
CSC 261/461 – Database Systems
Lecture 14

Fall 2017

CSC	261,	Fall	2017,	UR	

Announcement

• Midterm on this Wednesday

• Please arrive 5 minutes early; We will start at 12:30 pm sharp

• I will post a sitting arrangement today.

• Bluehive (CIRC) account

• Start studying for MT

CSC	261,	Fall	2017,	UR	

Are you ready?

CSC	261,	Fall	2017,	UR	

Night before the exam

CSC	261,	Fall	2017,	UR	

During the exam

CSC	261,	Fall	2017,	UR	

Or Finishing too early

CSC	261,	Fall	2017,	UR	

MIDTERM REVIEW

CSC	261,	Fall	2017,	UR	

Chapters to Read

• Chapter	1
• Chapter	2
• Chapter	3
• Chapter	4	(Just	the	basics.	Only	ISA	relationships.	Even	studying	the	slides	is	fine)
• Chapter	5,	6,	7	(SQL)
• Chapter	8	(8.1-8.3)
• Chapter	9
• Chapter	14	(14.1-14.5)
• Chapter	15	(15.1-15.3)

CSC	261,	Fall	2017,	UR	

Exam Structure

• Problem 1 (20 pts)
– Short answers, True/False, or One liner

• Other problems (40 pts)

• Total: 60 pts

• 2 bonus points for writing the class id correctly.

CSC	261,	Fall	2017,	UR	

Time distribution

• Time crunch
– Not really
– Should take more than 60 minutes to finish.
– Not as relaxed as the quiz

CSC	261,	Fall	2017,	UR	

MATERIALS COVERED

CSC	261,	Fall	2017,	UR	

Questions to ponder

• Why not Lists? Why database?

• How related tables avoid problems associated with lists?

CSC	261,	Fall	2017,	UR	

Problems with Lists

• Multiple Concepts or Themes:
– Microsoft Excel vs Microsoft Access

• Redundancy
• Anomalies:

– Deletion anomalies
– Update anomalies
– Insertion anomalies

CSC	261,	Fall	2017,	UR	

List vs Database

• Lists do not provide information about relations!

• Break lists into tables

• Facilitates:
– Insert
– Delete
– Update

• Input and Output interface (Forms and Reports)

• Query!

CSC	261,	Fall	2017,	UR	

Again, Why database?

• To store data
• To provide structure
• Mechanism for querying, creating, modifying and deleting

data.
• CRED (Create, Read, Update, Delete)
• Store information and relationships

• Database Schema vs. Database State

CSC	261,	Fall	2017,	UR	

Simplified Database System Environment

CSC	261,	Fall	2017,	UR	

SQL

CSC	261,	Fall	2017,	UR	

General form SQL

CSC	261,	Fall	2017,	UR	

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation	steps:
1. Evaluate	FROM-WHERE:	apply	condition	

C1 on	the		attributes	in	R1,…,Rn
2. GROUP	BY	the	attributes	a1,…,ak
3. Apply	condition	C2 to	each	group	(may	

have	aggregates)
4. Compute	aggregates	in	S	and	return	the	

result

Grouping and Aggregation

1.	Compute	the	FROM and	WHERE clauses

2.	Group	by	the	attributes	in	the	GROUP	BY

3.	Compute	the	SELECT clause:	grouped	attributes	and	aggregates

Semantics	of	the	query:

CSC	261,	Fall	2017,	UR	

1. Compute the FROM and WHERE clauses

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

FROM

CSC	261,	Fall	2017,	UR	

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

2. Group by the attributes in the GROUP BY

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

CSC	261,	Fall	2017,	UR	

3. Compute the SELECT clause: grouped attributes
and aggregates

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECTProduct Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

CSC	261,	Fall	2017,	UR	

HAVING Clause

Same	query	as	
before,	except	
that	we	consider	
only	products	that	
have	more	than
100	buyers

HAVING	clauses	contains	conditions	on	aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas	WHERE	clauses	condition	on	individual	tuples…

CSC	261,	Fall	2017,	UR	

Null Values

Unexpected behavior:

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Some	Persons	are	not	included	!

CSC	261,	Fall	2017,	UR	

Null Values

Can test for NULL explicitly:
– x IS NULL
– x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

OR age IS NULL

Now	it	includes	all	Persons!

CSC	261,	Fall	2017,	UR	

Inner Joins

By default, joins in SQL are “inner joins”:

SELECT Product.name, Purchase.store
FROM Product
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

Both	equivalent:
Both	INNER	JOINS!

CSC	261,	Fall	2017,	UR	

Inner Joins + NULLS = Lost data?

By default, joins in SQL are “inner joins”:

However:	Products	that	never	sold	(with	no	Purchase	tuple)	will	be	lost!

SELECT Product.name, Purchase.store
FROM Product
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

CSC	261,	Fall	2017,	UR	

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase
INNER JOIN:

SELECT Product.name, Purchase.store
FROM Product
INNER JOIN Purchase

ON Product.name = Purchase.prodName

Note:	another	equivalent	way	to	write	an	
INNER	JOIN!

CSC	261,	Fall	2017,	UR	

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase
LEFT OUTER JOIN:

SELECT Product.name, Purchase.store
FROM Product
LEFT OUTER JOIN Purchase

ON Product.name = Purchase.prodName

CSC	261,	Fall	2017,	UR	

Other Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if there’s no match

CSC	261,	Fall	2017,	UR	

Also read

• Triggers
• Views
• Operations on Databases

– Create, Drop, and Alter

• Operations of Tables
– Insert, Delete and Update

• Constraint:
– Key constraint
– Foreign key
– On Delete cascade, Set Null, Set Default;

CSC	261,	Fall	2017,	UR	

DATABASE DESIGN

CSC	261,	Fall	2017,	UR	

Database Design Process

1. Requirements analysis

– What is going to be stored?

– How is it going to be used?

– What are we going to do with the data?

– Who should access the data?

Technical	and	non-
technical	people	are	
involved

1.	Requirements	Analysis 2.	Conceptual	Design	 3.	Logical,	Physical,	Security,	
etc.

CSC	261,	Fall	2017,	UR	

Database Design Process

CSC	261,	Fall	2017,	UR	

2. Conceptual Design

– A high-level description of the database

– Sufficiently precise that technical people can understand
it

– But, not so precise that non-technical people can’t
participate

This	is	where	E/R	fits	in.

1.	Requirements	Analysis 2.	Conceptual	Design	 3.	Logical,	Physical,	Security,	etc.

Database Design Process

CSC	261,	Fall	2017,	UR	

1.	Requirements	Analysis 2.	Conceptual	Design	 3.	Logical,	Physical,	Security,	etc.

3. Implementation:

• Logical	Database	Design

• Physical	Database	Design

• Security	Design

This	process	is	
iterated	many

times

E/R	is	a	visual	syntax	for	DB	design	which	is	precise	enough for	
technical	points,	but	abstracted	enough for	non-technical	

people

Database Design Process
1.	Requirements	Analysis 2.	Conceptual	Design	 3.	Logical,	Physical,	Security,	etc.

MakesProduct

name category

price

Company

name

E/R	Model	&	Diagrams	used

CSC	261,	Fall	2017,	UR	

Requirements Become the E-R Data Model

CSC	261,	Fall	2017,	UR	

• After the requirements have been gathered,
they are transformed into an Entity
Relationship (E-R) Data Model

• E-R Models consist of
1. Entities
2. Attributes

a) Identifiers (Keys)
b) Non-key attributes

3. Relationships

1. E/R BASICS: ENTITIES & RELATIONS

CSC	261,	Fall	2017,	UR	

Entities and Entity Sets

• An entity set has
attributes
– Represented by ovals

attached to an entity set

Product

name category

price

Shapes	are
important.	Colors	are	
not.

CSC	261,	Fall	2017,	UR	

Keys

• A key is a minimal set of attributes that
uniquely identifies an entity.

Product

name category

price

Denote	elements	of	the	
primary	key	by	
underlining.

Here,	{name,	category}	is	not a	key	
(it	is	not	minimal).	

The	E/R	model	forces	us	to	designate	a	single	primary key,	though	there	
may	be	multiple	candidate	keys

CSC	261,	Fall	2017,	UR	

Relationships

• A relationship connects two or more entity sets.
• It is represented by a diamond, with lines to each of the

entity sets involved.
• The degree of the relationship defines the number of entity

classes that participate in the relationship
– Degree 1 is a unary relationship
– Degree 2 is a binary relationship
– Degree 3 is a ternary relationship

CSC	261,	Fall	2017,	UR	

Conceptual Unary Relationship

CSC	261,	Fall	2017,	UR	

Person Marries

Conceptual Binary Relationship

Person CarsOwns

CSC	261,	Fall	2017,	UR	

Conceptual Ternary Relationship

Patient DrugPrescription

Doctor

CSC	261,	Fall	2017,	UR	

The R in E/R: Relationships

• E, R and A together:

Product

name category

price
Company

name

Makes

CSC	261,	Fall	2017,	UR	

What is a Relationship?

MakesProduct

name category

price

Company

name

A	relationship between	entity	sets	P	and	C	is	a	
subset	of	all	possible	pairs	of	entities	in	P	and	C,	
with	tuples	uniquely	identified	by	P	and	C’s	keys

CSC	261,	Fall	2017,	UR	

What is a Relationship?

name category price

Gizmo Electronics $9.99

GizmoLite Electronics $7.50

Gadget Toys $5.50

name

GizmoWorks

GadgetCorp

ProductCompany
C.name P.name P.category P.price

GizmoWorks Gizmo Electronics $9.99

GizmoWorks GizmoLite Electronics $7.50

GizmoWorks Gadget Toys $5.50

GadgetCorp Gizmo Electronics $9.99

GadgetCorp GizmoLite Electronics $7.50

GadgetCorp Gadget Toys $5.50

Company	C		×		Product	P

MakesProduct

name category
price

Company

name

A	relationship between	entity	sets	P	and	C	is	a	
subset	of	all	possible	pairs	of	entities	in	P	and	C,	
with	tuples	uniquely	identified	by	P	and	C’s	keys

CSC	261,	Fall	2017,	UR	

What is a Relationship?

name category price

Gizmo Electronics $9.99

GizmoLite Electronics $7.50

Gadget Toys $5.50

name

GizmoWorks

GadgetCorp

ProductCompany
C.name P.name P.category P.price

GizmoWorks Gizmo Electronics $9.99

GizmoWorks GizmoLite Electronics $7.50

GizmoWorks Gadget Toys $5.50

GadgetCorp Gizmo Electronics $9.99

GadgetCorp GizmoLite Electronics $7.50

GadgetCorp Gadget Toys $5.50

Company	C		×		Product	P

C.name P.name

GizmoWorks Gizmo

GizmoWorks GizmoLite

GadgetCorp Gadget

Makes
MakesProduct

name category
price

Company

name

A	relationship between	entity	sets	P	and	C	is	a	
subset	of	all	possible	pairs	of	entities	in	P	and	C,	
with	tuples	uniquely	identified	by	P	and	C’s	keys

CSC	261,	Fall	2017,	UR	

Product

name category

price
Company

name

Makes

since

• Relationships	may	have	attributes	as	well.

For	example:	“since”	
records	when	company	
started	making	a	
product

Note:	“since” is	
implicitly	unique	
per	pair	here!	
Why?

Relationships and Attributes

CSC	261,	Fall	2017,	UR	

Summary

• Summary

CSC	261,	Fall	2017,	UR	

Identifying	Relationship

Design Theory (ER model to Relations)

CSC	261,	Fall	2017,	UR	

Entity Sets to Tables

CSC	261,	Fall	2017,	UR	

Employees

lot

name

ssn

ssn name lot

123-22-3333 Alex 23

234-44-6666 Bob 44

567-88-9787 John 12

CREATE TABLE Employees (ssn char(11),
name varchar(30),
lot Integer,
PRIMARY KEY (ssn))

Other Conversions (ER model to Tables)

• Relationships:
• Many to Many
• One to Many
• One to One

CSC	261,	Fall	2017,	UR	

Scenario

CSC	261,	Fall	2017,	UR	

• One customer can have at max 2 loans. One loan can be
given to multiple customers.

What it really means:
– One customer can have (0,2) loans
– One loan can be given to (1,n) customer
– This is a many to many scenario

CSC	261,	Fall	2017,	UR	

Crow’s	foot	Notation

Chen	Notation

FUNCTIONAL DEPENDENCIES

CSC	261,	Fall	2017,	UR	

Prime and Non-prime attributes

• A Prime attribute must be a member of some candidate key

• A Nonprime attribute is not a prime attribute—that is, it is
not a member of any candidate key.

CSC	261,	Fall	2017,	UR	

Back to Conceptual Design

Now that we know how to find FDs, it’s a straight-forward
process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables
until no more bad FDs

3. When done, the database schema is normalized

CSC	261,	Fall	2017,	UR	

Boyce-Codd Normal Form (BCNF)

• Main idea is that we define “good” and “bad” FDs as follows:

– X à A is a “good FD” if X is a (super)key
• In other words, if A is the set of all attributes

– X à A is a “bad FD” otherwise

• We will try to eliminate the “bad” FDs!
– Via normalization

CSC	261,	Fall	2017,	UR	

Normalizing into 2NF and 3NF

CSC	261,	Fall	2017,	UR	

Figure 14.12 Normalization into 2NF and 3NF

Figure 14.12
Normalization into 2NF
and 3NF. (a) The LOTS
relation with its
functional dependencies
FD1 through FD4.
(b) Decomposing into
the 2NF relations LOTS1
and LOTS2. (c)
Decomposing LOTS1
into the 3NF relations
LOTS1A and LOTS1B.
(d) Progressive
normalization of LOTS
into a 3NF design.

CSC	261,	Fall	2017,	UR	

Normal Forms Defined Informally

• 1st normal form
– All attributes depend on the key

• 2nd normal form
– All attributes depend on the whole key

• 3rd normal form
– All attributes depend on nothing but the key

CSC	261,	Fall	2017,	UR	

General Definition of 2NF and 3NF (For Multiple Candidate Keys)

• A relation schema R is in second normal form (2NF) if every
non-prime attribute A in R is fully functionally dependent
on every key of R

• A relation schema R is in third normal form (3NF) if it is in
2NF and no non-prime attribute A in R is transitively
dependent on any key of R

CSC	261,	Fall	2017,	UR	

1. BOYCE-CODD NORMAL FORM

CSC	261,	Fall	2017,	UR	

Figure 14.14 A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation
TEACH:
– fd1: { student, course} -> instructor
– fd2: instructor -> course

• {student, course} is a candidate key
for this relation

• So this relation is in 3NF but not in
BCNF

• A relation NOT in BCNF should be
decomposed so as to meet this
property,
– while possibly forgoing the preservation

of all functional dependencies in the
decomposed relations.

CSC	261,	Fall	2017,	UR	

Achieving the BCNF by Decomposition (2)

n Three possible decompositions for relation TEACH
nD1: {student, instructor} and {student, course}
nD2: {course, instructor } and {course, student}
nD3: {instructor, course } and {instructor, student} ü

CSC	261,	Fall	2017,	UR	

4.3 Interpreting the General Definition of Third Normal Form (2)

n ALTERNATIVE DEFINITION of 3NF: We can restate the
definition as:

A relation schema R is in third normal form (3NF) if,
whenever a nontrivial FD XàA holds in R, either

a) X is a superkey of R or
b) A is a prime attribute of R

The condition (b) takes care of the dependencies that
“slip through” (are allowable to) 3NF but are “caught
by” BCNF which we discuss next.

CSC	261,	Fall	2017,	UR	

1. BOYCE-CODD NORMAL FORM

CSC	261,	Fall	2017,	UR	

What you will learn about in this section

1. Boyce-Codd Normal	Form

2. The	BCNF	Decomposition	Algorithm

CSC	261,	Fall	2017,	UR	

5. BCNF (Boyce-Codd Normal Form)

• Definition of 3NF:
• A relation schema R is in 3NF if, whenever a nontrivial FD XàA

holds in R, either
a) X is a superkey of R or
b) A is a prime attribute of R

• A relation schema R is in Boyce-Codd Normal Form (BCNF) if
whenever an FD X → A holds in R, then

a) X is a superkey of R
b) There is no b

• Each normal form is strictly stronger than the previous one
– Every 2NF relation is in 1NF
– Every 3NF relation is in 2NF
– Every BCNF relation is in 3NF

CSC	261,	Fall	2017,	UR	

Boyce-Codd normal form

Figure 14.13
Boyce-Codd normal form. (a) BCNF normalization of

LOTS1A with the functional dependency FD2 being lost in
the decomposition. (b) A schematic relation with FDs; it is

in 3NF, but not in BCNF due to the f.d. C → B.

CSC	261,	Fall	2017,	UR	

A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key
for this relation

• So this relation is in 3NF but not in
BCNF

• A relation NOT in BCNF should be
decomposed

X à A

CSC	261,	Fall	2017,	UR	

Achieving the BCNF by Decomposition

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}ü

CSC	261,	Fall	2017,	UR	

Boyce-Codd Normal Form

BCNF	is	a	simple	condition	for	removing	anomalies	from	relations:

In	other	words:	there	are	no	“bad”	FDs

A	relation	R	is	in	BCNF if:

if	{X1,	...,	Xn}	à A is	a	non-trivial FD	in	R

then	{X1,	...,	Xn}		is	a	superkey for	R

CSC	261,	Fall	2017,	UR	

Example

What	is	the	key?
{SSN,	PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

{SSN} à {Name,City}

⟹	Not in	BCNF

This	FD	is	bad	
because	it	is	not a	
superkey

CSC	261,	Fall	2017,	UR	

Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Madison

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

Let’s	check	anomalies:
• Redundancy	?
• Update	?
• Delete	?

{SSN} à {Name,City}

Now	in	BCNF!

This	FD	is	now	
good	because	it	is	
the	key

CSC	261,	Fall	2017,	UR	

BCNF Decomposition

CSC	261,	Fall	2017,	UR	

BCNFDecomp(R):

If	Xà A	causes	BCNF	violation:
Decompose	R	into
R1=	XA
R2	=	R	–A
(Note:	X	is	present	in	both	R1	and	R2)

Return	BCNFDecomp(R1),	BCNFDecomp(R2)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

Example

BCNFDecomp(R):

If	Xà A	causes	BCNF	violation:
Decompose	R	into
R1=	XA
R2	=	R	–A
(Note:	X	is	present	in	both	R1	and	
R2)

Return	BCNFDecomp(R1),	
BCNFDecomp(R2)

CSC	261,	Fall	2017,	UR	

Example

R(A,B,C,D,E)
{A}+ =	{A,B,C,D}	≠	{A,B,C,D,E}

R1(A,B,C,D)
{C}+ =	{C,D}	≠	{A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

CSC	261,	Fall	2017,	UR	

2. DECOMPOSITIONS

CSC	261,	Fall	2017,	UR	

Recap: Decompose to remove redundancies

1. We saw that redundancies in the data (“bad FDs”) can
lead to data anomalies

2. We developed mechanisms to detect and remove
redundancies by decomposing tables into BCNF
1. BCNF decomposition is standard practice- very powerful &

widely used!

3. However, sometimes decompositions can lead to more
subtle unwanted effects…

When	does	this	happen?

CSC	261,	Fall	2017,	UR	

Decompositions in General

R1 =	the	projection of	R	on	A1,	...,	An,	B1,	...,	Bm

R(A1,...,An,B1,...,Bm,C1,...,Cp
)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

R2 =	the	projection of	R	on	A1,	...,	An,	C1,	...,	Cp

CSC	261,	Fall	2017,	UR	

Theory of Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Price
Gizmo 19.99
OneClick 24.99
Gizmo 19.99

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

I.e.	it	is	a	Lossless	
decomposition

Sometimes	a	
decomposition	is	
“correct”

CSC	261,	Fall	2017,	UR	

Lossy Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

Price Category
19.99 Gadget
24.99 Camera
19.99 Camera

What’s	wrong	
here?

However	
sometimes	it	isn’t

CSC	261,	Fall	2017,	UR	

Lossless Decompositions

A	decomposition	R	to	(R1,	R2)	is	lossless if	R	=	R1	Join	R2

R(A1,...,An,B1,...,Bm,C1,...,Cp
)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

CSC	261,	Fall	2017,	UR	

Lossless Decompositions

BCNF	decomposition	is	always	lossless.		Why?

Note:	don’t	need	
{A1,	...,	An}	à {C1,	...,	Cp}

If	 {A1,	...,	An}	à {B1,	...,	Bm}
Then	the	decomposition	is	lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp
)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

CSC	261,	Fall	2017,	UR	

A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key
for this relation

• So this relation is in 3NF but not in
BCNF

• A relation NOT in BCNF should be
decomposed

X à A

CSC	261,	Fall	2017,	UR	

Achieving the BCNF by Decomposition (2)

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}ü

CSC	261,	Fall	2017,	UR	

A problem with BCNF

Problem:	To	enforce	a	FD,	must	reconstruct	
original	relation—on	each	insert!

CSC	261,	Fall	2017,	UR	

A Problem with BCNF

{Unit} à {Company}
{Company,Product} à {Unit}

We	do	a	BCNF	decomposition	
on	a	“bad”	FD:
{Unit}+ = {Unit, Company}

We	lose	the	FD	{Company,Product} à {Unit}!!

Unit Company Product
… … …

Unit Company
… …

Unit Product
… …

{Unit} à {Company}

CSC	261,	Fall	2017,	UR	

So Why is that a Problem?

No	problem	so	far.	
All	local FD’s	are	
satisfied.

Unit Company
Galaga99 UW
Bingo UW

Unit Product
Galaga99 Databases
Bingo Databases

Unit Company Product
Galaga99 UW Databases
Bingo UW Databases

Let’s	put	all	the	
data	back	into	a	
single	table	again:

{Unit} à {Company}

Violates	the	FD	{Company,Product} à {Unit}!!

CSC	261,	Fall	2017,	UR	

The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which
satisfy their local FDs but when reconstruct it violates some
FD across tables!

Practical	Problem:	To	enforce	FD,	must	
reconstruct	R—on	each	insert!

CSC	261,	Fall	2017,	UR	

Possible Solutions

• Various ways to handle so that decompositions are all
lossless / no FDs lost
– For example 3NF- stop short of full BCNF decompositions.

• Usually a tradeoff between redundancy / data anomalies and
FD preservation…

BCNF	still	most	common- with	additional	steps	to	
keep	track	of	lost	FDs…

CSC	261,	Fall	2017,	UR	

Other Topics

• Problem Set 5 (Really important)

– Cover
– Minimal Cover
– BCNF violations and Decomposition

CSC	261,	Fall	2017,	UR	

RELATIONAL ALGEBRA & CALCULUS

CSC	261,	Fall	2017,	UR	

• Returns all tuples which
satisfy a condition

• Notation: sc(R)
• Examples

– sSalary > 40000 (Employee)
– sname = “Smith” (Employee)

• The condition c can be =,
<, £, >, ³, <>

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
𝜎%&'	().+(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

1. Selection (𝜎)

CSC	261,	Fall	2017,	UR	

sSalary >	40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Another	example:

CSC	261,	Fall	2017,	UR	

• Eliminates columns, then
removes duplicates

• Notation: P A1,…,An (R)
• Example: project social-

security number and
names:
– P SSN, Name (Employee)
– Output schema:

Answer(SSN, Name)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:
Π67'89,%&'(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

2. Projection (Π)

CSC	261,	Fall	2017,	UR	

P Name,Salary (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Name Salary
John 200000
John 600000

Another	example:

CSC	261,	Fall	2017,	UR	

Note that RA Operators are Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How	do	we	represent	
this	query	in	RA?

Π67'89,%&'(𝜎%&'().+(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎%&'().+(Π67'89,%&'(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are	these	logically	
equivalent?

CSC	261,	Fall	2017,	UR	

• Each tuple in R1 with
each tuple in R2

• Notation: R1 ´ R2
• Example:

– Employee ´ Dependents

• Rare in practice; mainly
used to express joins

SELECT *
FROM Students, People;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

3. Cross-Product (×)

CSC	261,	Fall	2017,	UR	

ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother	example:

CSC	261,	Fall	2017,	UR	

• Changes the schema, not the
instance

• A ‘special’ operator- neither
basic nor derived

• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the
proper form (since names, not
order matters!):
– r A1àB1,…,AnàBn (R)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
𝜌6@ABCB,7'89,%D'B9E@FG%(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

We	care	about	this	operator	because we	
are	working	in	a	named	perspective

Renaming (𝜌)

CSC	261,	Fall	2017,	UR	

sid sname gpa
001 John 3.4

002 Bob 1.3

𝜌6@ABCB,7'89,%D'B9E@FG%(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another	example:

CSC	261,	Fall	2017,	UR	

• Notation: R1 ⋈	R2

• Joins R1 and R2 on equality of all shared
attributes
– If R1 has attribute set A, and R2 has attribute

set B, and they share attributes A⋂B = C, can
also be written: R1 ⋈ 𝐶	R2

• Our first example of a derived RA
operator:
– Meaning: R1 ⋈ R2 = PA U B(sC=D(𝜌K→M(R1) ´ R2))
– Where:

• The rename 𝜌K→M renames the shared attributes
in one of the relations

• The selection sC=D checks equality of the shared
attributes

• The projection PA U B eliminates the duplicate
common attributes

SELECT DISTINCT
sid, S.name, gpa,
ssn, address

FROM
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

Natural Join (⋈)
Note: Textbook notation is *

CSC	261,	Fall	2017,	UR	

ssn P.name address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid S.name gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒

⋈

sid S.name gpa ssn address
001 John 3.4 1234545 216 Rosse

002 Bob 1.3 5423341 216 Rosse

People	PStudents	S
Another	example:

CSC	261,	Fall	2017,	UR	

Natural Join

• Given schemas R(A, B, C, D), S(A, C, E), what is the
schema of R ⋈	S ?

• Given R(A, B, C), S(D, E), what is R ⋈	S ?

• Given R(A, B), S(A, B), what is R ⋈	S ?

CSC	261,	Fall	2017,	UR	

Example: Converting SFW Query -> RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
S.name = P.name;

How	do	we	represent	
this	query	in	RA?

Π%&','BBD966(𝜎%&'().+(𝑆 ⋈ 𝑃))

Students(sid,name,gpa)
People(ssn,name,address)

CSC	261,	Fall	2017,	UR	

Logical Equivalece of RA Plans

• Given relations R(A,B) and S(B,C):

– Here, projection & selection commute:

• 𝜎FN+(ΠF(𝑅)) = ΠF(𝜎FN+(𝑅))

– What about here?

• 𝜎FN+(ΠQ(𝑅))	?= ΠQ(𝜎FN+(𝑅))

CSC	261,	Fall	2017,	UR	

• Five basic operators:

1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:

– Intersection
– Joins (natural,equi-join, theta join, semi-join)
– Renaming: r
– Division

Relational	Algebra	(RA)

We’ll	look	at	these

And	also	at	some	of	
these	derived	
operators

CSC	261,	Fall	2017,	UR	

1. Union (È) and 2. Difference (–)

• R1 È R2
• Example:

– ActiveEmployees È RetiredEmployees

• R1 – R2
• Example:

– AllEmployees -- RetiredEmployees

R1 R2

R1 R2

CSC	261,	Fall	2017,	UR	

What about Intersection (Ç) ?

• It is a derived operator
• R1 Ç R2 = R1 – (R1 – R2)
• Also expressed as a join!
• Example

– UnionizedEmployees Ç RetiredEmployees

R1 R2

CSC	261,	Fall	2017,	UR	

Theta Join (⋈q)

• A join that involves a predicate
• R1 ⋈q R2 = s q (R1 ´ R2)
• Here q can be any condition

SELECT *
FROM

Students,People
WHERE q;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈S 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Note	that	natural	join	is	a	
theta	join	+	a	projection.

CSC	261,	Fall	2017,	UR	

Equi-join (⋈	A=B)

• A theta join where q is an equality
• R1 ⋈	A=B R2 = s A=B (R1 ´ R2)
• Example:

– Employee ⋈	SSN=SSN Dependents SELECT *
FROM

Students S,
People P

WHERE sname = pname;

SQL:

RA:
𝑆	 ⋈67'89N&7'89 	𝑃

Students(sid,sname,gpa)
People(ssn,pname,address)

Most	common	join	
in	practice!

CSC	261,	Fall	2017,	UR	

Semijoin (⋉)

• R ⋉ S = P A1,…,An (R ⋈ S)
• Where A1, …, An are the attributes in R
• Example:

– Employee ⋉	Dependents SELECT DISTINCT
sid,sname,gpa

FROM
Students,People

WHERE
sname = pname;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋉ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

CSC	261,	Fall	2017,	UR	

Divison (÷)

– T(Y) = R(Y,X) ÷ S(X)

– Y is the set of attributes of R that are not attributes of S.

– For a tuple t to appear in the result T of the Division, the values
in t must appear in R in combination with every tuple in S.

CSC	261,	Fall	2017,	UR	

Example

CSC	261,	Fall	2017,	UR	

https://www.simple-talk.com/sql/t-sql-programming/divided-we-stand-the-sql-of-relational-division/

R(Y,X) T(Y)S(X)÷ =

SELECT PS1.pilot_name
FROM PilotSkills AS PS1, Hangar AS H1
WHERE PS1.plane_name = H1.plane_name
GROUP BY PS1.pilot_name
HAVING COUNT(PS1.plane_name) =

(SELECT COUNT(plane_name) FROM Hangar);

Complete Set of Relational Operations

• The set of operations including
• Select s,
• Project p
• Union È
• Difference –
• Rename r, and
• Cartesian Product X

– is called a complete set
– because any other relational algebra expression can be expressed

by a combination of these five operations.

• For example:
– R Ç S = (R È S) – ((R - S) È (S - R))
– R⋈<join condition>S = s <join condition> (R X S)

CSC	261,	Fall	2017,	UR	

Table 8.1 Operations of Relational Algebra

continued on next slide
CSC	261,	Fall	2017,	UR	

Table 8.1 Operations of Relational Algebra
(continued)

CSC	261,	Fall	2017,	UR	

Examples of Queries in Relational Algebra :
Procedural Form

• Q1:	Retrieve	the	name	and	Address	of	all	Employees	who	work	for	the	
‘Research’	department.

Research_dept¬ s Dname=’Research’	(Department)
Research_emps¬ (RESEARCH_DEP						DNumber=	Dno Employee)

Result¬p Fname,	Lname,	Address	(Research_emps)

⋈

As	a	single	expression,	this	query	becomes:

p Fname,	Lname,	Address (σ Dname=	‘Research’ (Department)						Dnumber=Dno Employee)⋈

CSC	261,	Fall	2017,	UR	

Examples of Queries in Relational Algebra :
Procedural Form

• Q6:	Retrieve	the	names	of	Employees	who	have	no	dependents.

ALL_EMPS	¬p SSN(Employee)

EMPS_WITH_DEPS(SSN)	¬p Essn(DEPENDENT)
EMPS_WITHOUT_DEPS	¬ (ALL_EMPS	- EMPS_WITH_DEPS)

RESULT	¬p Lname,	Fname (EMPS_WITHOUT_DEPS	* Employee)

As	a	single	expression,	this	query	becomes:

p Lname,	Fname((p Ssn (Employee) − ρ Ssn (pEssn (Dependent)))	∗ Employee)

CSC	261,	Fall	2017,	UR	

Division

• T(Y) = R(Y,X)	÷ S(X)

• The	complete	division	expression:	
• 𝑅 ÷ 𝑆 = 𝜋W𝑅	 − 𝜋W 𝜋W 𝑅 	×	𝑆 − 𝑅

Ignoring	the	projections,	there	are	just	three	steps:	
• Compute	all	possible	attribute	pairings	
• Remove	the	existing	pairings	
• Remove	the	non–answers	from	the	possible	answers

CSC	261,	Fall	2017,	UR	

https://www2.cs.arizona.edu/~mccann/research/divpresentation.pdf

Division Example

Y X

y1 x1

y1 x2

y2 x1

y3 x1

y3 x2

y3 x3

CSC	261,	Fall	2017,	UR	

X

x1

x2

Y X

y1 x1

y1 x2

y2 x1

y2 x2

y3 x1

y3 x2

Y X

y2 x2

Y

y2

Y

y1

y3

R(Y,X) S(X) 𝜋W 𝑅 	×	𝑆 𝜋W 𝑅 	×	𝑆 − 𝑅

𝜋W 𝜋W 𝑅 	×	𝑆 − 𝑅
𝑅 ÷ 𝑆 =

𝜋W𝑅	 − 𝜋W 𝜋W 𝑅 	×	𝑆 − 𝑅

Acknowledgement

• Some of the slides in this presentation are taken from the
slides provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

• Thanks to YouTube, especially to Dr. Daniel Soper for his
useful videos.

CSC	261,	Fall	2017,	UR	

