocess Communication

11

Interprocess Communication
❖ Reasons for processes to cooperate!

❖ Information sharing (e.g., files)!

❖ Computation speedup!

❖ Modularity and protection!

❖ Convenience - multitasking

12

What are the two ways in which using
multiple processes increases performance?

13

Mechanisms for Interprocess Communication

❖ Shared memory!

❖ POSIX!

❖ BSD mmap!

❖ Message passing!

❖ Pipes, sockets, remote procedure calls

14

Shared Memory
❖ Processes see (i.e., share) the same physical memory

15

Process A Process APhysical Memory

Shared Memory: POSIX Interface
❖ shm_get – returns the identifier of a shared memory

segment!

❖ shmat – attaches the shared memory segment to the
address space!

❖ shmdt – detaches the segment located at the specified
address!

❖ shmctl – control of shared memory segments, including
deletion

16

Shared Memory: BSD Interface
❖ mmap with MAP_SHARED!

❖ Use backing file to share with unrelated processes!

❖ Use anonymous mapping to share with child
processes!

❖ munmap!

❖ Remove mmap mappings

17

mmap Interface
❖ void * mmap (void * addr, size_t length, int protection, int flags,

int fd, off_t offset)!

❖ addr - Suggested address of where to place memory!

❖ length - The length of the shared memory segment!

❖ protection - The MMU access rights to use!

❖ flags - Controls lots of options!

❖ fd - File descriptor of backing file to use!

❖ offset - Offset within backing file to use

18

mmap Flags

19

Flag Meaning

MAP_ANONYMOUS Do not use a backing file

MAP_SHARED Allow multiple processes to use the memory

MAP_FIXED Refuse to allocate if addr is not available

What are some disadvantages of
shared memory?

20

Message Passing
❖ Direct or indirect communication – processes or ports!

❖ Fixed or variable size messages!

❖ Send by copy or reference!

❖ Automatic or explicit buffering!

❖ Blocking or non-blocking (send or receive)

21

Examples of Message Passing
❖ Pipes!

❖ Sockets!

❖ Mach ports!

❖ Windows 2000 Local Procedure Call!

❖ Remote Procedure Call (e.g., RPC, CORBA)

22

Interprocess Communication: Pipes
❖ Conduit allowing two processes to communicate!

❖ Unidirectional or bidirectional!

❖ Full-duplex or half-duplex two-way communication!

❖ Is parent-child relationship required?!

❖ Is communication across a network allowed?

8/11/14

23

Unix Pipes
❖ A unidirectional data channel that can be used for

interprocess communication!

❖ Pipe ceases to exist once closed or when process
terminates!

❖ System calls!

❖ pipe (int fd[])!

❖ dup2

24

What are some disadvantages of
message passing?

25

Threads

26

Processes or Threads
❖ A process or thread is a potentially-active execution

context!

❖ It is a program in execution!

❖ Threads can run !

❖ Truly in parallel (on multiple CPUs or cores)!

❖ Unpredictably interleaved (on a single CPU)!

❖ Run-until-block (coroutine-style)

27

8/11/14 CSC 2/456 21

Thread – a program in execution without a dedicated
address space.!

OS memory protection is only applied to processes.

28

Processes Vs. Threads
❖ Process !

❖ Single address space!

❖ Single thread of control for executing program!

❖ State: page tables, swap images, file descriptors, queued I/O requests!

❖ Threads !

❖ Separate notion of execution from the rest of the definition of a process!

❖ Page tables, swap images, file descriptors, etc. potentially shared with other
threads!

❖ Program counter, stack of activation records, control block (e.g., saved
registers/state info for thread management)

29

Why Use Threads?
❖ Multithreading is used for parallelism/concurrency !

❖ Why not multiple processes?!

❖ Memory sharing!

❖ Efficient synchronization between threads!

❖ Less context switch overhead

30

User/Kernel Threads
❖ User threads!

❖ Thread data structure is in user-mode memory!

❖ Scheduling/switching done at user mode !

❖ Kernel threads!

❖ Thread data structure is in kernel memory!

❖ Scheduling/switching done by the OS kernel

31

User/Kernel Threads (cont.)
❖ Benefits of user threads!

❖ lightweight – less context switching overhead!

❖ more efficient synchronization??!

❖ flexibility – allow application-controlled scheduling!

❖ Problems of user threads!

❖ can’t use more than one processor!

❖ oblivious to kernel events, e.g., all threads in a process are
put to wait when only one of them does I/O

32

Mixed User/Kernel Threads
• M user threads run on N kernel threads (M≥N)!

– N=1: pure user threads!
– M=N: pure kernel threads!
– M>N>1: mixed model

user threads

kernel threads

CPU CPU

33

Solaris/Linux Threads
❖ Solaris!

❖ Supports mixed model!

❖ Linux!

❖ No standard user threads on Linux!

❖ Processes and threads treated in a similar manner (both
called tasks)!

❖ Processes are tasks with exclusive address space!

❖ Tasks can also share the address space, open files, …

34

Challenges with Threads
❖ Thread-local storage – what about globals?!

❖ Stack management!

❖ Where do you put them?!

❖ How to detect when they run into each other?!

❖ Heap!

❖ Usually shared!

❖ Memory allocator must be synchronized and reentrant

35

More Issues with Threads
❖ Interaction with fork() and exec() system calls!

❖ Two versions of fork()?!

❖ What happens with a thread calls exec()?!

❖ Signal handling – which thread should the signal be delivered to?!

❖ Synchronous!

❖ All!

❖ Assigned thread!

❖ Unix: could assign a specific thread to handle signals!

❖ Windows: asynchronous procedure calls, which are thread-specific

36

Even More Challenges with Threads!
❖ Unix predates threads!

❖ Many libraries and system calls assume single thread!

❖ Poster child: errno!

❖ Many APIs now have reentrant versions: getpwnam_r()!

❖ Restrictions on signal handlers

37

POSIX Threads API

38

POSIX Threads (Pthreads)
❖ Each OS has its own thread package with different

Application Programming Interfaces ⇒ poor portability.!

❖ Pthreads!

❖ A POSIX standard API for thread management and
synchronization.!

❖ API specifies behavior of the thread library, not the
implementation.!

❖ Commonly supported in Unix operating systems.

39

Pthreads: A Shared Memory Programming Model

• POSIX standard shared-memory multithreading
interface!

• Not just for parallel programming, but for general
multithreaded programming!

• Provides primitives for thread management and
synchronization

40

What does the user have to do?
• Decide how to decompose the computation into parallel

parts!

• Create (and destroy) threads to support that
decomposition!

• Add synchronization to make sure dependences are
covered

41

Thread Creation

❖ new_id: thread’s unique identifier!

❖ attr: ignore for now!

❖ func: function to be run in parallel!

❖ arg: arguments for function func

42

int pthread_create (pthread_t *new_id,
 const pthread_attr_t *attr,
 void *(*func) (void *),
 void *arg)

Example of Thread Creation

void *func(void *arg) {
int *I=arg;
…

}
!
void main(){

int X;
pthread_t id;
…
pthread_create(&id, NULL, func, &X);
…

}

43

Pthread Termination
void pthread_exit(void *status)!
!

❖ Terminates the currently running thread.!

❖ Is implicit when the function called in pthread_create()
returns.

44

Thread Joining

• Waits for the thread with identifier new_id to terminate,
either by returning or by calling pthread_exit().!

• Status receives the return value or the value given as
argument to pthread_exit().

45

int pthread_join (pthread_t new_id, void ** status)

Example of Thread Creation

main()

pthread_create(func)

func()

pthread_join(id)

pthread_exit()

46

pthread_join() looks awfully familiar.
What is the equivalent for processes?

47

POSIX Thread Contention Scope
❖ Process contention scope!

❖ Thread library schedules user threads onto light-weight
processes (kernel-level threads)!

❖ Use priority as defined by user – no preemption of
threads with same priority!

❖ System contention scope!

❖ Assign thread to its own kernel thread!

❖ Compete with all tasks

48

POSIX Thread Contention Scope
❖ Functions for setting/getting contention scope!

❖ pthread_attr_setscope()!

❖ pthread_attr_getscope()!

❖ Values for contention scope!

❖ PTHREAD_SCOPE_PROCESS!

❖ PTHREAD_SCOPE_SYSTEM

49

Pthread Attributes
❖ pthread_attr_init(pthread_attr_t *attr), destroy –

initializes attr to default value!

❖ Scope – pthread_attr_setscope (&attr, SCOPE)!

❖ Stack size – pthread_attr_getstacksize,
pthread_attr_setstacksize!

❖ Priority!

❖ Joinable or detached

50

 General Thread Structure
• Typically, a thread is a concurrent execution of a

function or a procedure!

• So, your program needs to be restructured such that
parallel parts form separate procedures or functions

51

General Program Structure
• Encapsulate parallel parts in functions.!

• Use function arguments to parametrize what a
particular thread does.!

• Call pthread_create() with the function and arguments,
save thread identifier returned.!

• Call pthread_join() with that thread identifier.

52

Pthreads Synchronization
❖ Create/exit/join!

❖ provide some form of synchronization !

❖ at a very coarse level!

❖ requires thread creation/destruction!

❖ Need for finer-grain synchronization!

❖ mutex locks, reader-writer locks, condition variables,
semaphores

53

Credits
❖ This slide is based on contributions from Sandhya

Dwarkadas

54

