
CSC 256/456: Operating Systems

I/O Systems and
Storage Devices

John Criswell!
University of Rochester

1

I/O Device Controllers
❖ I/O devices have both mechanical component & electronic component!

❖ The electronic component is the device controller!

❖ It contains control logic, command registers, status registers, and on-
board buffer space

2

Device-Controller-Software Relationship

3

Application

High-Level OS Kernel
Component

Device Driver

Device Controller Device

User Mode Software

Kernel Mode Software

Hardware

I/O Ports & Memory-Mapped I/O

❖ Separate I/O and memory space!

❖ Special I/O commands (e.g., IN/OUT)!

❖ Memory-mapped I/O

4

How is I/O accomplished?
❖ Polling-based!

❖ CPU spins and polls the I/O until it completes!

❖ Periodic polling!

❖ Continuous polling consumes too much CPU!

❖ Instead, we poll periodically - saving CPU overhead, may not react
immediately to hardware events!

❖ Interrupt-driven!

❖ CPU initiates I/O and then does something else!

❖ CPU notified when the I/O is done (interrupts)

5

Interrupt Handlers
1. Save registers of the old process!

2. Set up context for interrupt service procedure!

1. Switch from user space to kernel space: MMU, stack, …!

3. Run service procedure; when safe, re-enable interrupts !

4. Run scheduler to choose the new process to run next!

5. Set up context (MMU, registers) for process to run next!

6. Start running the new process

6

Cost
What is the cost? Is it a big deal?!

!

For Gigabit Ethernet, each packet arrives once every 12us.

7

How could you speed up interrupt
handling?

8

Speeding Up Interrupt Handling
❖ Let OS share address space with application!

❖ No TLB flushes since page table remains the same!

❖ Shadow registers!

❖ Lazily save processor state!

❖ Floating point registers!

❖ Vector registers!

❖ Debug registers

9

Interrupt Vectors
• Intel Pentium processor event-vector table!

0: divide by zero!
6: invalid opcode!
11: segment not present!
12: stack fault!
14: page fault!
…31: non-maskable!
32-255: maskable interrupts

10

Which core gets an interrupt?

11

Advanced Programmable Interrupt Controller (APIC)

❖ Local APIC!

❖ Timer interrupt!

❖ I/O APIC!

❖ Routes interrupts to
different processors!

❖ Balances interrupts
among different
processors

12

CPU

Local APIC

CPU

Local APIC

I/O APIC

To I/O Bus

Device Driver Reliability
❖ Device driver is the device-specific part of the kernel-

space I/O software; it also includes interrupt handlers!

❖ Device drivers must run in kernel mode!

❖ Device driver crash brings down whole system!

❖ Device drivers are probably the buggiest part of the OS

13

How could we make systems more reliable
if device drivers continue to be buggy?

14

Improving Device Driver Reliability
❖ Run most of the device driver code at user level!

❖ What is the cost?!

❖ Restrict and limit device driver operations in the kernel!

❖ Separate address space via MMU!

❖ Compiler instrumentation (XFI)!

❖ Type-safe programming languages

15

To the disk drive, Robin!

16

Disk Drive – Mechanical Parts

Track

Se
cto

r
 Multi-surface Disk Disk Surface Cylinders

Cylinder !
 (set of tracks)

17

Disk Structure
• Disk drives are addressed as large 1-dimensional

arrays of logical blocks, where the logical block
is the smallest unit of transfer. !

!
• The 1-dimensional array of logical blocks is

mapped into the sectors of the disk sequentially.!
– Sector 0 is the first sector of the first track

on the outermost cylinder.!
– Mapping proceeds in order through that

track, then the rest of the tracks in that
cylinder, and then through the rest of the
cylinders from outermost to innermost.

Cylinder !
 (set of tracks)

18

Disk Performance Characteristics
❖ A disk operation has three

major components!

❖ Seek – moving the heads to
the cylinder containing the
desired sector !

❖ Rotation – rotating the
desired sector to the disk
head!

❖ Transfer – sequentially
moving data to or from
disk

19

0
2
4
6
8

10
12

Seek distance
Seek time (millisecond)

0

20

40

60

Starting transfer address

Read throughput (MB/sec)

A Seagate SCSI drive
An IBM SCSI drive

Se
ek

 ti
m

e
(m

illi
se

co
nd

)
Tr

an
sf

er
 th

ro
ug

hp
ut

 (M
B/

se
c)

FCFS (First-Come-First-Serve)

• Illustration shows the total head movement is 640.!

• Starvation?

20

SSTF (Shortest-Seek-Time-First)
❖ Selects the request

with the minimum
seek time from the
current head
position.!

❖ SSTF scheduling is a
form of SJF
scheduling.!

❖ Illustration shows
the total head
movement is 236.

21

SCAN
❖ The disk arm starts at one end of the disk, and moves toward the other end, servicing

requests until it gets to the other end, where the head movement is reversed and servicing
continues.!

❖ Sometimes called the elevator algorithm.!

❖ Illustration shows the total head movement is 208.

22

SCAN
❖ Disk arm moves back and forth along disk!

❖ Reads data as it goes!

❖ Sometimes called the elevator algorithm.!

❖ Illustration shows the total head movement is 208.

23

C-SCAN (Circular-SCAN)
❖ Provides a more uniform wait time than SCAN.!

❖ The head moves from one end of the disk to the other, servicing requests as it goes.
When it reaches the other end, however, it immediately returns to the beginning of the
disk, without servicing any requests on the return trip.

24

C-LOOK
• Variation of C-SCAN!
• Arm only goes as far as the last request in each direction, then reverses direction

immediately, without first going all the way to the end of the disk.

25

Deadline Scheduling in Linux
❖ A regular elevator-style scheduler similar to C-LOOK!

❖ Additionally, all I/O requests are put into a FIFO queue
with an expiration time (e.g., 500ms)!

❖ When the head request in the FIFO queue expires, it will
be executed next (even if it is not next in line according
to C-LOOK).!

❖ A mix of performance and fairness.

26

RAIDers of the Lost Data

27

Disk Concurrency
❖ “The only thing better than one guitar is two guitars.”!

❖ Maurice Ravel!

❖ The only thing better than one disk is two disks.!

❖ David Patterson, Garth A. Bison, and Randy Katz

28

Two Disks: Disk Striping
❖ Blocks divided into subblocks!

❖ Subblocks stored on different disks

29

Disk 1 Disk 2

CPU

Two Disks: Mirroring
❖ Make a copy of each block on each disk!

❖ Provides redundancy

30

Disk 1 Disk 2

CPU

Multiple Disks: Parity Block
❖ Have one disk contain parity bits of blocks on other devices!

❖ Provides redundancy without full copy

31

Disk 1 Disk 3

CPU

Disk 2

Exploiting Concurrency
• RAID: Redundant Arrays of Independent Disks!

– RAID 0: data striping at block level, no redundancy!
– RAID 1: mirrored disks (100% overhead)!
– RAID 2: bit-level striping with parity bits, synchronized

writes!
– RAID 3: data striping at the bit level with parity disk,

synchronized writes!
– RAID 4: data striping at block level with parity disk!
– RAID 5: scattered parity!
– RAID 6: handles multiple disk failures

32

Disk Management
• Formatting !

– Header: sector number etc. !
– Footer/tail: ECC codes!
– Gap!
– Initialize mapping from logical block number to defect-free

sectors!
• Logical disk partitioning!

– One or more groups of cylinders!
– Sector 0: master boot record loaded by BIOS firmware, which

contains partition information!
– Boot record points to boot partition

33

Swap Space Management
❖ Part of file system?!

❖ Requires navigating directory structure !

❖ Disk allocation data structures!

❖ Separate disk partition!

❖ No file system or directory structure !

❖ Optimize for speed rather than storage efficiency!

❖ When is swap space created?

34

Credits
❖ Parts of the lecture slides contain original work of

Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

35

