CSC 261/461 – Database Systems Lecture 12

Fall 2017

Today's Lecture

1. 3NF vs Boyce-Codd Normal Form (Already covered)

2. Decompositions

2. DECOMPOSITIONS

Recap: Decompose to remove redundancies

- 1. We saw that **redundancies** in the data ("bad FDs") can lead to data anomalies
- 2. We developed mechanisms to detect and remove redundancies by decomposing tables into BCNF
 - 1. BCNF decomposition is *standard practice-* very powerful & widely used!
- 3. However, sometimes decompositions can lead to more subtle unwanted effects...

When does this happen?

Decompositions in General

 R_1 = the *projection* of R on A_1 , ..., A_n , B_1 , ..., B_m R_2 = the *projection* of R on A_1 , ..., A_n , C_1 , ..., C_p

Theory of Decomposition

Lossy Decomposition

Lossless Decompositions

A decomposition R to (R1, R2) is **lossless** if R = R1 Join R2

Lossless Decompositions

If $\{A_1, ..., A_n\} \rightarrow \{B_1, ..., B_m\}$ Then the decomposition is lossless Note: don't need $\{A_1, ..., A_n\} \rightarrow \{C_1, ..., C_p\}$

BCNF decomposition is always lossless. Why?

9

A relation TEACH that is in 3NF but not in BCNF

TEACH

Student	Course	Instructor
Narayan	Database	Mark
Smith	Database	Navathe
Smith	Operating Systems	Ammar
Smith	Theory	Schulman
Wallace	Database	Mark
Wallace	Operating Systems	Ahamad
Wong	Database	Omiecinski
Zelaya	Database	Navathe
Narayan	Operating Systems	Ammar

• Two FDs exist in the relation TEACH:

$X \rightarrow A$

- ${student, course} → instructor$ - instructor → course
- {student, course} is a candidate key for this relation
- So this relation is in 3NF *but not in* BCNF
- A relation **NOT** in BCNF should be decomposed

Achieving the BCNF by Decomposition (2)

- Three possible decompositions for relation TEACH
 D1: {student, instructor} and {student, course}
 - D2: {course, $\underline{instructor}$ } and { $\underline{course, student}$ }
 - ✓ D3: {<u>instructor</u>, course } and {<u>instructor</u>, <u>student</u>}

A problem with BCNF

<u>Problem</u>: To enforce a FD, must reconstruct original relation—*on each insert!*

A Problem with BCNF

We lose the FD {Company, Product} → {Unit}!!

So Why is that a Problem?

Violates the FD {Company, Product} → {Unit}!!

The Problem

- We started with a table R and FDs F
- We decomposed R into BCNF tables $R_1, R_2, ...$ with their own FDs $F_1, F_2, ...$
- We insert some tuples into each of the relations—which satisfy their local FDs but when reconstruct it violates some FD **across** tables!

<u>Practical Problem</u>: To enforce FD, must reconstruct R—*on each insert!*

Possible Solutions

- Various ways to handle so that decompositions are all lossless / no FDs lost
 - For example 3NF- stop short of full BCNF decompositions.
- Usually a tradeoff between redundancy / data anomalies and FD preservation...

BCNF still most common- with additional steps to keep track of lost FDs...

Summary

- Constraints allow one to reason about redundancy in the data
- Normal forms describe how to remove this redundancy by decomposing relations
 - Elegant—by representing data appropriately certain errors are essentially impossible
 - For FDs, BCNF is the normal form.
- A tradeoff for insert performance: 3NF

Acknowledgement

- Some of the slides in this presentation are taken from the slides provided by the authors.
- Many of these slides are taken from cs145 course offered by Stanford University.
- Thanks to YouTube, especially to <u>Dr. Daniel Soper</u> for his useful videos.