CSC 261/461 – Database Systems Lecture 13

Fall 2017

Announcement

- Start learning HTML, CSS, JavaScript, PHP + SQL
 - We will cover the basics next week
 - https://www.w3schools.com/php/php_mysql_intro.asp
- Project i Milestone 3 will be out soon
 - Combination of Theory and Application
 - BCNF decomposition and PHP and MySQL
- Term Paper for Grad Students
 - http://www.cs.rochester.edu/courses/261/fall2017/projects/gradtopics.html

Clarification

(a) LOTS1A Lot# Property_id# County_name Area FD1 FD2 FD5 **BCNF Normalization** LOTS1AX LOTS1AY Property_id# Lot# County_name Area Area

If we remove FD2, then LOTS1A is in _____ form?

2NF

Agenda

• Relational Algebra (Today)

• Relational Calculus (We will not cover)

RELATIONAL ALGEBRA

Motivation

Relational Algebra provides a formal foundation for relational model operations

It is the basis for implementing and optimizing queries in any RDBMS

The core operations of most relational systems are based on Relational Algebra

The Relational Model: Schemata

• Relational Schema:

Relation name

String, float, int, etc. are the domains of the attributes

Attributes

The Relational Model: Data

An <u>attribute</u> (or <u>column</u>) is a typed data entry present in each tuple in the relation

Student

sid	name	gpa
001	Bob	3.2
002	Joe	2.8
003	Mary	3.8
004	Alice	3.5

The number of attributes is the **arity** of the relation

The Relational Model: Data

Student

sid	name	gpa	
001	Bob	3.2	
002	Joe	2.8	
003	Mary	3.8	
004	Alice	3.5	

The number of tuples is the **cardinality** of the relation

A <u>tuple</u> or <u>row</u> (or <u>record</u>) is a single entry in the table having the attributes specified by the schema

The Relational Model: Data

Student

sid	name	gpa
001	Bob	3.2
002	Joe	2.8
003	Mary	3.8
004	Alice	3.5

Recall: In practice DBMSs relax the set requirement, and use multisets.

A <u>relational instance</u> is a *set* of tuples all conforming to the same *schema*

Relation Instances

- Relation DB Schema
 - Students(sid: *string*, name: *string*, gpa: *float*)
 - Courses(cid: string, cname: string, credits: int)
 - Enrolled(sid: string, cid: string, grade: string)

Note that the schemas impose effective domain / type constraints, i.e. Gpa can't be "Apple"

Sid	Name	Gpa
101	Bob	3.2
123	Mary	3.8

Students

Relation Instances

sid	cid	Grade
123	564	Α

Enrolled

cid	cname	credits
564	564-2	4
308	417	2

Courses

Querying

SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

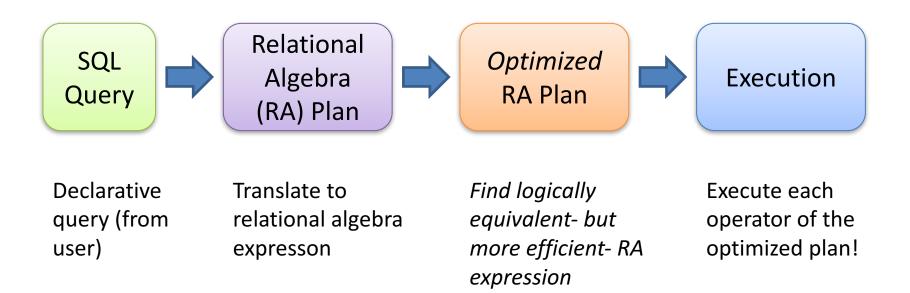
"Find names of all students with GPA > 3.5"

We don't tell the system how or where to get the data- just what we want, i.e., Querying is declarative

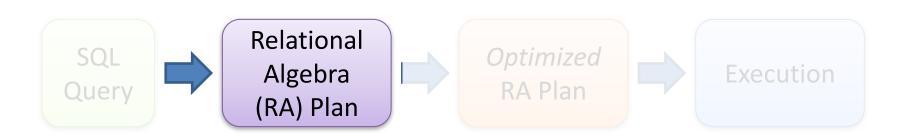
To make this happen, we need to translate the *declarative* query into a series of operators... we'll see this next!

Relational Algebra

How does a SQL engine work?



How does a SQL engine work?



Relational Algebra allows us to translate declarative (SQL) queries into precise and optimizable expressions!

Relational Algebra (RA)

• Five basic operators:

```
    Selection: σ
    Projection: Π
    Cartesian Product: ×
```

We'll look at these first!

- 4. Union: ∪
- 5. Difference: -
- Derived or auxiliary operators:
 - Intersection

```
Joins (natural, equi-join, theta join, semi-join)
```

- -{Renaming: p
- Division

And also at one example of a derived operator (natural join) and a special operator (renaming)

Keep in mind: RA operates on sets!

- RDBMSs use multisets, however in relational algebra formalism we will consider <u>sets!</u>
- Also: we will consider the *named perspective*, where every attribute must have a <u>unique name</u>
 - → attribute order does not matter...

Now on to the basic RA operators...

1. Selection (σ)

• Returns all tuples which satisfy a condition

- Notation: $\sigma_c(R)$
- Examples
 - $-\sigma_{Salary>40000}$ (Employee)
 - $-\sigma_{name = "Smith"} (Employee)$
- The condition c can be =, <, \leq , >, \geq , <

Students(sid, sname, gpa)

SQL:

SELECT *
FROM Students
WHERE gpa > 3.5;

RA:

 $\sigma_{gpa>3.5}(Students)$

Another example:

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

 $\sigma_{Salary > 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

2. Projection (Π)

- Eliminates columns, then removes duplicates
- Notation: $\Pi_{A_{I,...,A_{n}}}(R)$
- Example: project socialsecurity number and names:
 - $-\Pi$ _{SSN, Name} (Employee)
 - Output schema: Answer(SSN, Name)

Students(sid, sname, gpa)

SQL:

```
SELECT DISTINCT sname, gpa FROM Students;
```


Another example:

SSN	Name	Salary
1234545	John	200000
5423341	John	600000
4352342	John	200000

 $\Pi_{Name,Salary}$ (Employee)

Name	Salary
John	200000
John	600000

Note that RA Operators are Compositional!

Students(sid, sname, gpa)

```
SELECT DISTINCT
    sname,
    gpa
FROM Students
WHERE gpa > 3.5;
```

How do we represent this query in RA?

 $\Pi_{sname,gpa}(\sigma_{gpa>3.5}(Students))$

 $\sigma_{gpa>3.5}(\Pi_{sname,gpa}(Students))$

Are these logically equivalent?

3. Cross-Product (×)

- Each tuple in R1 with each tuple in R2
- Notation: $R_1 \times R_2$
- Example:
 - Employee × Dependents
- Rare in practice; mainly used to express joins

Students(sid,sname,gpa)
People(ssn,pname,address)

SQL:

SELECT *
FROM Students, People;

RA: Students × People Another example: _

People

ssn	pname	address
1234545	John	216 Rosse
5423341	Bob	217 Rosse

Students

sid	sname	gpa
001	John	3.4
002	Bob	1.3

$Students \times People$

ssn	pname	address	sid	sname	gpa
1234545	John	216 Rosse	001	John	3.4
5423341	Bob	217 Rosse	001	John	3.4
1234545	John	216 Rosse	002	Bob	1.3
5423341	Bob	216 Rosse	002	Bob	1.3

Renaming (ρ)

Students(sid, sname, gpa)

- Changes the schema, not the instance
- A 'special' operator- neither basic nor derived
- Notation: $\rho_{B_{I},...,B_{I}}(R)$
- Note: this is shorthand for the proper form (since names, not order matters!):
 - ρ _{Aı→Bı,...,An→Bn} (R)

SQL:

SELECT

sid AS studId,
 sname AS name,
 gpa AS gradePtAvg
FROM Students;

RA:

 $\rho_{studId,name,gradePtAvg}(Students)$

We care about this operator *because* we are working in a *named perspective*

Another example:

Students

sid	sname	gpa
001	John	3.4
002	Bob	1.3

 $\rho_{studId,name,gradePtAvg}(Students)$

Students

studId	name	gradePtAvg	
001	John	3.4	
002	Bob	1.3	

Natural Join (⋈)

Note: Textbook notation is *

Students(sid,name,gpa) People(ssn, name, address)

- Notation: $R_{\tau} \bowtie R_{\sigma}$
- Joins R₁ and R₂ on equality of all shared attributes
 - If R₁ has attribute set A, and R₂ has attribute set B, and they share attributes $A \cap B = C$, can also be written: $R_1 \bowtie_C R_2$
- Our first example of a *derived* RA operator:
 - Meaning: $R_1 \bowtie R_2 = \prod_{A \cup B} (\sigma_{C=D}(\rho_{C \rightarrow D}(R_1) \times R_2))$
 - Where:
 - The rename $\rho_{C\to D}$ renames the shared attributes in one of the relations
 - The selection $\sigma_{C=D}$ checks equality of the shared attributes
 - The projection $\Pi_{A \coprod B}$ eliminates the duplicate common attributes

SQL:

RA:

```
SELECT DISTINCT
  sid, S.name, gpa,
  ssn, address
FROM
  Students S,
  People P
WHERE S.name = P.name;
```


Another example:

Students S

sid	S.name	gpa	
001	John	3.4	
002	Bob	1.3	

People P

ssn	P.name	address
1234545	John	216 Rosse
5423341	Bob	217 Rosse

$Students \bowtie People$

M

sid	S.name	gpa	ssn	address
001	John	3.4	1234545	216 Rosse
002	Bob	1.3	5423341	216 Rosse

Natural Join

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of $R \bowtie S$?

• Given R(A, B, C), S(D, E), what is $R \bowtie S$?

• Given R(A, B), S(A, B), what is $R \bowtie S$?

Example: Converting SFW Query -> RA

Students(sid,name,gpa)
People(ssn,name,address)

```
SELECT DISTINCT
   gpa,
   address
FROM Students S,
    People P
WHERE gpa > 3.5 AND
   S.name = P.name;
```

 $\Pi_{gpa,address}(\sigma_{gpa>3.5}(S\bowtie P))$

How do we represent this query in RA?

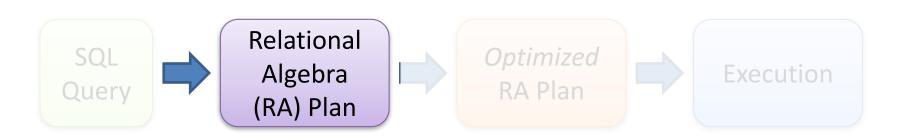
Logical Equivalece of RA Plans

- Given relations R(A,B) and S(B,C):
 - Here, projection & selection commute:

$$\bullet \, \sigma_{A=5}(\Pi_A(R)) = \Pi_A(\sigma_{A=5}(R))$$

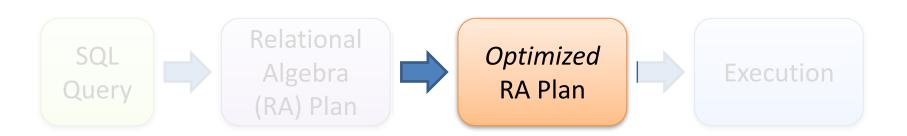
- What about here?
 - $\sigma_{A=5}(\Pi_B(R))$? = $\Pi_B(\sigma_{A=5}(R))$

How does a SQL engine work?



We saw how we can transform declarative SQL queries into precise, compositional RA plans

How does a SQL engine work?



We'll look at how to then optimize these plans later in this lecture

How is the RA "plan" executed?

We already know how to execute all the basic operators!

2. ADV. RELATIONAL ALGEBRA

What you will learn about in this section

1. Set Operations in RA

2. Fancier RA

Relational Algebra (RA)

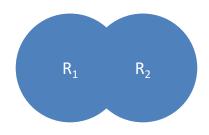
- Five basic operators:
 - I. Selection: σ
 - 2. Projection: Π
 - 3. Cartesian Product: ×
 - 4. Union: ∪
 - 5. Difference: -
- Derived or auxiliary operators:
 - Intersection
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: p
 - Division

We'll look at these

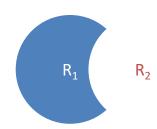
And also at some of these derived operators

1. Union (\cup) and 2. Difference (-)

- $R_1 \cup R_2$
- Example:
 - -ActiveEmployees \cup RetiredEmployees



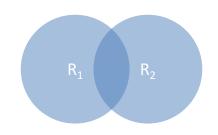
- RI R2
- Example:
 - AllEmployees -- RetiredEmployees



What about Intersection (\cap) ?

- It is a derived operator
- $RI \cap R2 = RI (RI R2)$

- Unionized Employees \cap Retired Employees



Fancier RA

Theta Join (\bowtie_{θ})

- A join that involves a predicate
- $R_1 \bowtie_{\theta} R_2 = \sigma_{\theta} (R_1 \times R_2)$
- Here θ can be any condition

Note that natural join is a theta join + a projection.

Students(sid, sname, gpa)
People(ssn, pname, address)

SQL:

```
SELECT *
FROM
   Students, People
WHERE θ;
```


Equi-join ($\bowtie_{A=B}$)

- A theta join where θ is an equality
- $R_{I}\bowtie_{A=B}R_{2}=\sigma_{A=B}\left(R_{I}\times R_{2}\right)$
- Example:
 - -Employee \bowtie _{SSN=SSN} Dependents

Most common join in practice!

Students(sid,sname,gpa)
People(ssn,pname,address)

SQL:

```
SELECT *
FROM
   Students S,
   People P
WHERE sname = pname;
```


RA:

$$S \bowtie_{sname=pname} F$$

Semijoin (⋉)

• $R \bowtie S = \prod_{A_1,...,A_n} (R \bowtie S)$

Students(sid,sname,gpa)
People(ssn,pname,address)

- Where $A_1, ..., A_n$ are the attributes in R
- Example:
 - Employee ➤ Dependents

SQL:

```
SELECT DISTINCT
   sid, sname, gpa
FROM
   Students, People
WHERE
   sname = pname;
```


RA:

 $Students \ltimes People$

Divison (÷)

-
$$T(Y) = R(Y,X) \div S(X)$$

- Y is the set of attributes of R that are not attributes of S.

- For a tuple t to appear in the result T of the Division, the values in t must appear in R in combination with *every* tuple in S.

Example

```
R(Y,X)
                                S(X)
                                                            T(Y)
PilotSkills
                              Hangar
                                                    PilotSkills DIVIDED BY Hangar
pilot name
             plane name
                              plane name
                                                    pilot name
                              =========
'Celko'
          'Piper Cub'
                              'B-1 Bomber'
                                                    'Smith'
'Higgins' 'B-52 Bomber'
                              'B-52 Bomber'
                                                    'Wilson'
'Higgins' 'F-14 Fighter'
                              'F-14 Fighter'
'Higgins' 'Piper Cub'
'Jones'
          'B-52 Bomber'
'Jones'
         'F-14 Fighter'
'Smith' 'B-1 Bomber'
'Smith' 'B-52 Bomber'
                                  SELECT PS1.pilot name
'Smith' 'F-14 Fighter'
                                    FROM PilotSkills AS PS1, Hangar AS H1
'Wilson' 'B-1 Bomber'
                                   WHERE PS1.plane name = H1.plane name
'Wilson'
        'B-52 Bomber'
                                   GROUP BY PS1.pilot name
'Wilson'
        'F-14 Fighter'
                                   HAVING COUNT(PS1.plane name) =
'Wilson'
          'F-17 Fighter'
                                 (SELECT COUNT(plane name) FROM Hangar);
```

https://www.simple-talk.com/sql/t-sql-programming/divided-we-stand-the-sql-of-relational-division/

Multisets

Recall that SQL uses Multisets

Multiset X

Tuple
(1, a)
(1, a)
(1, b)
(2, c)
(2, c)
(2, c)
(1, d)
(1, d)

Equivalent Representations of a <u>Multiset</u> $\lambda(X)$ = "Count of tuple in X"
(Items not listed have implicit count 0)

Multiset X

Tuple	$\lambda(X)$
(1, a)	2
(1, b)	1
(2, c)	3
(1, d)	2

Note: In a set all counts are {0,1}.

Generalizing Set Operations to Multiset Operations

Multiset X

Tuple	$\lambda(X)$
(1, a)	2
(1, b)	0
(2, c)	3
(1, d)	0

Tuple	$\lambda(Y)$
(1, a)	5
(1, b)	1
(2, c)	2
(1, d)	2

Multiset Z

Tuple	$\lambda(Z)$
(1, a)	2
(1, b)	0
(2, c)	2
(1, d)	0

$$\lambda(Z) = \min(\lambda(X), \lambda(Y))$$

For sets, this is intersection

Generalizing Set Operations to Multiset Operations

Multiset X

Tuple	$\lambda(X)$
(1, a)	2
(1, b)	0
(2, c)	3
(1, d)	0

Multiset Y

Tuple	$\lambda(Y)$
(1, a)	5
(1, b)	1
(2, c)	2
(1, d)	2

$$\lambda(Z) = \lambda(X) + \lambda(Y)$$

Multiset Z

Tuple	$\lambda(Z)$	
(1, a)	7	
(1, b)	1	
(2, c)	5	
(1, d)	2	

For sets, this is **union**

Operations on Multisets

- $-\sigma_C(R)$: preserve the number of occurrences
- $-\Pi_A(R)$: no duplicate elimination
- Cross-product, join: no duplicate elimination

This is important-relational engines work on multisets, not sets!

Complete Set of Relational Operations

- The set of operations including
 - Select σ ,
 - Project π
 - Union ∪
 - Difference –
 - Rename ρ , and
 - Cartesian Product X
 - is called a *complete set*
 - because any other relational algebra expression can be expressed by a combination of these five operations.
- For example:

$$-R \cap S = (R \cup S) - ((R - S) \cup (S - R))$$

$$-\operatorname{R}\bowtie_{< join\ condition>} S = \underset{< join\ condition>}{\bullet} \left(\operatorname{R}\ {\overset{\textstyle \, \mathbf{X}}{\overset{}\,}}\ S\right)$$

Table 8.1 Operations of Relational Algebra

Table 8.1Operations of	f Relational Algebra	
OPERATION	PURPOSE	NOTATION
SELECT	Selects all tuples that satisfy the selection condition from a relation R .	$\sigma_{< selection condition>}(R)$
PROJECT	Produces a new relation with only some of the attributes of <i>R</i> , and removes duplicate tuples.	$\pi_{ ext{}}(R)$
THETA JOIN	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	$R_1 \bowtie_{< \text{join condition}>} R_2$
EQUIJOIN	Produces all the combinations of tuples from R_1 and R_2 that satisfy a join condition with only equality comparisons.	$R_1 \bowtie_{<\text{join condition}>} R_2$, OR $R_1 \bowtie_{(<\text{join attributes 1}>)}$, (<join 2="" attributes="">) R_2</join>
NATURAL JOIN	Same as EQUIJOIN except that the join attributes of R_2 are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$R_1*_{<\text{join condition}>} R_2,$ OR $R_1*_{(<\text{join attributes 1}>)},$ (<join 2="" attributes="">) R_2 OR $R_1*_R_2$</join>

continued on next slide

Table 8.1 Operations of Relational Algebra (continued)

Table 8.1	Operations of	f Relational	Algebra
-----------	---------------	--------------	---------

OPERATION	PURPOSE	NOTATION
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$
INTERSECTION	Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$
DIFFERENCE	Produces a relation that includes all the tuples in R_1 that are not in R_2 ; R_1 and R_2 must be union compatible.	$R_1 - R_2$
CARTESIAN PRODUCT	Produces a relation that has the attributes of R_1 and R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2 .	$R_1 \times R_2$
DIVISION	Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$.	$R_1(Z) \div R_2(Y)$

Query Tree Notation

• Query Tree

- -An internal data structure to represent a query
- Standard technique for estimating the work involved in executing the query, the generation of intermediate results, and the optimization of execution
- Nodes stand for operations like selection, projection, join, renaming, division,
- Leaf nodes represent base relations
- A tree gives a good visual feel of the complexity of the query and the operations involved
- Algebraic Query Optimization consists of rewriting the query or modifying the query tree into an equivalent tree.

EMPLOYEE

Fname Minit Lname Ssn Bdate Address	Sex Salary	Super_ssn Dno
-------------------------------------	------------	---------------

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
-------	---------	---------	----------------

DEPT_LOCATIONS

<u>Dnumber</u>	Dlocation
<u>Dnumber</u>	Diocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

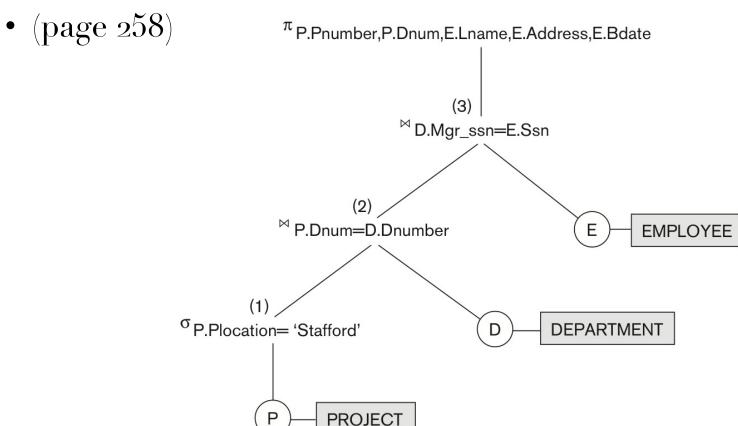
Essn	<u>Pno</u>	Hours
------	------------	-------

DEPENDENT

Essn Dependent_name Sex Bdate Relationship
--

Example of Query Tree

• For every project located in Stafford, list the project number, dept. number, manager's last name, address, and birth date



Summary

- Total 8 basic operators:
 - Unary relational operators (3)
 - Selection: σ
 - Projection: Π
 - Renaming: p
 - Binary relational operators (5)
 - Union: U
 - Intersect: ∩
 - Set difference: -
 - Cartesian Product (Join): × , ⋈
 - Natural Join, Theta Join, Equi-Join, Semi-Join.
 - Division: ÷
- Tell us: <u>How</u> the query may be executed.

Acknowledgement

- Some of the slides in this presentation are taken from the slides provided by the authors.
- Many of these slides are taken from cs145 course offered by Stanford University.