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Announcement

• Midterm on this Wednesday

• Please arrive 5 minutes early; We will start at 12:30 pm sharp

• I will post a sitting arrangement today. 

• Bluehive (CIRC) account

• Start studying for MT
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Are you ready?
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Night before the exam
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During the exam
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Or Finishing too early
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MIDTERM REVIEW
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Chapters to Read

• Chapter	1
• Chapter	2
• Chapter	3
• Chapter	4	(Just	the	basics.	Only	ISA	relationships.	Even	studying	the	slides	is	fine)
• Chapter	5,	6,	7	(SQL)
• Chapter	8	(8.1-8.3)
• Chapter	9
• Chapter	14	(14.1-14.5)
• Chapter	15	(15.1-15.3)
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Exam Structure

• Problem 1 (20 pts)
– Short answers, True/False, or One liner

• Other problems (40 pts)

• Total: 60 pts

• 2 bonus points for writing the class id correctly. 
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Time distribution

• Time crunch
– Not really
– Should take more than 60 minutes to finish.
– Not as relaxed as the quiz
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MATERIALS COVERED
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Questions to ponder

• Why not Lists? Why database?

• How related tables avoid problems associated with lists?
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Problems with Lists

• Multiple Concepts or Themes:
– Microsoft Excel vs Microsoft Access

• Redundancy
• Anomalies:

– Deletion anomalies
– Update anomalies
– Insertion anomalies
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List vs Database

• Lists do not provide information about relations!

• Break lists into tables

• Facilitates:
– Insert
– Delete 
– Update 

• Input and Output interface (Forms and Reports)

• Query!
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Again, Why database?

• To store data
• To provide structure
• Mechanism for querying, creating, modifying and deleting 

data.  
• CRED (Create, Read, Update, Delete)
• Store information and relationships

• Database Schema vs. Database State
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Simplified Database System Environment
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SQL
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General form SQL
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SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation	steps:
1. Evaluate	FROM-WHERE:	apply	condition	

C1 on	the		attributes	in	R1,…,Rn
2. GROUP	BY	the	attributes	a1,…,ak
3. Apply	condition	C2 to	each	group	(may	

have	aggregates)
4. Compute	aggregates	in	S	and	return	the	

result



Grouping and Aggregation

1.	Compute	the	FROM and	WHERE clauses

2.	Group	by	the	attributes	in	the	GROUP	BY

3.	Compute	the	SELECT clause:	grouped	attributes	and	aggregates

Semantics	of	the	query:
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1. Compute the FROM and WHERE clauses

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

SELECT   product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

FROM
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Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

2. Group by the attributes in the GROUP BY

SELECT   product, SUM(price*quantity) AS TotalSales
FROM     Purchase
WHERE    date > ‘10/1/2005’
GROUP BY product

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10
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3. Compute the SELECT clause: grouped attributes 
and aggregates

SELECT product, SUM(price*quantity) AS TotalSales
FROM     Purchase
WHERE    date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECTProduct Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10
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HAVING Clause

Same	query	as	
before,	except	
that	we	consider	
only	products	that	
have	more	than
100	buyers

HAVING	clauses	contains	conditions	on	aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas	WHERE	clauses	condition	on	individual	tuples…
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Null Values

Unexpected behavior:

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Some	Persons	are	not	included	!
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Null Values

Can test for NULL explicitly:
– x IS NULL
– x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 

OR age IS NULL

Now	it	includes	all	Persons!
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Inner Joins

By default, joins in SQL are “inner joins”:

SELECT Product.name, Purchase.store
FROM Product 
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

Both	equivalent:
Both	INNER	JOINS!
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Inner Joins + NULLS = Lost data?

By default, joins in SQL are “inner joins”:

However:	Products	that	never	sold	(with	no	Purchase	tuple)	will	be	lost!

SELECT Product.name, Purchase.store
FROM Product 
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)
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name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase
INNER JOIN:

SELECT Product.name, Purchase.store
FROM Product 
INNER JOIN Purchase 

ON Product.name = Purchase.prodName

Note:	another	equivalent	way	to	write	an	
INNER	JOIN!

CSC	261,	Fall	2017,	UR	



name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase
LEFT OUTER JOIN:

SELECT Product.name, Purchase.store
FROM Product 
LEFT OUTER JOIN Purchase 

ON Product.name = Purchase.prodName
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Other Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if there’s no match
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Also read

• Triggers
• Views
• Operations on Databases

– Create, Drop, and Alter

• Operations of Tables
– Insert, Delete and Update

• Constraint:
– Key constraint
– Foreign key
– On Delete cascade, Set Null, Set Default;
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DATABASE DESIGN
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Database Design Process

1. Requirements analysis

– What is going to be stored? 

– How is it going to be used?

– What are we going to do with the data?

– Who should access the data?

Technical	and	non-
technical	people	are	
involved

1.	Requirements	Analysis 2.	Conceptual	Design	 3.	Logical,	Physical,	Security,	
etc.
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Database Design Process

CSC	261,	Fall	2017,	UR	

2. Conceptual Design

– A high-level description of the database

– Sufficiently precise that technical people can understand 
it

– But, not so precise that non-technical people can’t 
participate

This	is	where	E/R	fits	in.

1.	Requirements	Analysis 2.	Conceptual	Design	 3.	Logical,	Physical,	Security,	etc.



Database Design Process
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1.	Requirements	Analysis 2.	Conceptual	Design	 3.	Logical,	Physical,	Security,	etc.

3. Implementation: 

• Logical	Database	Design

• Physical	Database	Design

• Security	Design



This	process	is	
iterated	many

times

E/R	is	a	visual	syntax	for	DB	design	which	is	precise	enough for	
technical	points,	but	abstracted	enough for	non-technical	

people

Database Design Process
1.	Requirements	Analysis 2.	Conceptual	Design	 3.	Logical,	Physical,	Security,	etc.

MakesProduct

name category

price

Company

name

E/R	Model	&	Diagrams	used
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Requirements Become the E-R Data Model
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• After the requirements have been gathered, 
they are transformed into an Entity 
Relationship (E-R) Data Model

• E-R Models consist of
1. Entities
2. Attributes

a) Identifiers (Keys)
b) Non-key attributes

3. Relationships



1. E/R BASICS: ENTITIES & RELATIONS
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Entities and Entity Sets

• An entity set has 
attributes
– Represented by ovals 

attached to an entity set

Product

name category

price

Shapes	are
important.	Colors	are	
not.
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Keys

• A key is a minimal set of attributes that 
uniquely identifies an entity.

Product

name category

price

Denote	elements	of	the	
primary	key	by	
underlining.

Here,	{name,	category}	is	not a	key	
(it	is	not	minimal).	

The	E/R	model	forces	us	to	designate	a	single	primary key,	though	there	
may	be	multiple	candidate	keys
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Relationships

• A relationship connects two or more entity sets.
• It is represented by a diamond, with lines to each of the 

entity sets involved.
• The degree of the relationship defines the number of entity 

classes that participate in the relationship
– Degree 1 is a unary relationship
– Degree 2 is a binary relationship
– Degree 3 is a ternary relationship
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Conceptual Unary Relationship
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Person Marries



Conceptual Binary Relationship

Person CarsOwns
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Conceptual Ternary Relationship

Patient DrugPrescription

Doctor
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The R in E/R: Relationships

• E, R and A together:

Product

name category

price
Company

name

Makes
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What is a Relationship?

MakesProduct

name category

price

Company

name

A	relationship between	entity	sets	P	and	C	is	a	
subset	of	all	possible	pairs	of	entities	in	P	and	C,	
with	tuples	uniquely	identified	by	P	and	C’s	keys
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What is a Relationship?

name category price

Gizmo Electronics $9.99

GizmoLite Electronics $7.50

Gadget Toys $5.50

name

GizmoWorks

GadgetCorp

ProductCompany
C.name P.name P.category P.price

GizmoWorks Gizmo Electronics $9.99

GizmoWorks GizmoLite Electronics $7.50

GizmoWorks Gadget Toys $5.50

GadgetCorp Gizmo Electronics $9.99

GadgetCorp GizmoLite Electronics $7.50

GadgetCorp Gadget Toys $5.50

Company	C		×		Product	P

MakesProduct

name category
price

Company

name

A	relationship between	entity	sets	P	and	C	is	a	
subset	of	all	possible	pairs	of	entities	in	P	and	C,	
with	tuples	uniquely	identified	by	P	and	C’s	keys
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What is a Relationship?

name category price

Gizmo Electronics $9.99

GizmoLite Electronics $7.50

Gadget Toys $5.50

name

GizmoWorks

GadgetCorp

ProductCompany
C.name P.name P.category P.price

GizmoWorks Gizmo Electronics $9.99

GizmoWorks GizmoLite Electronics $7.50

GizmoWorks Gadget Toys $5.50

GadgetCorp Gizmo Electronics $9.99

GadgetCorp GizmoLite Electronics $7.50

GadgetCorp Gadget Toys $5.50

Company	C		×		Product	P

C.name P.name

GizmoWorks Gizmo

GizmoWorks GizmoLite

GadgetCorp Gadget

Makes
MakesProduct

name category
price

Company

name

A	relationship between	entity	sets	P	and	C	is	a	
subset	of	all	possible	pairs	of	entities	in	P	and	C,	
with	tuples	uniquely	identified	by	P	and	C’s	keys
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Product

name category

price
Company

name

Makes

since

• Relationships	may	have	attributes	as	well.

For	example:	“since”	
records	when	company	
started	making	a	
product

Note:	“since” is	
implicitly	unique	
per	pair	here!	
Why?

Relationships and Attributes
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Summary

• Summary
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Identifying	Relationship



Design Theory (ER model to Relations)
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Entity Sets to Tables
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Employees

lot

name

ssn

ssn name lot

123-22-3333 Alex 23

234-44-6666 Bob 44

567-88-9787 John 12

CREATE TABLE Employees ( ssn char(11),
name varchar(30),
lot Integer,
PRIMARY KEY (ssn))



Other Conversions (ER model to Tables)

• Relationships:
• Many to Many 
• One to Many
• One to One
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Scenario
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• One customer can have at max 2 loans. One loan can be 
given to multiple customers.

What it really means: 
– One customer can have (0,2) loans
– One loan can be given to (1,n) customer 
– This is a many to many scenario
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Crow’s	foot	Notation

Chen	Notation



FUNCTIONAL DEPENDENCIES
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Prime and Non-prime attributes

• A Prime attribute must be a member of some candidate key

• A Nonprime attribute is not a prime attribute—that is, it is 
not a member of any candidate key. 
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Back to Conceptual Design

Now that we know how to find FDs, it’s a straight-forward 
process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables
until no more bad FDs

3. When done, the database schema is normalized
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Boyce-Codd Normal Form (BCNF)

• Main idea is that we define “good” and “bad” FDs as follows:

– X à A is a “good FD” if X is a (super)key
• In other words, if A is the set of all attributes

– X à A is a “bad FD” otherwise

• We will try to eliminate the “bad” FDs!
– Via normalization
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Normalizing into 2NF and 3NF
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Figure 14.12 Normalization into 2NF and 3NF

Figure 14.12
Normalization into 2NF 
and 3NF. (a) The LOTS 
relation with its 
functional dependencies 
FD1 through FD4. 
(b) Decomposing into 
the 2NF relations LOTS1 
and LOTS2. (c) 
Decomposing LOTS1 
into the 3NF relations 
LOTS1A and LOTS1B. 
(d) Progressive 
normalization of LOTS 
into a 3NF design.
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Normal Forms Defined Informally

• 1st normal form
– All attributes depend on the key

• 2nd normal form
– All attributes depend on the whole key

• 3rd normal form
– All attributes depend on nothing but the key
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General Definition of 2NF  and 3NF (For Multiple Candidate Keys) 

• A relation schema R is in second normal form (2NF) if every 
non-prime attribute A in R is fully functionally dependent 
on every key of R

• A relation schema R is in third normal form (3NF) if it is in 
2NF and no non-prime attribute A in R is transitively 
dependent on any key of R
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1. BOYCE-CODD NORMAL FORM
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Figure 14.14 A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation 
TEACH:
– fd1: { student, course} -> instructor
– fd2: instructor -> course 

• {student, course} is a candidate key 
for this relation 

• So this relation is in 3NF but not in
BCNF 

• A relation NOT in BCNF should be 
decomposed so as to meet this 
property, 
– while possibly forgoing the preservation 

of all functional dependencies in the 
decomposed relations.
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Achieving the BCNF by Decomposition (2)

n Three possible decompositions for relation TEACH
nD1: {student, instructor} and {student, course}
nD2: {course, instructor } and {course, student}
nD3: {instructor, course } and {instructor, student} ü
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4.3 Interpreting the General Definition of Third  Normal Form (2) 

n ALTERNATIVE DEFINITION of 3NF: We can restate the 
definition as:

A relation schema R is in third normal form (3NF) if, 
whenever a nontrivial FD XàA holds in R, either

a) X is a superkey of R or 
b) A is a prime attribute of R

The condition (b)  takes care of the dependencies that 
“slip through” (are allowable to) 3NF but are “caught 
by” BCNF which we discuss next. 
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1. BOYCE-CODD NORMAL FORM
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What you will learn about in this section

1. Boyce-Codd Normal	Form

2. The	BCNF	Decomposition	Algorithm
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5. BCNF (Boyce-Codd Normal Form) 

• Definition of 3NF: 
• A relation schema R is in 3NF if, whenever a nontrivial FD XàA

holds in R, either
a) X is a superkey of R or 
b) A is a prime attribute of R

• A relation schema R is in Boyce-Codd Normal Form (BCNF) if 
whenever an FD X → A holds in R, then 

a) X is a superkey of R
b) There is no b

• Each normal form is strictly stronger than the previous one
– Every 2NF relation is in 1NF
– Every 3NF relation is in 2NF
– Every BCNF relation is in 3NF
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Boyce-Codd normal form

Figure 14.13
Boyce-Codd normal form. (a) BCNF normalization of 

LOTS1A with the functional dependency FD2 being lost in 
the decomposition. (b) A schematic relation with FDs; it is 

in 3NF, but not in BCNF due to the f.d. C → B.
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A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation 
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key 
for this relation 

• So this relation is in 3NF but not in
BCNF 

• A relation NOT in BCNF should be 
decomposed

X à A
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Achieving the BCNF by Decomposition

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}ü
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Boyce-Codd Normal Form

BCNF	is	a	simple	condition	for	removing	anomalies	from	relations:

In	other	words:	there	are	no	“bad”	FDs

A	relation	R	is	in	BCNF if:

if	{X1,	...,	Xn}	à A is	a	non-trivial FD	in	R

then	{X1,	...,	Xn}		is	a	superkey for	R
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Example

What	is	the	key?
{SSN,	PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

{SSN} à {Name,City}

⟹	Not in	BCNF

This	FD	is	bad	
because	it	is	not a	
superkey
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Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Madison

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

Let’s	check	anomalies:
• Redundancy	?
• Update	?
• Delete	?

{SSN} à {Name,City}

Now	in	BCNF!

This	FD	is	now	
good	because	it	is	
the	key
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BCNF Decomposition
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BCNFDecomp(R):

If	Xà A	causes	BCNF	violation:
Decompose	R	into
R1=	XA
R2	=	R	–A
(Note:	X	is	present	in	both	R1	and	R2)

Return	BCNFDecomp(R1),	BCNFDecomp(R2)



R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

Example

BCNFDecomp(R):

If	Xà A	causes	BCNF	violation:
Decompose	R	into
R1=	XA
R2	=	R	–A
(Note:	X	is	present	in	both	R1	and	
R2)

Return	BCNFDecomp(R1),	
BCNFDecomp(R2)
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Example

R(A,B,C,D,E)
{A}+ =	{A,B,C,D}	≠	{A,B,C,D,E}

R1(A,B,C,D)
{C}+ =	{C,D}	≠	{A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}
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2. DECOMPOSITIONS
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Recap: Decompose to remove redundancies

1. We saw that redundancies in the data (“bad FDs”) can 
lead to data anomalies

2. We developed mechanisms to detect and remove 
redundancies by decomposing tables into BCNF
1. BCNF decomposition is standard practice- very powerful & 

widely used!

3. However, sometimes decompositions can lead to more 
subtle unwanted effects…

When	does	this	happen?
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Decompositions in General

R1 =	the	projection of	R	on	A1,	...,	An,	B1,	...,	Bm

R(A1,...,An,B1,...,Bm,C1,...,Cp
) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

R2 =	the	projection of	R	on	A1,	...,	An,	C1,	...,	Cp
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Theory of Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Price
Gizmo 19.99
OneClick 24.99
Gizmo 19.99

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

I.e.	it	is	a	Lossless	
decomposition

Sometimes	a	
decomposition	is	
“correct”
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Lossy Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

Price Category
19.99 Gadget
24.99 Camera
19.99 Camera

What’s	wrong	
here?

However	
sometimes	it	isn’t
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Lossless Decompositions

A	decomposition	R	to	(R1,	R2)	is	lossless if	R	=	R1	Join	R2

R(A1,...,An,B1,...,Bm,C1,...,Cp
) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)
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Lossless Decompositions

BCNF	decomposition	is	always	lossless.		Why?

Note:	don’t	need	
{A1,	...,	An}	à {C1,	...,	Cp}

If	 {A1,	...,	An}	à {B1,	...,	Bm}
Then	the	decomposition	is	lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp
) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)
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A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation 
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key 
for this relation 

• So this relation is in 3NF but not in
BCNF 

• A relation NOT in BCNF should be 
decomposed

X à A
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Achieving the BCNF by Decomposition (2)

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}ü
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A problem with BCNF

Problem:	To	enforce	a	FD,	must	reconstruct	
original	relation—on	each	insert!
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A Problem with BCNF

{Unit} à {Company}
{Company,Product} à {Unit}

We	do	a	BCNF	decomposition	
on	a	“bad”	FD:
{Unit}+ = {Unit, Company}

We	lose	the	FD	{Company,Product} à {Unit}!!

Unit Company Product
… … …

Unit Company
… …

Unit Product
… …

{Unit} à {Company}
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So Why is that a Problem?

No	problem	so	far.	
All	local FD’s	are	
satisfied.

Unit Company
Galaga99 UW
Bingo UW

Unit Product
Galaga99 Databases
Bingo Databases

Unit Company Product
Galaga99 UW Databases
Bingo UW Databases

Let’s	put	all	the	
data	back	into	a	
single	table	again:

{Unit} à {Company}

Violates	the	FD	{Company,Product} à {Unit}!!
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The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which 
satisfy their local FDs but when reconstruct it violates some 
FD across tables!

Practical	Problem:	To	enforce	FD,	must	
reconstruct	R—on	each	insert!
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Possible Solutions

• Various ways to handle so that decompositions are all 
lossless / no FDs lost
– For example 3NF- stop short of full BCNF decompositions.  

• Usually a tradeoff between redundancy / data anomalies and 
FD preservation…

BCNF	still	most	common- with	additional	steps	to	
keep	track	of	lost	FDs…
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Other Topics

• Problem Set 5 (Really important)

– Cover
– Minimal Cover
– BCNF violations and Decomposition
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RELATIONAL ALGEBRA & CALCULUS
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• Returns all tuples which 
satisfy a condition

• Notation: sc(R)
• Examples

– sSalary > 40000 (Employee)
– sname = “Smith” (Employee)

• The condition c can be =, 
<, £, >, ³, <>

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
𝜎%&'	().+(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

1. Selection (𝜎)
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sSalary >	40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Another	example:
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• Eliminates columns, then 
removes duplicates

• Notation:   P A1,…,An (R)
• Example: project social-

security number and 
names:
– P SSN, Name (Employee)
– Output schema:   

Answer(SSN, Name)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:
Π67'89,%&'(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

2. Projection (Π)
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P Name,Salary (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Name Salary
John 200000
John 600000

Another	example:
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Note that RA Operators are Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How	do	we	represent	
this	query	in	RA?

Π67'89,%&'(𝜎%&'().+(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎%&'().+(Π67'89,%&'(	𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are	these	logically	
equivalent?
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• Each tuple in R1 with 
each tuple in R2

• Notation: R1 ´ R2
• Example:  

– Employee ´ Dependents

• Rare in practice; mainly 
used to express joins

SELECT *
FROM Students, People;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

3. Cross-Product (×)
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ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother	example:

CSC	261,	Fall	2017,	UR	



• Changes the schema, not the 
instance

• A ‘special’ operator- neither 
basic nor derived

• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the 
proper form (since names, not 
order matters!):
– r A1àB1,…,AnàBn (R)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
𝜌6@ABCB,7'89,%D'B9E@FG%(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

We	care	about	this	operator	because we	
are	working	in	a	named	perspective

Renaming (𝜌)
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sid sname gpa
001 John 3.4

002 Bob 1.3

𝜌6@ABCB,7'89,%D'B9E@FG%(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another	example:
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• Notation: R1 ⋈	R2

• Joins R1 and R2 on equality of all shared 
attributes
– If R1 has attribute set A, and R2 has attribute 

set B, and they share attributes A⋂B = C, can 
also be written: R1 ⋈ 𝐶	R2

• Our first example of a derived RA
operator:
– Meaning:  R1 ⋈ R2 = PA U B(sC=D(𝜌K→M(R1) ´ R2))
– Where:

• The rename 𝜌K→M renames the shared attributes 
in one of the relations

• The selection sC=D checks equality of the shared 
attributes

• The projection PA U B eliminates the duplicate 
common attributes

SELECT DISTINCT
sid, S.name, gpa,
ssn, address

FROM 
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

Natural Join (⋈	) 
Note: Textbook notation is *
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ssn P.name address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid S.name gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒

⋈

sid S.name gpa ssn address
001 John 3.4 1234545 216 Rosse

002 Bob 1.3 5423341 216 Rosse

People	PStudents	S
Another	example:
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Natural Join

• Given schemas R(A, B, C, D), S(A, C, E), what is the 
schema of R ⋈	S ?

• Given R(A, B, C),  S(D, E), what is R ⋈	S  ?

• Given R(A, B),  S(A, B),  what is  R ⋈	S  ?
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Example: Converting SFW Query -> RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
S.name = P.name;

How	do	we	represent	
this	query	in	RA?

Π%&','BBD966(𝜎%&'().+(𝑆 ⋈ 𝑃))

Students(sid,name,gpa)
People(ssn,name,address)
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Logical Equivalece of RA Plans

• Given relations R(A,B) and S(B,C):

– Here, projection & selection commute: 

• 𝜎FN+(ΠF(𝑅)) = ΠF(𝜎FN+(𝑅))

– What about here?

• 𝜎FN+(ΠQ(𝑅))	?= ΠQ(𝜎FN+(𝑅))
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• Five basic operators:

1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:

– Intersection
– Joins (natural,equi-join, theta join, semi-join)
– Renaming: r
– Division

Relational	Algebra	(RA)

We’ll	look	at	these

And	also	at	some	of	
these	derived	
operators
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1. Union (È) and 2. Difference (–)

• R1 È R2
• Example:  

– ActiveEmployees È RetiredEmployees

• R1 – R2
• Example:

– AllEmployees -- RetiredEmployees

R1 R2

R1 R2
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What about Intersection (Ç) ?

• It is a derived operator
• R1 Ç R2 = R1 – (R1 – R2)
• Also expressed as a join!
• Example

– UnionizedEmployees Ç RetiredEmployees

R1 R2
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Theta Join (⋈q)

• A join that involves a predicate
• R1 ⋈q R2   =  s q (R1 ´ R2)
• Here q can be any condition 

SELECT *
FROM 

Students,People
WHERE q;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈S 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Note	that	natural	join	is	a	
theta	join	+	a	projection.
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Equi-join (⋈	A=B)

• A theta join where q is an equality
• R1 ⋈	A=B R2   =  s A=B (R1 ´ R2)
• Example:

– Employee ⋈	SSN=SSN Dependents SELECT *
FROM 

Students S,
People P

WHERE sname = pname;

SQL:

RA:
𝑆	 ⋈67'89N&7'89 	𝑃

Students(sid,sname,gpa)
People(ssn,pname,address)

Most	common	join	
in	practice!
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Semijoin (⋉)

• R ⋉ S  = P A1,…,An (R ⋈ S)
• Where A1, …, An are the attributes in R
• Example:

– Employee ⋉	Dependents SELECT DISTINCT
sid,sname,gpa

FROM 
Students,People

WHERE
sname = pname;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋉ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)
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Divison (÷)

– T(Y) = R(Y,X) ÷ S(X)

– Y is the set of attributes of R that are not attributes of S. 

– For a tuple t to appear in the result T of the Division, the values 
in t must appear in R in combination with every tuple in S. 
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Example
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R(Y,X) T(Y)S(X)÷ =

SELECT PS1.pilot_name
FROM PilotSkills AS PS1, Hangar AS H1
WHERE PS1.plane_name = H1.plane_name
GROUP BY PS1.pilot_name 
HAVING COUNT(PS1.plane_name) = 

(SELECT COUNT(plane_name) FROM Hangar);



Complete Set of Relational Operations

• The set of operations including 
• Select s, 
• Project p
• Union È
• Difference –
• Rename r, and 
• Cartesian Product X

– is called a complete set
– because any other relational algebra expression can be expressed 

by a combination of these five operations.

• For example: 
– R Ç S = (R È S ) – ((R - S) È (S - R))
– R⋈<join condition>S = s <join condition> (R X S)
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Table 8.1 Operations of Relational Algebra

continued on next slide
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Table 8.1 Operations of Relational Algebra 
(continued)
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Examples of Queries in Relational Algebra : 
Procedural Form

• Q1:	Retrieve	the	name	and	Address	of	all	Employees	who	work	for	the	
‘Research’	department.

Research_dept¬ s Dname=’Research’	(Department)
Research_emps¬ (RESEARCH_DEP						DNumber=	Dno Employee)

Result¬p Fname,	Lname,	Address	(Research_emps)

⋈

As	a	single	expression,	this	query	becomes:

p Fname,	Lname,	Address (σ Dname=	‘Research’ (Department)						Dnumber=Dno Employee)⋈
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Examples of Queries in Relational Algebra : 
Procedural Form

• Q6:	Retrieve	the	names	of	Employees	who	have	no	dependents.

ALL_EMPS	¬p SSN(Employee)

EMPS_WITH_DEPS(SSN)	¬p Essn(DEPENDENT)
EMPS_WITHOUT_DEPS	¬ (ALL_EMPS	- EMPS_WITH_DEPS)

RESULT	¬p Lname,	Fname (EMPS_WITHOUT_DEPS	* Employee)

As	a	single	expression,	this	query	becomes:

p Lname,	Fname((p Ssn (Employee) − ρ Ssn (pEssn (Dependent)))	∗ Employee)
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Division

• T(Y) = R(Y,X)	÷ S(X)

• The	complete	division	expression:	
• 𝑅 ÷ 𝑆 = 𝜋W𝑅	 − 𝜋W 𝜋W 𝑅 	×	𝑆 − 𝑅

Ignoring	the	projections,	there	are	just	three	steps:	
• Compute	all	possible	attribute	pairings	
• Remove	the	existing	pairings	
• Remove	the	non–answers	from	the	possible	answers
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Division Example

Y X

y1 x1

y1 x2

y2 x1

y3 x1

y3 x2

y3 x3

CSC	261,	Fall	2017,	UR	

X

x1

x2

Y X

y1 x1

y1 x2

y2 x1

y2 x2

y3 x1

y3 x2

Y X

y2 x2

Y

y2

Y

y1

y3

R(Y,X) S(X) 𝜋W 𝑅 	×	𝑆 𝜋W 𝑅 	×	𝑆 − 𝑅

𝜋W 𝜋W 𝑅 	×	𝑆 − 𝑅
𝑅 ÷ 𝑆 =

𝜋W𝑅	 − 𝜋W 𝜋W 𝑅 	×	𝑆 − 𝑅
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