
CSC 256/456: Operating Systems

File Systems John Criswell!
University of Rochester

1



Review of Disk I/O

2



Hard Disks
❖ Mechanical parts!

❖ Cylinders!

❖ Tracks!

❖ Sectors!

❖ Electronic part!

❖ Disk controller exposes a one-dimensionally addressable set 
of blocks!

❖ Large seek/rotation time

3



Disk Scheduling
❖ Disk scheduling – choose from outstanding disk requests when 

the disk is ready for a new request!

❖ Can be done in both disk controller and the operating system!

❖ Disk scheduling non-preemptible!

❖ Goals of disk scheduling!

❖ overall efficiency – small resource consumption for 
completing disk I/O workload!

❖ fairness – prevent starvation

4



Special Blocks and Partitions
❖ Logical disk partitioning!

❖ One or more groups of cylinders!

❖ Sector 0: master boot record loaded by BIOS 
firmware, which contains partition information!

❖ Boot record points to boot partition

5



File Systems: Organizing the Chaos

6



File Systems
❖ A File system is the OS abstraction for storage resources!

❖ File is a logical storage unit in the OS abstract 
interface for storage resources!

❖ Extension of address space (temporary files)!

❖ Non-volatile storage that survives the execution of 
an individual program (persistent files)!

❖ Directory is a logical “container” for a group of files

7



Operations Supported
❖ Create – associate a name with a file!

❖ Delete – remove the file!

❖ Rename – associate a new name with a file!

❖ Open – create cached context that is associated implicitly with future reads and writes!

❖ Write – store data in a file!

❖ Read – access the data associated with a file!

❖ Close – discard cached context!

❖ Seek – random access to any record or byte!

❖ Map – place in address space for convenience (memory-based loads and stores), speed; 
disadvantages: lengths that are not multiples of the page size, consistency with open/
read/write interface

8



File Abstraction
❖ File naming and other attributes:!

❖ name, size, access time, sharing/protection, location!

❖ Internal file structure!

❖ No structure - sequence of words, bytes!

❖ Complex Structures!

❖ records/formatted document/executable

9



File System Issues
❖ File system organization: efficiency of disk access!

❖ Concurrent access: allow multiple processes to read/
write!

❖ Reliability: integrity in the presence of failures!

❖ Protection: who can perform which operations on files

10



File Naming
❖ Fixed vs. variable length!

❖ Fixed: 8-255 characters!

❖ Variable: length: value encoding!

❖ File extensions – system supported vs. convention

11



Naming Files Using Directory Structures

❖ Directory: maps names to files; directories may 
themselves be files!

❖ Single level (flat): no two files may have the same name!

❖ Two level: per-user single-level directory!

❖ Hierarchical: generalization of two level; each file 
system is assigned the root of a tree!

❖ Acyclic (or cyclic) graph: allow sharing of files across 
directories; hard versus soft (symbolic) links

12



Shared Files: Links
❖ File appears simultaneously in different directories!

❖ File system is now a directed acyclic graph (DAG)!

❖ Hard link – directory points to file inode, which 
maintains a count of pointers!

❖ Soft link – new file type, containing the path of the file 
to which it is linked, along with permissions (symbolic 
linking) – no pointer to inode

13



File Types
❖ Control operations allowed on files!

❖ Use file name extensions to indicate type (in Unix, this is just a 
convention)!

❖ Structured vs. unstructured data!

❖ None - sequence of words, bytes!

❖ Complex Structures!

❖ records/formatted document/executable!

❖ Sequential, random, or key-based (indexed) access

14



File System Organization

15



File System Block Size
❖ Disk basic allocation unit is a sector!

❖ (e.g., 512 bytes)!

❖ File system may choose to use larger block size!

❖ (e.g., 4KB)

16



Disk Block Allocation Methods
❖ How disk blocks are allocated for files!

❖ Contiguous allocation!

❖ Linked allocation!

❖ Indexed allocation!

❖ Metrics: !

❖ Access speed (sequential & random)!

❖ Space utilization

17



Contiguous File Allocation
❖ Each file occupies a set of contiguous 

blocks on the disk!

❖ Advantage:!

❖ Simple – only starting location 
(block #) and length (number of 
blocks) are required!

❖ Fast sequential; also quite fast 
random access!

❖ Disadvantage:!

❖ External fragmentation!

❖ Inflexible when appending to a file

18



When might you use contiguous 
file allocation?

19



Linked File Allocation
❖ Each file is a linked list of 

disk blocks!

❖ each block contains a 
next pointer!

❖ directory only needs to 
store the pointer to the 
first block!

❖ blocks may be scattered 
anywhere on the disk

20



Linked File Allocation
❖ Advantage!

❖ Space efficient !

❖ Flexible in appending!

❖ Disadvantage:!

❖ Poor access speed 
(sequential & random)

21



Indexed File Allocation
❖ Brings all pointers 

together into an index 
block

22



What is a limitation of using a 
single block for the block indices?

23



Multi-level Indexed File Allocation

outer-index

index table file

24



Indexed Allocation (pros and cons)
❖ Space efficiency!

❖ no external fragmentation!

❖ overhead of index blocks!

❖ Access speed!

❖ random access!

❖ sequential access

25



UNIX (4K bytes per block)

26



Where to Put Your Data Structures

27



In-Memory Structures
❖ Used for file system management and performance improvement via caching!

❖ Mount table (info on each mounted volume (aka “partition”))!

❖ Directory-structure cache!

❖ System-wide open file table !

❖ Copy of FCB (file control block) of each open file!

❖ Per-process open file table!

❖ Pointer to entry in system-wide table along with process-specific 
information!

❖ Open system call returns a pointer to the appropriate entry in per-process file 
table (file descriptor or file handle)

28



Directory on the Disk
❖ Directory is a container of files!

❖ For space management, similar to files!

❖ But for directory, file system does care about its content!

❖ Linear list of file names and attributes (including pointers to the data blocks)!

❖ time-consuming to search an item!

❖ Hash Table – using a link list to chain all files hashed to the same value!

❖ Pro: decreases directory search time!

❖ Con: increased complexity, a little waste of space!

❖ how much benefit does it really provide?

29



Where to put file attributes?
❖ File control block – data structure including all 

attributes for a file!

❖ Where to put the file control block?!

❖ In the directory data structure!

❖ Hard to share files through links!

❖ In the system-level dedicated data structure!

❖ inode

30



File Sharing and Protection
❖ Sharing of files on multi-user systems is desirable!

❖ Sharing must be accompanied by a protection scheme!

❖ In general, a protection scheme specifies whether any 
specific user can access any specific file!

❖ Access control lists (ACL)!

❖ User, group, other permissions

31



Device Space Management
❖ Block size: internal fragmentation/wasted space vs. 

allocation efficiency and access latency!

❖ Free space management!

❖ Reducing disk arm motion

32



Free-Space 
Management
Free-space management for memory!!
Bit map and linked free block list!
Space overhead: bit vs. word!
Efficiency!

getting the address of one free block!
getting the addresses of a number of free 
blocks!!

Alternative: Grouping/clustering

33



Free-Space 
Management
Free-space management for memory!!
Bit map and linked free block list!
Space overhead: bit vs. word!
Efficiency!

getting the address of one free block!
getting the addresses of a number of free 
blocks!!

Alternative: Grouping/clustering … …

head pointer

33



Keeping Things in Memory

34



Delayed Writes and Data Loss at Machine Crash

❖ Writes are commonly delayed for better performance!

❖ data to be written is cached!

❖ A sudden machine crash may result in a loss of data!

❖ a completed write does not mean the data is safely 
stored on storage!

❖ fsync() – flush all delayed writes to disk!

❖ fsync() may not even be totally safe with delayed writes 
on disk controller buffer cache

35



File System Caching: Buffer Cache
❖ File content is cached in memory buffer for later reuse!

❖ What is the basic unit of such caching?!

❖ Disk blocks vs. clusters vs. pages!

❖ Replacement policy for file system buffer cache!

❖ LRU replacement is one possibility; but sequential 
access is very likely in file system I/O!

❖ MRU or free-behind

36



Consistency: Weaker Form of Reliability

❖ File system operations are not atomic; a sudden machine crash may leave the file 
system in an inconsistent state!

❖ (In-)Consistency !

❖ Missing blocks!

❖ Duplicate free blocks!

❖ Duplicate data blocks!

❖ Consistency checking and fix (fsck, scandisk)!

❖ use redundant data on disk to recover consistency!

❖ E.g., free block cannot be on the free list and in a file!

❖ Sometimes data is still lost

37



Join my petition! 
Rename Fisk, WI to FSCK, WI!

38



Log-Structured File Systems
❖ With CPUs faster, memory larger!

❖ buffer caches can also be larger!

❖ most of read requests can come from the memory cache!

❖ thus, most disk accesses will be writes!

❖ poor disk performance when most writes are small!

❖ LFS Strategy [Rosenblum & Ousterhout, SOSP 1991]!

❖ structure entire disk as a log!

❖ always write to the end of the disk log!

❖ when updates are needed, simply add new copies with updated content; old copies 
of the blocks are still in the earlier portion of the log!

❖ periodically purge out useless blocks

39



“New” Motivations
❖ Fast recovery!

❖ Disks became very big (1 TB or more)!

❖ Consistency check (fsck/scandisk) too slow!

❖ Persistency!

❖ Availability

40



Journaling
❖ Journaling file system:!

❖ maintain a dedicated journal that logs all operations!

❖ the logging happens before the real operation!

❖ each logging is made to be atomic!

❖ after the completion of an operation, its entry is removed from the 
journal!

❖ at the recovery time, only journal entries need to be examined ⇒ 
fast recovery!

❖ similar to transactions in database systems

41



Journaling
❖ LFS is a dynamic journal!

❖ Physical journal (ext3)!

❖ Logical journal (NTFS)!

❖ Snapshotting (ZFS)

42



Solid State Drives
❖ No mechanical component (moving parts)!

❖ Lower energy requirements!

❖ Speed!

❖ Reads and writes in the order of 10s of microseconds 
(reading faster than writing)!

❖ Erase on the order of a millisecond!

❖ Finite number of erase and write cycles, requiring what is 
called “wear leveling”

43



Effect on File Systems
❖ No need to “cluster” data to reduce seek time!

❖ Need to avoid writes to the same block!

❖ File system cache less useful due to lower speed 
mismatch!

❖ Log-structured file system for SSD!

❖ Provides wear leveling

44



Credits
• Parts of the lecture slides contain original work of Abraham Silberschatz, 

Peter B. Galvin, Greg Gagne, Andrew S. Tanenbaum, and Gary Nutt. The 
slides are intended for the sole purpose of instruction of operating 
systems at the University of Rochester. All copyrighted materials belong 
to their original owner(s). 

45


