CS 256/456: Operating Systems

John Criswell

PrOte Cti()n University of Rochester

552 UNIVERSITY of
& ROCHESTER

The Basics

Purpose of Protection

* Enforce information sharing and integrity policies
“ Protessors can modity grades of students in class
* Students can examine their grades from any class

Students cannot modify grades

* Limit damage caused by errant components

“ Buftfer overflow in server doesn’t permit grade
change

Access Control Matrix

Object 1
Subiject 1 Read, Write

Subject 2 Read

Subject 3 Read, Write Read, Own
Subject 4 Own Read, Write, Own

Object 2 Object 3

Subject: Entity which performs an action
Object: Entity upon which an action is performed
+ Access: Read, Write, Delete, Send Signal, etc...

+ Special Access: Own

Why not use the access control
matrix in real systems?

T'wo Problems with Access Control Matrix

* 'Too large to implement etficiently
+ Cannot determine if an unsafe state can occur

+ Reduces to the halting problem

Access Control Lists

+ Each object lists

* Subijects that can access the object

* What access the subject has to the object

Subject Granted Access
John Read
Jim Read, Write
Judy Append

Capabilities

+ Each subject lists

* Objects that the subject can access

* What access the subject has to the object

Granted Access
Read

Read, Write
Append

Discretionary Access Control (DAC)

Owner decides which subjects can access the object

Mandatory Access Control (MAC)

Administrator decides which subjects can access the object

10

Real Access Controls

11

(Unprivileged) Unix File Access Control

Owner Group Other

rw T s

Permission Bit What the Bit Allows

read Can open for reading
write Can open for writing

execute Can execute or search

12

(Unprivileged) Unix File Access Control

Owner Group Other

File UID

- File GID ' W . I I

« If Effective UID matches owner, use Owner permissions
« If Effective GID matches group, use Group permissions

« Otherwise, use Other permissions

13

(Unprivileged) Unix File Access Control

Owner Group Other

File UID

- File GID ' W . I I

* Owner can modity file permissions to arbitrary value
* Owner can modity file’s Group ID

“ On some systems, Owner can modity file’s Owner ID

14

setuild Execuables

* File permissions have a setuid bit

* When executed, process UID become file owner UID

+ Saved UID is set to effective UID before execve()

* Examples

“ passwd
+ su, sudo

+ ssh

15

Is Unix access control mandatory or
discretionary?

16

Bell L.aPadula

Classification Compartments

+ Attach labels to Subjects and Objects

« (Classification: an integer representing secrecy level
+ Compartments: bit array representing subsets of data

+ Human-readable names associated with classifications and compartments

17

Bell .aPadula: Domination

Classification Compartments

Label 2: Confidential

+ (Classification2 <= Classificationl

+ Compartments2 is a subset of Compartments]

+ Labell dom Label2

18

Bell LaPadula: Access Controls

<+ Read: LabelSubject dom LabelObject

* Write: Labelobject dom Labelsupject

Confidential

Read T Write
Confidential @
19

What label should a newly created object have?

Create
Confidential —_—

20

What label should a newly created object have?

Confidential

Create
Confidential —_—

20

Bell LL.aPadula Prooft

* Proved that information does not flow from high to low
+ Shows that system cannot enter unsafe state

* Assumes no privileges to bypass rules

“ Proof created a famous controversy

* McLean questioned how security is defined
“ Controversy led to the creation of a conference

* Computer Security Foundations (CSF)

21

Decentralized Information Flow Control

* In Bell-LaPadula, labels created by administrator
« It would be nice to have applications create labels
* Temporary session IDs
* Subset of users that are logged in
“ Applications create labels

“ OGS kernel propagates and enforces label policy
* E.g., AsbestOS

22

Other Access Controls

“ Biba Integrity Labels

+ Role-based Access Control

* Domain Type Enforcement

... and many, many more

23

Privileges

24

Rules are Made to be Broken

“ Real systems need to bypass access control
Installing new software
* Change of policy
* Change of ownership
“ Fix incorrect configurations

“ Help users solve problems

25

Privileges

+ Qverride access controls

Usually a process attribute

+ Note: I think this is a bad idea

* Coarse-grained: User ID 0 (root user)

“ Fine-grained: Bit-field of privileges

26

Coarse-Grained Privileges

+ Unix

« All or nothing: Root UID overrides all access controls

27

Medium-Grained Privileges

+ Linux

+ CAP_CHOWN

+ CAP_DAC_OVERRIDE

+ CAP_DAC_READ_SEARCH

+ CAP_FOWNER

+ CAP_SETUID and CAP_SETGID

28

Fine-Grained Privileges: Argus PitBull

« Hierarchal tree: Top privilege is superset of sub-tree
+ PV_ROQOT
+ PV_MAC
+ PV_MAC_READ
+ PV_MAC_WRITE
+ PV_DAC
+ PV_DAC_READ
+ PV_DAC_WRITE
+ Separate privileges for overriding read, write, execute

+ Separate privilege classes for MAC and DAC override

29

What is the value of fine-grained
privileges?

Privilege Bracketing

IVSI

* Enable privileges before operation

+ Disable privileges after operation

Privileged

Execution .
Execution

Non-privileged
Execution

31

Unix Privilege Bracketing

seteuid(getruid());
Real UID IR 8 .
: seteuid(0);
Effective 9) 3

UlD

a0 0 open (“/dev/hd”);

UlD

seteuid(getruid());

32

Unix Privilege Bracketing

seteuid(getruid());
Real UID 23

seteuid(0);

Etfective O
UID

e O open (“/dev/hd”);
UID

seteuid(getruid());

32

Unix Privilege Bracketing

seteuid(getruid());
Real UID IR 8 .
: seteuid(0);
Effective 9) 3

UlD

a0 0 open (“/dev/hd”);

UlD

seteuid(getruid());

32

Argus PitBull Privilege Bracketing

| PV_DAC_R,
Maximum PV DAC W, priv_raise (PV._DAC R);
Privilege Set EESSINYNGEN
Effective open (“/dev/hd”, O_RDONLY);
Privilege Set

priv_lower (PV_DAC R);

33

Argus PitBull Privilege Bracketing

. PV_DAC_R,
Maximum PV DAC W, priv_raise (PV._DAC R);
Privilege Set EESSINYNGEN
Effective PV DAC R open (“/dev/hd”, O_RDONLY);
Privilege Set -

priv_lower (PV_DAC R);

33

Argus PitBull Privilege Bracketing

| PV_DAC_R,
Maximum PV DAC W, priv_raise (PV._DAC R);
Privilege Set EESSINYNGEN
Effective open (“/dev/hd”, O_RDONLY);
Privilege Set

priv_lower (PV_DAC R);

33

Privilege Dropping

* Remove privilege permanently
when no longer needed

Privileged

Execution ,
Execution

Non-privileged
Execution

34

What is the value of privilege
bracketing?

Open Research (Questions

+ How to design access controls that are usable?
+ SELinux and PitBull too difficult to use

* Requires significant system integration effort

“ Retrofitting access controls to existing systems

+ Causes very confusing (but correct) system behavior

Can tools configure access controls to enforce policies?

36

Open Research (Questions

* How much does better privilege handling help?

* How fine-grained do privileges need to be?

* Answer may lie in bounded model checking

* Programming patterns that reduce privilege use

37

