CSC 261/461 – Database Systems Lecture 10

Fall 2017

Announcement

• No class/quiz on next Monday!

Agenda

- 1. Database Design
- 2. Normal forms & functional dependencies
- 3. Finding functional dependencies
- 4. Closures, superkeys & keys

Design Theory

- Design theory is about how to represent your data to avoid *anomalies*.
- Achieved by Data Normalization, a process of analyzing a relation to ensure that it is well formed.
- Normalization involves decomposing relations with anomalies to produce smaller well structured relations.
- If a relation is normalized (or well formed), rows can be inserted, deleted and modified without creating anomalies.

Normalization Example

- (Student ID) → (Student Name, DormName, DormCost)
- However, if
 - $-(DormName) \rightarrow (DormCost)$

Then, DormCost should be put into its own relation, resulting in:

(Student ID) → (Student Name, DormName) (DormName) → (DormCost)

Normalization Example

- (AttorneyID, ClientID) → (ClientName, MeetingDate, Duration)
- However, if
 - ClientID → ClientName
- Then: ClientName should be in its own relation:
- (AttorneyID, ClientID) → (MeetingDate, Duration)
- (ClientID) \rightarrow (ClientName)

Normal Forms

- $\underline{I^{st} Normal Form (INF)} = All tables are flat$
- $2^{nd} Normal Form = disused$
- 3rd Normal Form (3NF)
- Boyce-Codd Normal Form (BCNF)

DB designs based on functional dependencies, intended to prevent data anomalies

• 4^{th} and 5^{th} Normal Forms = see text books

Normalization Steps

1st Normal Form (1NF)

Student	Courses
Mary	{CS145,CS229}
Joe	{CS145,CS106}
•••	•••

Student	Courses
Mary	CS145
Mary	CS229
Joe	CS145
Joe	CS106

Violates 1NF.

In 1st NF

1NF Constraint: Types must be atomic!

Data Anomalies & Constraints

A poorly designed database causes *anomalies*:

Student	Course	Room
Mary	CSC261	101
Joe	CSC261	101
Sam	CSC261	101
••		

If every course is in only one room, contains <u>redundant</u> information!

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CSC261	101
Joe	CSC261	703
Sam	CSC261	101
••		••

If we update the room number for one tuple, we get inconsistent data = an <u>update</u> anomaly

A poorly designed database causes *anomalies*:

Student	Course	Room
••	••	

If everyone drops the class, we lose what room the class is in! = a <u>delete</u> anomaly

A poorly designed database causes *anomalies*:

Student	Course	Room
Mary	CSC261	B01
Joe	CSC261	B01
Sam	CSC261	B01
	••	

Similarly, we can't reserve a room without students = an *insert* anomaly

Student	Course
Mary	CSC261
Joe	CSC261
Sam	CSC261
••	••

Course	Room
CSC261	101
CSC257	601

Is this form better?

- Redundancy?
- Update anomaly?
- Delete anomaly?
- Insert anomaly?

Today: develop theory to understand why this design may be better **and** how to find this *decomposition*...

Functional Dependencies

Functional Dependencies for Dummies

• A relationship between attributes where one attribute (or group of attributes) determines the value of another attribute (or group of attributes) in the same table.

• Example:

The price of one cookie and the quantity of cookies can determine the price of a box of cookies. (assuming each box has 10 cookies).

(cookie_price, quantity) → box_price

Candidate Keys/Primary Keys and Functional Dependencies

- By definition:
- A candidate key of a relation functionally determines all other non key attributes in the row.
- Implies:
- A primary key of a relation functionally determines all other non key attributes in the row.

EmployeeID → (EmployeeName, EmpPhone)

Functional Dependency

Def: Let A,B be *sets* of attributes We write A \rightarrow B or say A *functionally determines* B if, for any tuples t_1 and t_2 :

 $t_1[A] = t_2[A]$ implies $t_1[B] = t_2[B]$

and we call A → B a functional dependency

A->B means that "whenever two tuples agree on A then they agree on B."

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...B_n\}$ in R,

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...B_n\}$ in R,

The functional dependency $A \rightarrow B$ on R holds if for any t_i, t_j in R:

If t1,t2 agree here..

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...B_n\}$ in R,

The functional dependency $A \rightarrow B$ on R holds if for any t_i, t_i in R:

$$t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2] \text{ AND } ...$$

AND $t_i[A_m] = t_i[A_m]$

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...B_n\}$ in R,

The functional dependency $A \rightarrow B$ on R holds if for any t_i, t_i in R:

$$\begin{split} &\underline{\textbf{if}} \ t_i[A_1] = t_j[A_1] \ \text{AND} \ t_i[A_2] = t_j[A_2] \ \text{AND} \\ &\dots \ \text{AND} \ t_i[A_m] = t_j[A_m] \end{split}$$

$$\frac{\textbf{then}}{\mathsf{AND}} \ t_i[\mathsf{B}_1] = \mathsf{t}_j[\mathsf{B}_1] \ \mathsf{AND} \ \mathsf{t}_i[\mathsf{B}_2] \! = \! \mathsf{t}_j[\mathsf{B}_2]$$

$$\mathsf{AND} \ ... \ \mathsf{AND} \ \mathsf{t}_i[\mathsf{B}_n] = \mathsf{t}_i[\mathsf{B}_n]$$

FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
 - 1. Start with some relational schema
 - 2. Find out its functional dependencies (FDs)
 - 3. Use these to design a better schema
 - One which minimizes the possibility of anomalies

Functional Dependencies as Constraints

A **functional dependency** is a form of **constraint**

- Holds on some instances not others.
- Part of the schema, helps define a valid *instance*.

Recall: an <u>instance</u> of a schema is a multiset of tuples conforming to that schema, i.e. a table

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
		••

Note: The FD {Course}

-> {Room} *holds on*

this instance

Functional Dependencies as Constraints

Note that:

- You can check if an FD is violated by examining a single instance;
- However, you cannot prove that an FD is part of the schema by examining a single instance.
 - This would require checking every valid instance

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	••

However, cannot *prove* that the FD {Course} -> {Room} is *part of the schema*

More Examples

An FD is a constraint which <u>holds</u>, or <u>does not hold</u> on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

More Examples

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

{Position} → {Phone}

More Examples

EmpID	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

but *not* {Phone} → {Position}

ACTIVITY

A	В	С	D	Е
1	2	4	3	6
3	2	5	1	8
1	4	4	5	7
1	2	4	3	6
3	2	5	1	8

Find at least *three* FDs which hold on this instance:

```
{ } → {
}

{ } → {
}

{ } → {
}

}
```

FINDING FUNCTIONAL DEPENDENCIES

What you will learn about in this section

- 1. "Good" vs. "Bad" FDs: Intuition
- 2. Finding FDs
- 3. Closures

"Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

 Minimal redundancy, less possibility of anomalies

"Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

But Position -> Phone is a "bad FD"

Redundancy!
 Possibility of data anomalies

"Good" vs. "Bad" FDs

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
		••

Returning to our original example... can you see how the "bad FD" {Course} -> {Room} could lead to an:

- Update Anomaly
- Insert Anomaly
- Delete Anomaly
- ...

Given a set of FDs (from user) our goal is to:

- 1. Find all FDs, and
- 2. Eliminate the "Bad Ones".

FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
 - 1. Start with some relational *schema*
 - 2. Find out its functional dependencies (FDs)
 - 3. Use these to design a better schema
 - 1. One which minimizes possibility of anomalies

- There can be a very large number of FDs...
 - -How to find them all efficiently?
- We can't necessarily show that any FD will hold on all instances...
 - -How to do this?

We will start with this problem: Given a set of FDs, F, what other FDs *must* hold?

Equivalent to asking: Given a set of FDs, $F = \{f_{r},...f_{n}\}$, does an FD g hold?

Inference problem: How do we decide?

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

- 1. $\{Name\} \rightarrow \{Color\}$
- 2. {Category} → {Department}
- 3. {Color, Category} → {Price}

Given the provided FDs, we can see that {Name, Category} → {Price} must also hold on **any instance**...

Which / how many other FDs do?!?

Equivalent to asking: Given a set of FDs, $F = \{f_i, ..., f_n\}$, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called **Armstrong's Rules.**

- 1. Split/Combine,
- 2. Reduction, and
- 3. Transitivity... ideas by picture

1. Split/Combine (Decomposition & Union Rule)

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

1. Split/Combine (Decomposition & Union Rule)

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

... is equivalent to the following *n* FDs...

$$A_1,...,A_m \rightarrow B_i$$
 for i=1,...,n

1. Split/Combine (Decomposition & Union Rule)

And vice-versa, $A_1,...,A_m \rightarrow B_i$ for i=1,...,n

... is equivalent to ...

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

2. Reduction/Trivial (Reflexive Rule)

$$A_1,...,A_m \rightarrow A_j$$
 for any j=1,...,m

3. Transitive Rule

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$
 and $B_1, ..., B_n \rightarrow C_1, ..., C_k$

3. Transitive Rule

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$
 and $B_1, ..., B_n \rightarrow C_1, ..., C_k$

implies

$$A_1,...,A_m \rightarrow C_1,...,C_k$$

Augmentation Rule

 $A_1, ..., A_m \rightarrow B_1, ..., B_n$ implies

Augmentation Rule

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

implies
 $X_1, A_1, ..., A_m \rightarrow B_1, ..., B_n$

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

- 1. $\{Name\} \rightarrow \{Color\}$
- 2. {Category} → {Department}
- 3. {Color, Category} → {Price}

Which / how many other FDs hold?

Example:

Inferred FDs:

Inferred FD	Rule used
4. {Name, Category} -> {Name}	?
5. {Name, Category} -> {Color}	?
6. {Name, Category} -> {Category}	?
7. {Name, Category -> {Color, Category}	?
8. {Name, Category} -> {Price}	?

Provided FDs:

1. {Name} → {Color}
 2. {Category} →
 {Dept.}
 3. {Color, Category} →
 {Price}

Which / how many other FDs hold?

Example:

Inferred FDs:

Inferred FD	Rule used
4. {Name, Category} -> {Name}	Trivial
5. {Name, Category} -> {Color}	Transitive (4 -> 1)
6. {Name, Category} -> {Category}	Trivial
7. {Name, Category -> {Color, Category}	Split/combine (5 + 6)
8. {Name, Category} -> {Price}	Transitive (7 -> 3)

Provided FDs:

{Name} → {Color}
 {Category} →
 {Dept.}
 {Color, Category} →
 {Price}

Can we find an algorithmic way to do this?

Closures

Closure of a set of Attributes

```
Given a set of attributes A_1, ..., A_n and a set of FDs F:
Then the <u>closure</u>, \{A_1, ..., A_n\}^+ is the set of attributes B s.t. \{A_1, ..., A_n\} \rightarrow B
```

```
Example: F = {name} → {color}
{category} → {department}
{color, category} → {price}
```

Example Closures:

```
{name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}
```

Start with $X = \{A_1, ..., A_n\}$ and set of FDs F.

Repeat until X doesn't change; **do**:

if
$$\{B_1, ..., B_n\} \rightarrow C$$
 is in F

and
$$\{B_1, ..., B_n\} \subseteq X$$

then add C to X.

Return X as X⁺

```
Start with X = \{A_1, ..., A_n\}, FDs F.
Repeat until X doesn't change;
do:
 if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\}
..., B_n \subseteq X:
   then add C to X.
Return X as X+
{name} → {color}
\{category\} \rightarrow \{dept\}
{color, category} →
{price}
```

```
{name, category}+ =
{name, category}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.
Repeat until X doesn't change;
do:
 if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\}
..., B_n \subseteq X:
   then add C to X.
Return X as X+
{name} → {color}
{category} → {dept}
{color, category} →
{price}
```

```
{name, category}+ =
{name, category}
```

```
{name, category}+ =
{name, category, color}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.
Repeat until X doesn't change;
do:
 if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\}
..., B_n \subseteq X:
   then add C to X.
Return X as X+
{name} → {color}
{category} → {dept}
{color, category} →
{price}
```

```
{name, category}+ =
{name, category}
```

```
{name, category}+ =
{name, category, color}
```

```
{name, category}+ =
{name, category, color, dept}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.
Repeat until X doesn't change;
do:
 if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\}
..., B_n \subseteq X:
   then add C to X.
Return X as X+
{name} → {color}
{category} → {dept}
{color, category} →
{price}
```

```
{name, category}+ =
{name, category}
```

```
{name, category}+ =
{name, category, color}
```

```
{name, category}+ =
{name, category, color, dept}
```

```
{name, category}+ =
{name, category, color, dept,
price}
```

EXAMPLE

$$\{A,B\} \rightarrow \{C\}$$

 $\{A,D\} \rightarrow \{E\}$
 $\{B\} \rightarrow \{D\}$
 $\{A,F\} \rightarrow \{B\}$

Compute
$$\{A, F\}^+ = \{A, F,$$

EXAMPLE

$$\{A,B\} \rightarrow \{C\}$$

 $\{A,D\} \rightarrow \{E\}$
 $\{B\} \rightarrow \{D\}$
 $\{A,F\} \rightarrow \{B\}$

Compute
$$\{A,B\}^+ = \{A, B, C, D\}$$

Compute
$$\{A, F\}^+ = \{A, F, B\}$$

EXAMPLE

$${A,B} \rightarrow {C}$$

 ${A,D} \rightarrow {E}$
 ${B} \rightarrow {D}$
 ${A,F} \rightarrow {B}$

Compute $\{A,B\}^+ = \{A, B, C, D, E\}$

Compute $\{A, F\}^+ = \{A, B, C, D, E, F\}$

3. CLOSURES, SUPERKEYS & KEYS

What you will learn about in this section

- 1. Closures
- 2. Superkeys & Keys

Why Do We Need the Closure?

• With closure we can find all FD's easily

- To check if $X \to A$
 - I. Compute X⁺
 - 2. Check if $A \in X^+$

Note here that **X** is a *set* of attributes, but **A** is a *single* attribute. Why does considering FDs of this form suffice?

Recall the **Split/combine** rule:

$$X \rightarrow A_1, ..., X \rightarrow A_n$$

implies
 $X \rightarrow \{A_1, ..., A_n\}$

Example: Given F =

Step 1: Compute X⁺, for every set of attributes X:

```
\{A,B\} \rightarrow C

\{A,D\} \rightarrow B

\{B\} \rightarrow D
```

```
{A}+ = {A}

{B}+ = {B,D}

{C}+ = {C}

{D}+ = {D}

{A,B}+ = {A,B,C,D}

{A,C}+ = {A,C}

{A,D}+ = {A,B,C,D}

{A,B,C}+ = {A,B,C,D}+ = {A,C,D}+ = {A,B,C,D}

{B,C,D}+ = {B,C,D}

{A,B,C,D}+ = {A,B,C,D}
```

No need to compute these- why?

Example: Given F =

Step 1: Compute X⁺, for every set of attributes X:

```
{A,B} \rightarrow C

{A,D} \rightarrow B

{B} \rightarrow D
```

```
{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ = {A,B
```

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

```
{A,B} \rightarrow {C,D}, {A,D} \rightarrow {B,C},

{A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C},

{A,C,D} \rightarrow {B}
```

Example: Given F =

Step 1: Compute X⁺, for every set of attributes X:

```
\{A,B\} \rightarrow C

\{A,D\} \rightarrow B

\{B\} \rightarrow D
```

```
{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ = {A,B
```

Step 2: Enumerate all FDs X \rightarrow Y, s.t $Y \subseteq X^+$ and X \cap Y = \emptyset :

```
{A,B} \rightarrow {C,D}, {A,D} \rightarrow {B,C},

{A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C},

{A,C,D} \rightarrow {B}
```

"Y is in the closure of X"

Example: Given F =

Step 1: Compute X⁺, for every set of attributes X:

```
\{A,B\} \rightarrow C

\{A,D\} \rightarrow B

\{B\} \rightarrow D
```

```
{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ = {A,B
```

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \varnothing :

```
{A,B} \rightarrow {C,D}, {A,D} \rightarrow {B,C},

{A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C},

{A,C,D} \rightarrow {B}
```

The FD $X \rightarrow Y$ is non-trivial

Superkeys and Keys

Keys and Superkeys

A <u>superkey</u> is a set of attributes A_1 , ..., A_n s.t. for *any other* attribute **B** in R, we have $\{A_1, ..., A_n\} \rightarrow B$

I.e. all attributes are functionally determined by a superkey

A **key** is a *minimal* superkey

Meaning that no subset of a key is also a superkey

Finding Keys and Superkeys

• For each set of attributes X

- I. Compute X⁺
- 2. If X^+ = set of all attributes then X is a superkey
- 3. If X is minimal, then it is a key

Do we need to check all sets of attributes? Which sets?

Example of Finding Keys

```
Product(name, price, category,
color)
{name, category} >> price
{category} >> color
```

What is a key?

Example of Keys

```
Product(name, price, category,
color)
{name, category} → price
{category} → color
{name, category}+ = {name, price, category, color}
                         = the set of all attributes

⇒ this is a superkey

                         \Rightarrow this is a key, since neither name nor
                         category alone is a superkey
```

Acknowledgement

- Some of the slides in this presentation are taken from the slides provided by the authors.
- Many of these slides are taken from cs145 course offered by Stanford University.
- Thanks to YouTube, especially to <u>Dr. Daniel Soper</u> for his useful videos.