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Synchronization Principles
❖ Background!

❖ Concurrent access to shared data may result in data inconsistency.!

❖ Maintaining data consistency requires mechanisms to ensure the orderly execution 
of cooperating processes.!

❖ The Critical-Section Problem!

❖ Pure software solution!

❖ With help from the hardware!

❖ Synchronization without busy waiting (with the support of process/thread scheduler)!

❖ Semaphore!

❖ Mutex lock!

❖ Condition variables
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Bounded Buffer
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Producer process  
!
item nextProduced;!
while (1) {!
! while (counter==BUFFER_SIZE)!
! ! ; /* do nothing */!
! buffer[in] = nextProduced;!
! in = (in+1) % BUFFER_SIZE;!
! counter++;!
}

Consumer process  
!
item nextConsumed;!
while (1) {!
! while (counter==0)!
! ! ; /* do nothing */!
! nextConsumed = buffer[out];!
! out = (out+1) % BUFFER_SIZE;!
! counter--;!
}

Out In

CounterShared Data!
typedef struct {…} item;!
item buffer[BUFFER_SIZE];!
int in=0, out=0;!
int counter = 0;



Bounded Buffer
❖ Following statements must be performed atomically:!

❖ counter++;!

❖ counter--;!

❖ Atomic operation means an operation that completes in 
its entirety without interruption.
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Individual Statements
counter++ sequence!

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter   = register1;
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counter— sequence!

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter   = register2;



The Good

!

!

!

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter   = register1;
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Counter!
4

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter   = register2;

counter++ counter—



The Good

!

!

!

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter   = register1;
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Counter!
4

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter   = register2;

counter++ counter—

Counter!
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The Other Good

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter   = register1;
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Counter!
4

!

!

!

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter   = register2;

counter++ counter—



The Other Good

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter   = register1;
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Counter!
4

!

!

!

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter   = register2;

counter++ counter—

Counter!
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The Ugly

❖ register1 = counter;!

!

❖ register1 = register1 + 1;!

!

!

❖ counter   = register1;
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Counter!
4

!

❖ register2 = counter;!

!

❖ register2 = register2 - 1;!

❖ counter   = register2;

counter++ counter—



The Ugly

❖ register1 = counter;!

!

❖ register1 = register1 + 1;!

!

!

❖ counter   = register1;
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Counter!
4

!

❖ register2 = counter;!

!

❖ register2 = register2 - 1;!

❖ counter   = register2;

counter++ counter—

Counter!
5!



Race Condition
❖ Race condition: !

❖ The situation where several processes access and 
manipulate shared data concurrently. !

❖ The final value of the shared data and/or effects on 
the participating processes depends upon the order of 
process execution – nondeterminism.!

❖ To prevent race conditions, concurrent processes must 
be synchronized.
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The Critical-Section Problem
❖ n processes all competing to use some shared data!

❖ Each process has a code segment, called critical section, 
in which the shared data is accessed.
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Requirements for Solutions to the Critical Section Problem
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Mutual Exclusion No two processes are in the critical 
section at the same time.

Progress No process outside its critical section 
can block other processes.

Bounded Waiting

When a process requests to enter its 
critical section, there is a bound on the 
time it waits before it is allowed to 
enter.



Race Condition Solutions
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Eliminate Concurrency!
❖ Disable context switching when in the critical section!

❖ Only works on a single-processor machines!

❖ Eliminating context switching harder than it looks!

❖ Software exceptions!

❖ Hardware interrupts!

❖ System calls!

❖ Disabling interrupts?!

❖ Infeasible for user programs since they shouldn’t be able to disable interrupts!

❖ Feasible for OS kernel programs
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Critical Section for Two Processes
❖ Only 2 processes:!

❖ P0 and P1!

❖ Processes may share some 
common variables to 
synchronize their actions.!

❖ Assumption: instructions are 
atomic and no re-ordering of 
instructions.!

❖ Critical section does not 
infinite loop
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do { 

entry_section 

critical_section 

exit_section 

remainder 

} while (1);

General Structure of Process



Algorithm 1
• Shared variables: !

– int turn;  
initially turn = 0;!

– turn==i ⇒ Pi can enter its critical section!
!

• Process Pi!
! ! do {!          
! ! ! while (turn != i) ;!                         
! ! ! ! critical section!                              
! ! ! turn = j;!                     
! ! ! ! remainder section!                              
! ! } while (1);!                  
!

• Satisfies mutual exclusion, but not progress
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Algorithm 2
• Shared variables:!

– boolean flag[2];  
initially flag[0] = flag[1] = false;!

– flag[i]==true ⇒ Pi ready to enter its critical section!
!

• Process Pi!
! ! do {!           
! ! ! flag[i] = true;                           
! ! while (flag[j]) ;!

! ! ! ! ! critical section!                              
! ! ! flag[i] = false;!                         
! ! ! ! remainder section!                              
! ! } while (1);!                   
!

• Satisfies mutual exclusion, but not progress requirement.
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Algorithm 3
• Combine shared variables of algorithms 1 and 2.!
!

• Process Pi!
! ! do {!           
! ! ! flag[i] = true;                               
! ! turn = j;    
! ! while (flag[j] && turn==j) ;!

! ! ! ! critical section!                                     
! ! ! flag[i] = false;!                               
! ! ! ! remainder section!                                      

! ! } while (1);!                  
!

• Meets all three requirements; solves the critical-section problem 
for two processes. ⇒ called Peterson’s algorithm.
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Hardware for Synchronization
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Need for Synchronization Hardware
❖ All synchronization systems assume atomic operations!

❖ Hardware can implement atomic operations efficiently!

❖ Modern hardware issues require it!

❖ Caches and cache coherency!

❖ Memory consistency models
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Basic Hardware Mechanisms for Synchronization

❖ Test-and-set – atomic exchange!

❖ Fetch-and-op (e.g., increment) – returns value and 
atomically performs op (e.g., increments it)!

❖ Compare-and-swap – compares the contents of two 
locations and swaps if identical!

❖ Load-locked/store conditional – pair of instructions – 
deduce atomicity if second instruction returns correct 
value
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Synchronization Using Special Instruction: TSL (test-and-set)

entry_section:!
! TSL R1, LOCK! ! | copy lock to R1 and set lock to 1!     
! CMP R1, #0! ! ! | was lock zero?!      
! JNE entry_section! | if it wasn’t zero, lock was set, so loop!     
! RET! ! ! ! ! | return; critical section entered!                   

!
exit_section:!
! MOV LOCK, #0! ! | store 0 into lock!     
! RET! ! ! ! ! | return; out of critical section                   
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Does This Solve the Critical Section Problem?

entry_section:!
! TSL R1, LOCK! ! | copy lock to R1 and set lock to 1!     
! CMP R1, #0! ! ! | was lock zero?!      
! JNE entry_section! | if it wasn’t zero, lock was set, so loop!     
! RET! ! ! ! ! | return; critical section entered!                   

!
exit_section:!
! MOV LOCK, #0! ! | store 0 into lock!     
! RET! ! ! ! ! | return; out of critical section                   
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Does This Solve the Critical Section Problem?
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1.Mutual Exclusion?
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1.Mutual Exclusion?
2.Progress?



Does This Solve the Critical Section Problem?

entry_section:!
! TSL R1, LOCK! ! | copy lock to R1 and set lock to 1!     
! CMP R1, #0! ! ! | was lock zero?!      
! JNE entry_section! | if it wasn’t zero, lock was set, so loop!     
! RET! ! ! ! ! | return; critical section entered!                   

!
exit_section:!
! MOV LOCK, #0! ! | store 0 into lock!     
! RET! ! ! ! ! | return; out of critical section                   
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1.Mutual Exclusion?
2.Progress?
3.Bounded Waiting?



Using ll/sc for Atomic Exchange
• Swap the contents of R4 with the memory location specified 

by R1!

!

try: mov R3, R4      ; mov exchange value!
       ll     R2, 0(R1)  ; load linked!
       sc R3, 0(R1)     ; store conditional!
       beqz R3, try      ; branch if store fails!
       mov  R4, R2     ; put load value in R4
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Does load-linked/store conditional 
satisfy the bounded wait requirement?

24



Why is forgoing the bounded wait 
requirement okay?
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Waiting for Godot…
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Question

❖ In all our solutions, a process enters a loop until entry is 
granted!

❖ Why is this bad?

27



Busy Waiting

❖ In all our solutions, a process enters a loop until entry is 
granted ⇒ busy waiting.!

❖ Problems with busy waiting:!

❖ Waste of CPU time!

❖ If a process is switched out of CPU during critical section!

❖ other processes may have to waste a whole CPU quantum !

❖ may even deadlock with strictly prioritized scheduling 
(priority inversion problem)
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Solution to Busy Waiting

❖ Yield processor!

❖ If you can’t avoid busy wait, you must prevent context 
switch during critical section (disable interrupts while 
in the kernel).
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Recap
❖ Concurrent access to shared data may result in data inconsistency – race condition.!

❖ The Critical-Section problem!

❖ Pure software solution!

❖ With help from the hardware!

❖ Problems with busy-waiting-based synchronization!

❖ Waste CPU, particularly when context switch occurs while a process is inside critical 
section!

❖ Solution!

❖ Avoid busy wait as much as possible (yield the processor instead).!

❖ If you can’t avoid busy wait, you must prevent context switch during critical section 
(disable interrupts while in the kernel)
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Synchronization Mechanisms
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Mutex Lock (Binary Semaphore)
❖ Mutex lock – variable 

with two states:!

❖ Locked!

❖ Unlocked!

❖ Implemented using 
atomic instructions
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lock(mutex):  !
! wait until mutex==unlocked;!   
! mutex=locked;!   
!
unlock(mutex): !
! mutex=unlocked;!   



Semaphore
❖ Synchronization tool that does not require busy waiting!

❖ Integer variable with two atomic operations:!

❖ wait (or P)!

❖ signal (or V)

33

wait(S) or P(S):!
!

wait until S > 0;!
S—;

signal(S) or V(S):!
!

S++;



Using a Semaphore as a Mutex
semaphore mutex = 1; 

!

wait (semaphore); 

critical_section; 

signal (semaphore); 

remainder_section;
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Semaphore Implementation
❖ Define a semaphore as a record!

typedef struct {!

int value;!

proc_list *L;!

} semaphore;!

❖ Assume two simple operations:!

❖ Block suspends process that 
invokes it.!

❖ wakeup(P) resumes the execution 
of a blocked process P.

Semaphore operations now 
defined as (both are atomic):!
! wait(S):!       
! value = (S.value--);!

! ! if (value < 0) { !            
! ! ! add this process to S.L;                    
! ! block;!

! ! }!        
! signal(S):      
! value = (S.value++);!

! ! if (value <= 0) {!            
! ! ! remove a process P from S.L;                    
! ! wakeup(P);!

! ! }      
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Semaphore Implementation
❖ Define a semaphore as a record!

typedef struct {!

int value;!

proc_list *L;!

} semaphore;!

❖ Assume two simple operations:!

❖ Block suspends process that 
invokes it.!

❖ wakeup(P) resumes the execution 
of a blocked process P.

Semaphore operations now 
defined as (both are atomic):!
! wait(S):!       
! value = (S.value--);!

! ! if (value < 0) { !            
! ! ! add this process to S.L;                    
! ! block;!

! ! }!        
! signal(S):      
! value = (S.value++);!

! ! if (value <= 0) {!            
! ! ! remove a process P from S.L;                    
! ! wakeup(P);!

! ! }      

How do we make sure 
wait(S) and signal(S) are 

atomic?
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Implement Semaphore Using Mutex Lock

❖ Data structures:!

❖ !! mutex_lock L1, L2;!

❖ !! int C;  !

❖ Initialization:!

❖ !! L1 = unlocked;!

❖ !! L2 = locked;!

❖ !C = initial value of semaphore;

• wait operation:!
! ! lock(L1);!         
! ! C --;!         
! ! if (C < 0) {!         
! ! ! unlock(L1);!               
! ! ! lock(L2);!               
! ! }!        
! ! unlock(L1);!         !
• signal operation:!

! lock(L1);! 
!C ++;! 
! if (C <= 0)! 
! ! ! unlock(L2);!             
!else! 
! ! ! unlock(L1);             
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Implement Semaphore Using Mutex Lock

❖ Data structures:!

❖ !! mutex_lock L1, L2;!

❖ !! int C;  !
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❖ !! L2 = locked;!

❖ !C = initial value of semaphore;

• wait operation:!
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Have we truly 
eliminated busy waiting?



Tune in next week for our next 
exciting episode!
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Credits and Disclaimer
❖ Parts of the lecture slides contain original work from 

Gary Nutt, Andrew S. Tanenbaum, and Kai Shen. The 
slides are intended for the sole purpose of instruction of 
operating systems at the University of Rochester. All 
copyrighted materials belong to their original owner(s). 
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