
CSC 256/456: Operating Systems

Multiprocessor 
Support

John Criswell
University of Rochester

1



Outline
❖ Multiprocessor hardware

❖ Types of multi-processor workloads

❖ Operating system issues

❖ Where to run the kernel

❖ Synchronization

❖ Where to run processes

2



Multiprocessor Hardware

3



Multiprocessor Hardware
❖ System in which two or more CPUs share full access to the main memory

❖ Each CPU might have its own cache and the coherence among multiple 
caches is maintained

… … …
Cache

CPU

Cache

CPU

Cache

CPU

Memory

Memory bus

4



Multi-core Processor
❖ Multiple processors on “chip”

❖ Some caches shared

❖ Some not shared

5

CPU

Cache

CPU

Cache

Shared Cache

Memory Bus



CPU Core

Hyper-Threading
❖ Replicate parts of processor; share other parts

❖ Create illusion that one core is two cores

6

Fetch Unit

Fetch Unit

Decode

Decode

ALU MemUnit



Cache Coherency
❖ Ensure processors not operating with stale memory data

❖ Writes send out cache invalidation messages

… … …
Cache

CPU

Cache

CPU

Cache

CPU

Memory

Memory bus

7



Non Uniform Memory Access (NUMA)
❖ Memory clustered around CPUs

❖ For a given CPU

❖ Some memory is nearby (and fast)

❖ Other memory is far away (and slow)

8



Multiprocessor Workloads

9



Multiprogramming
❖ Non-cooperating processes with no communication

❖ Examples

❖ Time-sharing systems

❖ Multi-tasking single-user operating systems

❖ make -j<very large number here>

10



Concurrent Servers
❖ Minimal communication between processes and threads

❖ Throughput usually the goal

❖ Examples

❖ Web servers

❖ Database servers

11



Parallel Programs
❖ Use parallelism to speed up computation

❖ Significant data sharing between processes and threads

❖ Examples

❖ Gaussian Elimination

❖ Matrix multiply

12



Operating System Issues

13



Three Challenges
❖ Where to run the OS

❖ How to do synchronization

❖ Where to schedule processes

14



Where to Run the OS?

15



Multiprocessor OS

❖ Each CPU has its own operating system

❖ quick to port from a single-processor OS

❖ Disadvantages

❖ difficult to share things (processing cycles, memory, buffer cache)

Bus

16



Multiprocessor OS – Master/Slave

❖ All operating system functionality goes to one CPU

❖ no multiprocessor concurrency in the kernel

❖ Disadvantage

❖ OS CPU consumption may be large so the OS CPU becomes the 
bottleneck (especially in a machine with many CPUs)

Bus

17



Multiprocessor OS – Shared OS
❖ A single OS instance may run on all CPUs

❖ The OS itself must handle multiprocessor synchronization

❖ multiple OS instances from multiple CPUs may access shared data structure

Bus
18



Synchronization Issues

19



Synchronization
❖ Traditional atomic operations write memory

❖ Atomic compare and swap

❖ Atomic fetch and add

❖ This is very bad for multi-processors

20



Load-Linked and Store-Conditional
❖ Load-linked sets a bit in the cache line

❖ Cache invalidation clears bit

❖ Store-conditional checks that bit is still set in cache line

❖ Cleared bit means a cache invalidation occurred

❖ Which implies that another core wrote the memory

❖ Which implies that atomicity was violated

21



Performance Measures for Synchronization

❖ Latency

❖ Cost of thread management under the best case 
assumption of no contention for locks

❖ Throughput 

❖ Rate at which threads can be created, started, and 
finished when there is contention

22



Synchronization (Fine/Coarse-Grain Locking)

❖ Fine-grain locking – lock only what is necessary for 
critical section

❖ Coarse-grain locking – locking large piece of code, much 
of which is unnecessary

❖ simplicity, robustness

❖ prevent simultaneous execution

❖ simultaneous execution is not possible on 
uniprocessor anyway

23



Synchronization Optimizations
❖ Avoid synchronization

❖ Per-processor data structures

❖ Lock-free data structures

❖ Use fine-grained locking to increase throughput

❖ Reuse (cache) data structures

❖ Allocation/deallocation just a few pointer operations

❖ Locks not held for very long

24



Where to Run Processes?

25



Multiprocessor Scheduling
❖ Affinity-based scheduling 

❖ Try to run each process on the processor that it last 
ran on

❖ Takes advantage of cache locality

CPU 0

CPU 1

web server
parallel Gaussian

elimination
client/server

game (civ)

26



Multiprocessor Scheduling
❖ Gang/Cohort scheduling

❖ Utilize all CPUs for one parallel/concurrent 
application at a time

❖ Cache sharing and synchronization of parallel/
concurrent applications

CPU 0

CPU 1

web server
parallel Gaussian

elimination
client/server

game (civ)

27



Resource Management To Date
• Capitalistic - generation of more requests results in 

more resource usage
– Performance: resource contention can result in significantly reduced overall 

performance
– Fairness: equal time slice does not necessarily guarantee equal progress

28



Fairness and Security Concerns
❖ Priority inversion

❖ Poor fairness among competing applications

❖ Information leakage at chip level

❖ Denial of service attack at chip level

29



Disclaimer
• Parts of the lecture slides contain original work by Andrew S. 

Tanenbaum. The slides are intended for the sole purpose of instruction of 
operating systems at the University of Rochester. All copyrighted 
materials belong to their original owner(s). 

30


