
CSC 261/461 – Database Systems
Lecture 13

Fall 2017

Announcement

• Start learning HTML, CSS, JavaScript, PHP + SQL
–We will cover the basics next week
– https://www.w3schools.com/php/php_mysql_intro.asp

• Project 1 Milestone 3 will be out soon
– Combination of Theory and Application
• BCNF decomposition and PHP and MySQL

• Term Paper for Grad Students
– http://www.cs.rochester.edu/courses/261/fall2017/projects/grad-

topics.html

CSC	261,	Fall	2017,	UR	

Clarification

If	we	remove	FD2,		then	LOTS1A	is	in	______	form?	

2NF

CSC	261,	Fall	2017,	UR	

Agenda

• Relational Algebra (Today)

• Relational Calculus (We will not cover)

CSC	261,	Fall	2017,	UR	

RELATIONAL ALGEBRA

CSC	261,	Fall	2017,	UR	

Motivation

Relational	Algebra	provides	a	formal	
foundation	for	relational	model	operations

It	is	the	basis	for	implementing	and	
optimizing	queries	in	any	RDBMS

The	core	operations	of	most	relational	
systems	are	based	on	Relational	Algebra

CSC	261,	Fall	2017,	UR	

The Relational Model: Schemata

• Relational Schema:

Students(sid: string, name: string, gpa: float)

AttributesString,	float,	int,	etc.	
are	the	domains of	
the	attributes

Relation	
name

CSC	261,	Fall	2017,	UR	

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An	attribute (or	
column)	is	a	
typed	data	entry	
present	in	each	
tuple	in	the	
relation

The	number	of	
attributes	is	the	arity
of	the	relation

CSC	261,	Fall	2017,	UR	

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

A	tuple or	row (or	record)	is	a	
single	entry	in	the	table	having	the	
attributes	specified	by	the	schema

The	number	
of	tuples	is	
the	
cardinality of	
the	relation

CSC	261,	Fall	2017,	UR	

The Relational Model: Data

Student

A	relational	instance is	a	set of	
tuples	all	conforming	to	the	same	

schema

Recall:	In	practice	
DBMSs	relax	the	
set	requirement,	
and	use	multisets.		

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

CSC	261,	Fall	2017,	UR	

Relation Instances

• Relation DB Schema
– Students(sid: string, name: string, gpa: float)
– Courses(cid: string, cname: string, credits: int)
– Enrolled(sid: string, cid: string, grade: string)

Sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Relation	
Instances

Note	that	the	schemas	
impose	effective	domain	/	
type	constraints,	i.e.	Gpa
can’t	be	“Apple”

CSC	261,	Fall	2017,	UR	

Querying

“Find	names	of	all	students	
with	GPA	>	3.5”

We	don’t	tell	the	system how	or	
where to	get	the	data- just	what	
we	want,	i.e.,	Querying	is	
declarative

SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

To	make	this	happen,	we	need	to	
translate	the	declarative	query	
into	a	series	of	operators…	we’ll	
see	this	next!

CSC	261,	Fall	2017,	UR	

Relational Algebra

CSC	261,	Fall	2017,	UR	

RDBMS Architecture

How does a SQL engine work ?

SQL	
Query

Relational	
Algebra	
(RA)	Plan

Optimized
RA	Plan Execution

Declarative	
query	(from	
user)

Translate	to	
relational	algebra	
expresson

Find	logically	
equivalent- but	
more	efficient- RA	
expression

Execute	each	
operator	of	the	
optimized	plan!

CSC	261,	Fall	2017,	UR	

RDBMS Architecture

How does a SQL engine work ?

SQL	
Query

Relational	
Algebra	
(RA)	Plan

Optimized
RA	Plan Execution

Relational	Algebra	allows	us	to	translate	declarative	(SQL)	
queries	into	precise	and	optimizable expressions!

CSC	261,	Fall	2017,	UR	

• Five basic operators:

1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:

– Intersection
– Joins (natural, equi-join, theta join, semi-join)
– Renaming: r
– Division

We’ll	look	at	these	first!

And	also	at	one	example	of	
a	derived	operator	(natural	
join)	and	a	special	operator	
(renaming)

Relational Algebra (RA)

CSC	261,	Fall	2017,	UR	

Keep in mind: RA operates on sets!

• RDBMSs use multisets, however in relational algebra
formalism we will consider sets!

• Also: we will consider the named perspective, where every
attribute must have a unique name
–àattribute order does not matter…

Now	on	to	the	basic	RA	operators…

CSC	261,	Fall	2017,	UR	

• Returns all tuples which
satisfy a condition

• Notation: sc(R)
• Examples
– sSalary > 40000 (Employee)
– sname = “Smith” (Employee)

• The condition c can be =,
<, £, >, ³, <>

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
𝜎"#$	&'.)(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

1. Selection (𝜎)

CSC	261,	Fall	2017,	UR	

sSalary >	40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Another	example:

CSC	261,	Fall	2017,	UR	

• Eliminates columns, then
removes duplicates

• Notation: P A1,…,An (R)
• Example: project social-

security number and
names:
– P SSN, Name (Employee)
–Output schema:

Answer(SSN, Name)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:
Π45$67,"#$(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

2. Projection (Π)

CSC	261,	Fall	2017,	UR	

P Name,Salary (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Name Salary
John 200000
John 600000

Another	example:

CSC	261,	Fall	2017,	UR	

Note that RA Operators are Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How	do	we	represent	
this	query	in	RA?

Π45$67,"#$(𝜎"#$&'.)(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎"#$&'.)(Π45$67,"#$(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are	these	logically	
equivalent?

CSC	261,	Fall	2017,	UR	

• Each tuple in R1 with
each tuple in R2

• Notation: R1 ´ R2
• Example:
– Employee ´ Dependents

• Rare in practice; mainly
used to express joins

SELECT *
FROM Students, People;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

3. Cross-Product (×)

CSC	261,	Fall	2017,	UR	

ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother	example:

CSC	261,	Fall	2017,	UR	

• Changes the schema, not the
instance

• A ‘special’ operator- neither
basic nor derived

• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the
proper form (since names, not
order matters!):
– r A1àB1,…,AnàBn (R)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
𝜌4?@ABA,5$67,"C$A7D?EF"(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

We	care	about	this	operator	because we	
are	working	in	a	named	perspective

Renaming (𝜌)

CSC	261,	Fall	2017,	UR	

sid sname gpa
001 John 3.4

002 Bob 1.3

𝜌4?@ABA,5$67,"C$A7D?EF"(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another	example:

CSC	261,	Fall	2017,	UR	

• Notation: R1 ⋈	R2

• Joins R1 and R2 on equality of all shared
attributes
– If R1 has attribute set A, and R2 has attribute

set B, and they share attributes A⋂B = C, can
also be written: R1 ⋈ 𝐶	R2

• Our first example of a derived RA
operator:
– Meaning: R1 ⋈ R2 = PA U B(sC=D(𝜌J→L(R1) ´ R2))
– Where:

• The rename 𝜌J→L renames the shared attributes
in one of the relations

• The selection sC=D checks equality of the shared
attributes

• The projection PA U B eliminates the duplicate
common attributes

SELECT DISTINCT
sid, S.name, gpa,
ssn, address

FROM
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

Natural Join (⋈)
Note: Textbook notation is *

CSC	261,	Fall	2017,	UR	

ssn P.name address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid S.name gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒

⋈

sid S.name gpa ssn address
001 John 3.4 1234545 216 Rosse

002 Bob 1.3 5423341 216 Rosse

People	PStudents	S
Another	example:

CSC	261,	Fall	2017,	UR	

Natural Join

• Given schemas R(A, B, C, D), S(A, C, E), what is the
schema of R ⋈	S ?

• Given R(A, B, C), S(D, E), what is R ⋈	S ?

• Given R(A, B), S(A, B), what is R ⋈	S ?

CSC	261,	Fall	2017,	UR	

Example: Converting SFW Query -> RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
S.name = P.name;

How	do	we	represent	
this	query	in	RA?

Π"#$,$AAC744(𝜎"#$&'.)(𝑆 ⋈ 𝑃))

Students(sid,name,gpa)
People(ssn,name,address)

CSC	261,	Fall	2017,	UR	

Logical Equivalece of RA Plans

• Given relations R(A,B) and S(B,C):

– Here, projection & selection commute:

• 𝜎EM)(ΠE(𝑅)) = ΠE(𝜎EM)(𝑅))

–What about here?

• 𝜎EM)(ΠP(𝑅))	?= ΠP(𝜎EM)(𝑅))

CSC	261,	Fall	2017,	UR	

RDBMS Architecture

How does a SQL engine work ?

SQL	
Query

Relational	
Algebra	
(RA)	Plan

Optimized
RA	Plan Execution

We	saw	how	we	can	transform	declarative	SQL	queries	
into	precise,	compositional	RA	plans

CSC	261,	Fall	2017,	UR	

RDBMS Architecture

How does a SQL engine work ?

SQL	
Query

Relational	
Algebra	
(RA)	Plan

Optimized
RA	Plan Execution

We’ll	look	at	how	to	then	optimize	these	
plans	later	in	this	lecture

CSC	261,	Fall	2017,	UR	

RDBMS Architecture

How is the RA “plan” executed?

SQL	
Query

Relational	
Algebra	
(RA)	Plan

Optimized
RA	Plan Execution

We	already	know	how	to	execute	all	the	basic	operators!

CSC	261,	Fall	2017,	UR	

2. ADV. RELATIONAL ALGEBRA

CSC	261,	Fall	2017,	UR	

What you will learn about in this section

1. Set	Operations	in	RA

2. Fancier	RA

CSC	261,	Fall	2017,	UR	

• Five basic operators:

1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:

– Intersection
– Joins (natural,equi-join, theta join, semi-join)
– Renaming: r
– Division

Relational	Algebra	(RA)

We’ll	look	at	these

And	also	at	some	of	
these	derived	
operators

CSC	261,	Fall	2017,	UR	

1. Union (È) and 2. Difference (–)

• R1 È R2
• Example:
– ActiveEmployees È RetiredEmployees

• R1 – R2
• Example:
– AllEmployees -- RetiredEmployees

R1 R2

R1 R2

CSC	261,	Fall	2017,	UR	

What about Intersection (Ç) ?

• It is a derived operator
• R1 Ç R2 = R1 – (R1 – R2)
• Also expressed as a join!
• Example
– UnionizedEmployees Ç RetiredEmployees

R1 R2

CSC	261,	Fall	2017,	UR	

Fancier RA

CSC	261,	Fall	2017,	UR	

Theta Join (⋈q)

• A join that involves a predicate
• R1 ⋈q R2 = s q (R1 ´ R2)
• Here q can be any condition

SELECT *
FROM

Students,People
WHERE q;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈R 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Note	that	natural	join	is	a	
theta	join	+	a	projection.

CSC	261,	Fall	2017,	UR	

Equi-join (⋈	A=B)

• A theta join where q is an equality
• R1 ⋈	A=B R2 = s A=B (R1 ´ R2)
• Example:
– Employee ⋈	SSN=SSN Dependents SELECT *

FROM
Students S,
People P

WHERE sname = pname;

SQL:

RA:
𝑆	 ⋈45$67M#5$67 	𝑃

Students(sid,sname,gpa)
People(ssn,pname,address)

Most	common	join	
in	practice!

CSC	261,	Fall	2017,	UR	

Semijoin (⋉)

• R ⋉ S = P A1,…,An (R ⋈ S)
• Where A1, …, An are the attributes in R
• Example:
– Employee ⋉	Dependents SELECT DISTINCT

sid,sname,gpa
FROM
Students,People

WHERE
sname = pname;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋉ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

CSC	261,	Fall	2017,	UR	

Divison (÷)

– T(Y) = R(Y,X) ÷ S(X)

–Y is the set of attributes of R that are not attributes of S.

– For a tuple t to appear in the result T of the Division, the values
in t must appear in R in combination with every tuple in S.

CSC	261,	Fall	2017,	UR	

Example

https://www.simple-talk.com/sql/t-sql-programming/divided-we-stand-the-sql-of-relational-division/

R(Y,X) T(Y)S(X)÷ =

SELECT PS1.pilot_name
FROM PilotSkills AS PS1, Hangar AS H1
WHERE PS1.plane_name = H1.plane_name
GROUP BY PS1.pilot_name
HAVING COUNT(PS1.plane_name) =

(SELECT COUNT(plane_name) FROM Hangar);

CSC	261,	Fall	2017,	UR	

Multisets

CSC	261,	Fall	2017,	UR	

Recall that SQL uses Multisets

Tuple

(1,	a)

(1,	a)

(1, b)

(2,	c)

(2,	c)

(2,	c)

(1,	d)

(1,	d)

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 1

(2,	c) 3

(1, d) 2Equivalent	
Representations	
of	a	Multiset

Multiset X

Multiset X

Note:	In	a	set	all	
counts	are	{0,1}.

𝝀 𝑿 =	“Count	of	tuple	in	
X”
(Items	not	listed	have	
implicit	count	0)

CSC	261,	Fall	2017,	UR	

Generalizing Set Operations to Multiset Operations

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X
Tuple 𝝀(𝒀)

(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y
Tuple 𝝀(𝒁)

(1,	a) 2

(1,	b) 0

(2,	c) 2

(1, d) 0

Multiset Z

∩ =

𝝀 𝒁 = 𝒎𝒊𝒏(𝝀 𝑿 , 𝝀 𝒀)
For	sets,	this	is	
intersection

CSC	261,	Fall	2017,	UR	

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X
Tuple 𝝀(𝒀)

(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y
Tuple 𝝀(𝒁)

(1,	a) 7

(1,	b) 1

(2,	c) 5

(1, d) 2

Multiset Z

∪ =

𝝀 𝒁 = 𝝀 𝑿 + 	𝝀 𝒀
For	sets,	

this	is	union

Generalizing Set Operations to Multiset
Operations

CSC	261,	Fall	2017,	UR	

Operations on Multisets

– sC(R): preserve the number of occurrences

– PA(R): no duplicate elimination

– Cross-product, join: no duplicate elimination

This	is	important-
relational	engines	work	on	multisets,	not	sets!

CSC	261,	Fall	2017,	UR	

Complete Set of Relational Operations

• The set of operations including
• Select s,
• Project p
• Union È
• Difference –
• Rename r, and
• Cartesian Product X

– is called a complete set
– because any other relational algebra expression can be expressed

by a combination of these five operations.

• For example:
– R Ç S = (R È S) – ((R - S) È (S - R))
– R⋈<join condition>S = s <join condition> (R X S)

CSC	261,	Fall	2017,	UR	

Table 8.1 Operations of Relational Algebra

continued on next slide
CSC	261,	Fall	2017,	UR	

Table 8.1 Operations of Relational Algebra
(continued)

CSC	261,	Fall	2017,	UR	

Query Tree Notation

• Query Tree
–An internal data structure to represent a query
– Standard technique for estimating the work involved in

executing the query, the generation of intermediate results, and
the optimization of execution

–Nodes stand for operations like selection, projection, join,
renaming, division, ….

– Leaf nodes represent base relations
–A tree gives a good visual feel of the complexity of the query

and the operations involved
–Algebraic Query Optimization consists of rewriting the query

or modifying the query tree into an equivalent tree.

CSC	261,	Fall	2017,	UR	

CSC	261,	Fall	2017,	UR	

Example of Query Tree

• For every project located in Stafford, list the project number,
dept. number, manager’s last name, address, and birth date

• (page 258)

CSC	261,	Fall	2017,	UR	

Summary

• Total 8 basic operators:
– Unary relational operators (3)
• Selection: s
• Projection: P
• Renaming: r

– Binary relational operators (5)
• Union: ∪
• Intersect: ∩
• Set difference: -
• Cartesian Product (Join): ´ , ⋈

– Natural Join, Theta Join, Equi-Join, Semi-Join.

• Division: ÷

• Tell us: How the query may be executed.

CSC	261,	Fall	2017,	UR	

Acknowledgement

• Some of the slides in this presentation are taken from the
slides provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

CSC	261,	Fall	2017,	UR	

