
CPU Scheduling
CSC 256/456 - Operating Systems
Fall 2014

TA: Mohammad Hedayati

Agenda

●Scheduling Policy Criteria

●Scheduling Policy Options (on Uniprocessor)

●Multiprocessor scheduling considerations

●CPU Scheduling in Linux

●Real-time Scheduling

Process States
●As a process executes, it changes state
onew: The process is being created
oready: The process is waiting to be assigned to a

process
orunning: Instructions are being executed
owaiting: The process is waiting for some event to occur
o terminated: The process has finished execution

Queues of PCBs

● Ready Queue: set of all
processes ready for
execution.

● Device Queue: set of
processes waiting for IO on
that device.

● Processes migrate between
the various queues.

Scheduling

●Question: How the OS should decide which of the
several processes to take of the queue?
oWe will only worry about ready queue, but it is

applicable to other queues as well.
●Scheduling Policy: which process is given the access to

resources?

CPU Scheduling

● Selects from among the processes/threads that are ready to execute, and
allocates the CPU to it

● CPU scheduling may take place at:
o hardware interrupt
o software exception
o system calls

● Non-Preemptive
o scheduling only when the current process terminates or not able to run

further (due to IO, or voluntarily calling sleep() or yield())

● Preemptive
o scheduling can occur at any opportunity possible

Some Simplifying Assumptions

●For the first few algorithms:
oUni-processor
oOne thread per process
oPrograms are independant

●Execution Model: Processes alternate between bursts of
CPU and IO

●Goal: deal out CPU time in a way that some parameters
are optimized.

CPU Scheduling Criteria
● Minimize waiting time: amount of time the process is waiting in ready queue.

● Minimize turnaround time: amount of time that the system takes to execute
a process (= waiting time + execution time in absence of any other process).
o response time: amount of time that the system takes to produce the first response

(interactivity). e.g. echo back a keystroke on editor

● Maximize throughput: # of processes that complete their execution per time unit (usu. in a long
run)

● Maximize CPU utilization: the proportion of time that CPU is doing useful job.

● Fairness: avoid starvation

First-Come, First-Served (FCFS)

● Suppose that the processes arrive in the order: P1 , P2 , P3.
The schedule gantt chart is:

● Waiting time: P1 = 0, P2 = 24 and P3 = 27 (avg. is 17)
● Turnaround time: P1 = 24, P2 = 27 and P3 = 30 (avg. is 27)
● Is it fair?

Proce
ss

Arrival CPU
Time

P1 0 24

P2 0 3

P3 0 3

FCFS (cont.)

● Suppose that the processes arrive in the order: P1 , P2 , P3.
Now, the schedule is:

● Waiting time: P1 = 6, P2 = 0 and P3 = 3 (avg. is 3, was 17)
● Turnaround time: P1 = 30, P2 = 3 and P3 = 6 (avg. is 13, was 27)

● Short process delayed by long process: Convoy effect

● Pros and Cons?

Shortest Job First (SJF)

● Associate with each process the length of its CPU time. Use these lengths to
schedule the process with the shortest CPU time.

● Two variations:
o Non-preemptive: once CPU given to the process it cannot be taken away until it completes.
o Preemptive: if a new process arrives with CPU time less than remaining time of current

executing process, preempt (a.k.a Shortest Remaining Job First - SRJF)

● Preemptive SJF is optimal: gives minimum average turnaround time for a given set of processes

● Problem:
o don’t know the process CPU time ahead of time
o is it fair?

Example of Preemptive SJF

● SJF (Preemptive)

● Waiting time: P1 = 9, P2 = 1, P3 = 0 and P4 = 2 (avg. is 3)
● Turnaround time: P1 = 16, P2 = 5, P3 = 1 and P4 = 6 (avg. is 7)

Proces
s

Arrival
Time

CPU
Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Priority Scheduling

● A priority number (integer) is associated with each process

● The CPU is allocated to the process with the highest priority
o Preemptive vs. Non-Preemptive

● SJF is a priority scheduling where priority is the predicted CPU time.

● Problem: Starvation – low priority processes may never execute

● Solution: Aging – as time progresses, increase the priority of the process

Round Robin (RR)

● Each process gets a fixed unit of CPU time (time quantum), usually 10-100
milliseconds. After this time has elapsed, the process is preempted and
added to the end of the ready queue

● If there are n processes in the ready queue and the time quantum is q, then
each process gets 1/n of the CPU time in chunks of at most q time units at
once. No process waits more than (n-1)q time units

● Performance:
o q small fair, starvation-free, better interactivity
o q large FIFO (q = ∞)
o q must be large with respect to context switch cost, otherwise overhead is too high

Cost of Context Switch

●Direct overhead of context switch
o saving old contexts, restoring new contexts, …

●Indirect overhead of context switch
o caching and memory management overhead

Example of RR with Quantum = 20

●The schedule is:

●Typically, higher avg. turnaround time, but better
response time.

Process CPU Time

P1 53

P2 17

P3 68

P4 24

Multilevel Scheduling
●Ready tasks are partitioned into separate classes:
o foreground (interactive)
obackground (batch)

● Each class has its own scheduling algorithm:
o foreground – RR
obackground – FCFS

● Scheduling must be done between the classes.
oFixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation
oTime slice – each class gets a certain amount of CPU

time which it can schedule amongst its processes; e.g.,
 80% to foreground in RR
 20% to background in FCFS

Multilevel Feedback Scheduling

●A process can move between the various queues
oaging can be implemented this way

●Multilevel-feedback-queue scheduler defined by the
following parameters:
onumber of queues
oscheduling algorithms for each queue
omethod used to determine when to upgrade a process
omethod used to determine when to demote a process
omethod used to determine which queue a process will

enter when that process needs service

Example of Multilevel Feedback
Queue

●Three queues:
o Q0 – RR with time quantum 8 milliseconds
o Q1 – RR time quantum 16 milliseconds
o Q2 – FCFS Scheduling

Solaris Scheduler

●Combines time slices, priority, and prediction

Lottery Scheduling
●Give processes lottery tickets

●Choose ticket at random and allow process holding the
ticket to get the resource

●Hold a lottery at periodic intervals

●Properties
oChance of winning proportional to number of tickets held

(highly responsive)
oCooperating processes may exchange tickets
oFair-share scheduling easily implemented by allocating

tickets to users and dividing tickets among child
processes

Multiprocessor Scheduling

● Given a set of runnable processes, and a set of CPUs, assign processes to
CPUs

● Same considerations:
o response time, fairness, throughput, …

● But also, new considerations:
o ready queue implementation
o load balancing
o affinity
o resource contention

Ready Queue Implementation

● Option 1: Single Shared Ready Queue (among CPUs)
o Scheduling events occur per-CPU

 Local timer interrupt
 Currently executing thread blocks or yields

o Scheduling code on any CPU needs to access the shared queue
 Synchronization is needed.

● Option 2: Per-CPU Ready Queue
o Scheduling code accesses local queue
o Load balancing:

 Infrequent synchronization
o Per-CPU variables should lie on separate cache-lines

Load balancing

● Keep ready queue sizes balanced across CPUs
o Main goal: one cpu should not idle while others have processes waiting in

their queues
o Secondary: scheduling overhead may increase w.r.t queue length

● Push model: kernel daemon checks queue lengths periodically, moves
threads to balance

● Pull model: CPU notices its queue is empty (or shorter than a threshold) and
steals threads from other queues

● or both

Affinity

●As threads run, state accumulates in CPU cache

●Repeated scheduling on same CPU can often reuse this
state

●Scheduling on different CPU requires reloading new
cache
oAnd possibly invalidating old cache

●Try to keep thread on same CPU it used last

Contention-aware Scheduling I

● Hardware resource sharing/contention in multi-processors
o SMP processors share memory bus bandwidths
o Multi-core processors share cache
o SMT (hyper-thread) processors share a lot more

● An example: on an SMP machine
o a web server benchmark delivers around 6300 reqs/sec on one processor, but only around 9500

reqs/sec on an SMP with 4 processors

● Threads load data into cache and we can expect multiple threads to trash each others’ state as
they run on one same CPU
o Can try to detect cache needs and schedule threads that can share nicely on same CPU

SMP-SMT Multiprocessor

Image from http://www.eecg.toronto.edu/~tamda/papers/threadclustering.pdf

Contention-aware Scheduling II

●Contention-reduction scheduling by co-scheduling tasks
with complementary resource needs
oe.g. a computation-heavy task and a memory access-

heavy task
oe.g. several threads with small cache footprints may all

be able to keep data in cache at same time
oe.g. threads with no locality might as well execute on

same CPU since almost always miss in cache anyway

Contention-aware Scheduling III

●What if contention on a resource is unavoidable?
●Two evils of contention
ohigh contention performance slowdown⇒
o fluctuating contention uneven application progress ⇒

over the same amount of time poor fairness⇒

●[Zhang et al. HotOS2007] Scheduling so that:
o very high contention is avoided
o the resource contention is kept stable

Parallel Job Scheduling
●"Job" is a collection of processes/threads that cooperate

to solve some problem (or provide some service)

●How the components of the job are scheduled has a
major effect on performance

●Threads in a parallel job are not independent
oScheduling them as if they were leads to performance

problems
oWant scheduler to be aware of dependence

Parallel Job Scheduling
●Threads in a processes are not independent
oSynchronize over shared data

 Deschedule lock holder, other threads in job may not get far

o Cause/effect relationships (e.g. producer-consumer problem)
 Consumer is waiting for data on queue, but producer is not running

o Synchronizing phases of execution (barriers)
 Entire job proceeds at pace of slowest thread

●Knowing threads are related, schedule all at same time
o Space Sharing
o Time Sharing with Gang Scheduling

Space Sharing
● Divide CPUs into groups and assign jobs to dedicated set of CPUs

● Pros
o Reduce context switch overhead (no involuntary preemption)
o Strong affinity
o All runnable threads execute at same time

● Cons
o CPUs in one partition may be idle while we have multiple jobs waiting to run
o Difficult to deal with dynamically changing job sizes

Time Sharing
● Similar to uni-processor scheduling – a queue of ready tasks, a task is

dequeued and executed when a processor is available

● Gang/Cohort scheduling
o utilize all CPUs for one parallel/concurrent application at a time

Multiprocessor Scheduling in Linux 2.6

●One ready task queue per processor
oscheduling within a processor and its ready task queue

is similar to single-processor scheduling

●One task tends to stay in one queue
o for cache affinity

●Tasks move around when load is unbalanced
oe.g., when the length of one queue is less than one

quarter of the other

●No native support for gang/cohort scheduling or resource-
contention-aware scheduling

Linux Task Scheduling

● Linux 2.5 and up uses a preemptive, priority-based algorithm with two
separate priority ranges:
o A time-sharing class for fair preemptive scheduling (nice value ranging from 100-140)
o A real-time class that conforms to POSIX real-time standard (0-99)

● Numerically lower values indicate higher priority

● Higher-priority tasks get longer time quanta (200-10 ms)

● Ready queue indexed by priority and contains two priority arrays – active and expired

● Choose task with highest priority on active array; switch active and expired arrays when active is
empty - in O(1)

Priorities and Time-slice length

List of Tasks Indexed According to
Priorities

Real-Time Scheduling

●Deadline
oTime to react
okeep pace with a frequent event

●Hard real-time systems – required to complete a critical
task within a guaranteed amount of time

●Soft real-time computing – requires that critical
processes receive priority over less fortunate ones

●Earliest Deadline First (EDF)

Disclaimer

Parts of the lecture slides were derived from those by Kai Shen, Willy
Zwaenepoel, Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Andrew S.
Tanenbaum, Angela Demke Brown, and Gary Nutt. The slides are intended for
the sole purpose of instruction of operating systems at the University of
Rochester. All copyrighted materials belong to their original owner(s).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

