
CSC 256/456: Operating Systems

Synchronization
Principles I

John Criswell!
University of Rochester

1

Synchronization Principles
❖ Background!

❖ Concurrent access to shared data may result in data inconsistency.!

❖ Maintaining data consistency requires mechanisms to ensure the orderly execution
of cooperating processes.!

❖ The Critical-Section Problem!

❖ Pure software solution!

❖ With help from the hardware!

❖ Synchronization without busy waiting (with the support of process/thread scheduler)!

❖ Semaphore!

❖ Mutex lock!

❖ Condition variables

2

Bounded Buffer

3

Producer process
!
item nextProduced;!
while (1) {!
! while (counter==BUFFER_SIZE)!
! ! ; /* do nothing */!
! buffer[in] = nextProduced;!
! in = (in+1) % BUFFER_SIZE;!
! counter++;!
}

Consumer process
!
item nextConsumed;!
while (1) {!
! while (counter==0)!
! ! ; /* do nothing */!
! nextConsumed = buffer[out];!
! out = (out+1) % BUFFER_SIZE;!
! counter--;!
}

Out In

CounterShared Data!
typedef struct {…} item;!
item buffer[BUFFER_SIZE];!
int in=0, out=0;!
int counter = 0;

Bounded Buffer
❖ Following statements must be performed atomically:!

❖ counter++;!

❖ counter--;!

❖ Atomic operation means an operation that completes in
its entirety without interruption.

4

Individual Statements
counter++ sequence!

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter = register1;

5

counter— sequence!

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter = register2;

The Good

!

!

!

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter = register1;

6

Counter!
4

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

The Good

!

!

!

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter = register1;

6

Counter!
4

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

Counter!
4

The Other Good

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter = register1;

7

Counter!
4

!

!

!

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

The Other Good

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter = register1;

7

Counter!
4

!

!

!

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

Counter!
4

The Ugly

❖ register1 = counter;!

!

❖ register1 = register1 + 1;!

!

!

❖ counter = register1;

8

Counter!
4

!

❖ register2 = counter;!

!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

The Ugly

❖ register1 = counter;!

!

❖ register1 = register1 + 1;!

!

!

❖ counter = register1;

8

Counter!
4

!

❖ register2 = counter;!

!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

Counter!
5!

Race Condition
❖ Race condition: !

❖ The situation where several processes access and
manipulate shared data concurrently. !

❖ The final value of the shared data and/or effects on
the participating processes depends upon the order of
process execution – nondeterminism.!

❖ To prevent race conditions, concurrent processes must
be synchronized.

9

The Critical-Section Problem
❖ n processes all competing to use some shared data!

❖ Each process has a code segment, called critical section,
in which the shared data is accessed.

10

Requirements for Solutions to the Critical Section Problem

11

Mutual Exclusion No two processes are in the critical
section at the same time.

Progress No process outside its critical section
can block other processes.

Bounded Waiting

When a process requests to enter its
critical section, there is a bound on the
time it waits before it is allowed to
enter.

Race Condition Solutions

12

Eliminate Concurrency!
❖ Disable context switching when in the critical section!

❖ Only works on a single-processor machines!

❖ Eliminating context switching harder than it looks!

❖ Software exceptions!

❖ Hardware interrupts!

❖ System calls!

❖ Disabling interrupts?!

❖ Infeasible for user programs since they shouldn’t be able to disable interrupts!

❖ Feasible for OS kernel programs

13

Critical Section for Two Processes
❖ Only 2 processes:!

❖ P0 and P1!

❖ Processes may share some
common variables to
synchronize their actions.!

❖ Assumption: instructions are
atomic and no re-ordering of
instructions.!

❖ Critical section does not
infinite loop

14

do {

entry_section

critical_section

exit_section

remainder

} while (1);

General Structure of Process

Algorithm 1
• Shared variables: !

– int turn;  
initially turn = 0;!

– turn==i ⇒ Pi can enter its critical section!
!

• Process Pi!
! ! do {!
! ! ! while (turn != i) ;!
! ! ! ! critical section!
! ! ! turn = j;!
! ! ! ! remainder section!
! ! } while (1);!
!

• Satisfies mutual exclusion, but not progress

15

Algorithm 2
• Shared variables:!

– boolean flag[2];  
initially flag[0] = flag[1] = false;!

– flag[i]==true ⇒ Pi ready to enter its critical section!
!

• Process Pi!
! ! do {!
! ! ! flag[i] = true;  
! ! while (flag[j]) ;!

! ! ! ! ! critical section!
! ! ! flag[i] = false;!
! ! ! ! remainder section!
! ! } while (1);!
!

• Satisfies mutual exclusion, but not progress requirement.

16

Algorithm 3
• Combine shared variables of algorithms 1 and 2.!
!

• Process Pi!
! ! do {!
! ! ! flag[i] = true; 
! ! turn = j; 
! ! while (flag[j] && turn==j) ;!

! ! ! ! critical section!
! ! ! flag[i] = false;!
! ! ! ! remainder section!

! ! } while (1);!
!

• Meets all three requirements; solves the critical-section problem
for two processes. ⇒ called Peterson’s algorithm.

17

Hardware for Synchronization

18

Need for Synchronization Hardware
❖ All synchronization systems assume atomic operations!

❖ Hardware can implement atomic operations efficiently!

❖ Modern hardware issues require it!

❖ Caches and cache coherency!

❖ Memory consistency models

19

Basic Hardware Mechanisms for Synchronization

❖ Test-and-set – atomic exchange!

❖ Fetch-and-op (e.g., increment) – returns value and
atomically performs op (e.g., increments it)!

❖ Compare-and-swap – compares the contents of two
locations and swaps if identical!

❖ Load-locked/store conditional – pair of instructions –
deduce atomicity if second instruction returns correct
value

20

Synchronization Using Special Instruction: TSL (test-and-set)

entry_section:!
! TSL R1, LOCK! ! | copy lock to R1 and set lock to 1!
! CMP R1, #0! ! ! | was lock zero?!
! JNE entry_section! | if it wasn’t zero, lock was set, so loop!
! RET! ! ! ! ! | return; critical section entered!

!
exit_section:!
! MOV LOCK, #0! ! | store 0 into lock!
! RET! ! ! ! ! | return; out of critical section

21

Does This Solve the Critical Section Problem?

entry_section:!
! TSL R1, LOCK! ! | copy lock to R1 and set lock to 1!
! CMP R1, #0! ! ! | was lock zero?!
! JNE entry_section! | if it wasn’t zero, lock was set, so loop!
! RET! ! ! ! ! | return; critical section entered!

!
exit_section:!
! MOV LOCK, #0! ! | store 0 into lock!
! RET! ! ! ! ! | return; out of critical section

22

Does This Solve the Critical Section Problem?

entry_section:!
! TSL R1, LOCK! ! | copy lock to R1 and set lock to 1!
! CMP R1, #0! ! ! | was lock zero?!
! JNE entry_section! | if it wasn’t zero, lock was set, so loop!
! RET! ! ! ! ! | return; critical section entered!

!
exit_section:!
! MOV LOCK, #0! ! | store 0 into lock!
! RET! ! ! ! ! | return; out of critical section

22

1.Mutual Exclusion?

Does This Solve the Critical Section Problem?

entry_section:!
! TSL R1, LOCK! ! | copy lock to R1 and set lock to 1!
! CMP R1, #0! ! ! | was lock zero?!
! JNE entry_section! | if it wasn’t zero, lock was set, so loop!
! RET! ! ! ! ! | return; critical section entered!

!
exit_section:!
! MOV LOCK, #0! ! | store 0 into lock!
! RET! ! ! ! ! | return; out of critical section

22

1.Mutual Exclusion?
2.Progress?

Does This Solve the Critical Section Problem?

entry_section:!
! TSL R1, LOCK! ! | copy lock to R1 and set lock to 1!
! CMP R1, #0! ! ! | was lock zero?!
! JNE entry_section! | if it wasn’t zero, lock was set, so loop!
! RET! ! ! ! ! | return; critical section entered!

!
exit_section:!
! MOV LOCK, #0! ! | store 0 into lock!
! RET! ! ! ! ! | return; out of critical section

22

1.Mutual Exclusion?
2.Progress?
3.Bounded Waiting?

Using ll/sc for Atomic Exchange
• Swap the contents of R4 with the memory location specified

by R1!

!

try: mov R3, R4 ; mov exchange value!
 ll R2, 0(R1) ; load linked!
 sc R3, 0(R1) ; store conditional!
 beqz R3, try ; branch if store fails!
 mov R4, R2 ; put load value in R4

23

Does load-linked/store conditional
satisfy the bounded wait requirement?

24

Why is forgoing the bounded wait
requirement okay?

25

Waiting for Godot…

26

Question

❖ In all our solutions, a process enters a loop until entry is
granted!

❖ Why is this bad?

27

Busy Waiting

❖ In all our solutions, a process enters a loop until entry is
granted ⇒ busy waiting.!

❖ Problems with busy waiting:!

❖ Waste of CPU time!

❖ If a process is switched out of CPU during critical section!

❖ other processes may have to waste a whole CPU quantum !

❖ may even deadlock with strictly prioritized scheduling
(priority inversion problem)

28

Solution to Busy Waiting

❖ Yield processor!

❖ If you can’t avoid busy wait, you must prevent context
switch during critical section (disable interrupts while
in the kernel).

29

Recap
❖ Concurrent access to shared data may result in data inconsistency – race condition.!

❖ The Critical-Section problem!

❖ Pure software solution!

❖ With help from the hardware!

❖ Problems with busy-waiting-based synchronization!

❖ Waste CPU, particularly when context switch occurs while a process is inside critical
section!

❖ Solution!

❖ Avoid busy wait as much as possible (yield the processor instead).!

❖ If you can’t avoid busy wait, you must prevent context switch during critical section
(disable interrupts while in the kernel)

30

Synchronization Mechanisms

31

Mutex Lock (Binary Semaphore)
❖ Mutex lock – variable

with two states:!

❖ Locked!

❖ Unlocked!

❖ Implemented using
atomic instructions

32

lock(mutex): !
! wait until mutex==unlocked;!
! mutex=locked;!
!
unlock(mutex): !
! mutex=unlocked;!

Semaphore
❖ Synchronization tool that does not require busy waiting!

❖ Integer variable with two atomic operations:!

❖ wait (or P)!

❖ signal (or V)

33

wait(S) or P(S):!
!

wait until S > 0;!
S—;

signal(S) or V(S):!
!

S++;

Using a Semaphore as a Mutex
semaphore mutex = 1;

!

wait (semaphore);

critical_section;

signal (semaphore);

remainder_section;

34

Semaphore Implementation
❖ Define a semaphore as a record!

typedef struct {!

int value;!

proc_list *L;!

} semaphore;!

❖ Assume two simple operations:!

❖ Block suspends process that
invokes it.!

❖ wakeup(P) resumes the execution
of a blocked process P.

Semaphore operations now
defined as (both are atomic):!
! wait(S):!  
! value = (S.value--);!

! ! if (value < 0) { !
! ! ! add this process to S.L;  
! ! block;!

! ! }!
! signal(S):  
! value = (S.value++);!

! ! if (value <= 0) {!
! ! ! remove a process P from S.L;  
! ! wakeup(P);!

! ! }

35

Semaphore Implementation
❖ Define a semaphore as a record!

typedef struct {!

int value;!

proc_list *L;!

} semaphore;!

❖ Assume two simple operations:!

❖ Block suspends process that
invokes it.!

❖ wakeup(P) resumes the execution
of a blocked process P.

Semaphore operations now
defined as (both are atomic):!
! wait(S):!  
! value = (S.value--);!

! ! if (value < 0) { !
! ! ! add this process to S.L;  
! ! block;!

! ! }!
! signal(S):  
! value = (S.value++);!

! ! if (value <= 0) {!
! ! ! remove a process P from S.L;  
! ! wakeup(P);!

! ! }

How do we make sure
wait(S) and signal(S) are

atomic?

35

Implement Semaphore Using Mutex Lock

❖ Data structures:!

❖ !! mutex_lock L1, L2;!

❖ !! int C; !

❖ Initialization:!

❖ !! L1 = unlocked;!

❖ !! L2 = locked;!

❖ !C = initial value of semaphore;

• wait operation:!
! ! lock(L1);!
! ! C --;!
! ! if (C < 0) {!
! ! ! unlock(L1);!
! ! ! lock(L2);!
! ! }!
! ! unlock(L1);! !
• signal operation:!

! lock(L1);!
!C ++;!
! if (C <= 0)!
! ! ! unlock(L2);!
!else!
! ! ! unlock(L1);

36

Implement Semaphore Using Mutex Lock

❖ Data structures:!

❖ !! mutex_lock L1, L2;!

❖ !! int C; !

❖ Initialization:!

❖ !! L1 = unlocked;!

❖ !! L2 = locked;!

❖ !C = initial value of semaphore;

• wait operation:!
! ! lock(L1);!
! ! C --;!
! ! if (C < 0) {!
! ! ! unlock(L1);!
! ! ! lock(L2);!
! ! }!
! ! unlock(L1);! !
• signal operation:!

! lock(L1);!
!C ++;!
! if (C <= 0)!
! ! ! unlock(L2);!
!else!
! ! ! unlock(L1);

36

Have we truly
eliminated busy waiting?

Tune in next week for our next
exciting episode!

37

Credits and Disclaimer
❖ Parts of the lecture slides contain original work from

Gary Nutt, Andrew S. Tanenbaum, and Kai Shen. The
slides are intended for the sole purpose of instruction of
operating systems at the University of Rochester. All
copyrighted materials belong to their original owner(s).

38

