CSC 261/461 — Database Systems
Lecture 16

Fall 2017

Announcement

CIRC account
Quiz 6
— Due: Monday at 11:5g pm)

Project 1 Milepost 3

— Due: Nov 10

Project 2 Part 2 (Optional)
— Due: Nov 15

For graduate students:

— We will provide:
* Term paper feedback (yes/no)

The 10 Model & External Sorting

Today’s Lecture

1. Chapter 16 (Disk Storage, File Structure and Hashing)
2. Chapter 17 (Indexing)

Simplified Database System Environment

Users/Programmers

Database
System Y
Application Programs/Queries

DBMS Y
Software

Software to Process
Queries/Programs

:

Software to Access
Stored Data

4 AN

N
v v
Stored Database

Stored Database
Definition
(Meta-Data)

N
~_

Y
~_

Figure 1.1
A simplified database
system environment.

What you will learn about in this section

1. Storage and memory model

2. Buffer

1. THE BUFFER

High-level: Disk vs. Main Memory

 Disk:

Track

— Slow @

* Sequential access

— (although fast sequential reads) Read/write
Actuator Arm head Spindle Disk rotation

—]

A

Y
— Durable v l I A

* We will assume that once on
disk, data 1s safe!

Cylinder
—— of tracks
(imaginary)

— Cheap

/ K‘\XX

_ (- J

Actuator movement

High-level: Disk vs. Main Memory

* Random Access Memory (RAM) or Main Memory:

— Fast

* Random access, byte addressable

— ~10x faster for sequential access

— ~100,000xX faster for random access!

— Volatile

* Data can be lost if e.g. crash occurs, power goes o

— Expensive
* For S100, get I6GB of RAM vs. 2TB of disk!

High-level: Disk vs. Main Memory

* Keep in mind the tradeoffs here as motivation for
the mechanisms we mtroduce

— Main memory: fast but limited capacity, volatile
* Vs.

— Disk: slow but large capacity, durable

How do we effectively utilize both ensuring certain critical guarantees?

Hardware Description of Disk Devices

Track

Information 1s stored ona U‘
disk surface in concentric ’ |

circles (Track) g am o
Tracks with same diameter) \ I cd >
on various surfaces is called >
cylinder) i
Tracks are divided into - u/@< .
sectors e /

o S
OS divides a track into
equal sized disk blocks @
(pages) .

] Three sectors

) |—Two sectors
- OIlC page — one or more sectors LOnesector

A Simplified Filesystem Model

* For us, a page is a fixed-sized array of
memory

— One (or more) disk block (blocks)

— Interface:
 write to an entry (called a slot) or set to “None”

* And a file is a variable-length list of pages File

— Interface: create / open / close; next_page();
ete.

Page

The Buffer

Transfer of data between main memory and
disk takes place in units of disk blocks.

The hardware address of a block is a Main Memory
combination of a cylinder number, track
number, and block number. <:|:r> Buffer

A buffer is a region of physical memory used
to store a single block.

Sometimes, several contiguous blocks can be
copied into a cluster

— In this lecture: We will mostly not distinguish
between a buffer and a cluster.

Key idea: Reading / writing to disk is slow-
need to cache datal

The (Simplified) Buffer

In this class: We'll consider a
buffer located in main memory

that operates over pages and files:
Read(page): Read page from disk ->
buffer if not already in buffer

Main Memory

<:|:> Buffer

The (Simplified) Buffer

In this class: We'll consider a
buffer located in main memory

that operates over pages and files:
Read(page): Read page from disk ->

Main Memory

Buffer

buffer if not already in buffer

Processes can then read from

/ write to the page in the
buffer

The (Simplified) Buffer

In this class: We'll consider a
buffer located in main memory

that operates over pages and files:
Read(page): Read page from disk ->
buffer if not already in buffer

Flush(page): Evict page from buffer &
write to disk

Main Memory

Buffer

The (Simplified) Buffer

In this class: We'll consider a
buffer located in main memory

that operates over pages and files:
Read(page): Read page from disk ->
buffer if not already in buffer

Flush(page): Evict page from buffer &
write to disk

Release(page): Evict page from buffer
without writing to disk

Main Memory

m

 Buffer

Managing Disk: The DBMS Buffer

e Database maintains its own

buffer

— Why? The OS already does this...

— DB knows more about access
patterns.

— Recovery and logging require

ability to flush to disk.

Main Memory

<:I::> Buffer

The Buffer Manager

* A buffer manager handles supporting operations for the

buffer:

— Primarily, handles & executes the “replacement policy”

* 1.e. finds a page in buffer to flush/release if buffer is full
and a new page needs to be read in

— DBMSs typically implement their own buffer management
roulines

Use of Two Buffer

Interleaved concurrency
of operations A and B

' I I I '
' I I I '
. A | | A | .
[—_ '
' I I I '
I I I
' I I I '
' I B I 1 B
! 1 .
' I I I '
' I I I '
' I I I '
' I I I '

ty to
Disk Block: i i1 i+2 | i+ 0 . i+4
1/0: Fill A 1 Fill B I Fill A I Fill.B I Fill A I
-+« - —a—»
I | I I I
I | I I |
I | I I |
Disk Block: I i I I+ 1 I i+ 2 I i+3 I i+4
PROCESSING: "Process A ! Process B " Process A " Process B ' Process A
I | I I |
- = Sl . e . i '
I | I I |
— >

Buffer Replacement Strategies

Least recently used (LRU)

Clock policy

First-in-first-out (FIFO)

Refer 16.3..2 for details

Records and Files

 Data is usually stored in the form of records

 Kach record consists of a collection of related data values or
1tems.

— Record usually describe entities

File Types

* Unordered Records (Heap Files)

* Ordered Records (Sorted Files)

Heap Files

* Insertion (of a record):
— Very efficient.
— Last disk block 1s copied into a buffer
— New record 1s added
— Block 1s rewritten back to disk
* Searching:
— Linear search
* Deletion:
— Rewrite empty block after deleting record. (or)

— Use deletion marker

Sorted Files

* Physically sort the records of a file
— Based on the values of one of the fields (ordering fields)

— Ordered and sequential file

* Searching:
— Can perform Binary Search.
 Insertion and Deletion:

— Expensive

Average Access Times for a File of b Blocks under Basic
File Organizations

Table 16.3 Average Access Times for a File of b Blocks under Basic File Organizations

Average Blocks to Access

Type of Organization Access/Search Method a Specific Record
Heap (unordered) Sequential scan (linear search) b/2
Ordered Sequential scan b/2

Ordered Binary search log, b

2. EXTERNAL MERGE & SORT

Challenge: Merging Big Files with Small Memory

How do we efficiently merge two sorted files when both
are much larger than our main memory buffer?

External Merge Algorithm

Input: 2 sorted lists of length M and N
Output: 1 sorted list of length M + N
Required: At least 3 Buffer Pages

10s: 2(M+N)

Key (Simple) Idea

To find an element that is no larger than all elements in two lists,
one only needs to compare minimum elements from each list.

If:
A <A, << Ay
B1 <B, <--< By
Then:
Min(A4, By) < A;
Min(A1,B;) < B;
fori=1...Nand j=1...M

External Merge Algorithm

Main Memory

Buffer

Input: AL LS 20,31

Two sorted

' [
files F 2,22 | 23,24 | 25,30

Output:
One merged
sorted file

&

Dis

External Merge Algorithm

Input: F, 7,11 20,31
Two sorted

files F, 23,24 | 25,30
Output:

One merged

sorted file

Dis

Main Memory

Buffer

1,5

2,22

&

External Merge Algorithm

Input: 2 20,31

Two sorted

ﬁles F, 23,24 25,30
Output:

One merged

sorted file

Dis

Main Memory

Buffer

'

&

External Merge Algorithm

Main Memory

Buffer

Input: 2 20,31

Two sorted | - 22
ﬁles F, 23,24 25,30

Output:

One merged

sorted file

Dis

External Merge Algorithm

Main Memory

Buffer
Input: Fy
files F,
Output:
One merged o _
sorted file This is all the algorithm

“sees”... Which file to load a
page from next?

Dis

External Merge Algorithm

Main Memory

Buffer
Input: Fy
files F,
Output:
One merged
sorted file We know that F, only

contains values = 22... so we
should load from F,!

Dis

External Merge Algorithm

Main Memory

Buffer
Input: Fy 20,31

Two sorted | 7,11 22
ﬁles F, 23,24 25,30

Output:

One merged

sorted file

Dis

External Merge Algorithm

Main Memory

Buffer
Input: Fy 20,31

Two sorted | 11 22
ﬁles F, 23,24 25,30

Output:

One merged

sorted file

Dis

External Merge Algorithm

Main Memory

Buffer
Input: Fy 20,31

files F2

Output:
One merged
sorted file

External Merge Algorithm

Main Memory

Buffer
Input: Fy 20,31
files F, 23,24 | 25,30

Output:
1,2 5,7
sorted file

And so on...

We can merge lists of arbitrary
length with only 3 buffer pages.

If lists of size M and N, then
Cost: 2(M+N) 10s
Each page is read once, written once

2. HASHING TECHNIQUES

- Sears, Roebuck and Co., Consumers Guide, 1897

“IF YOU DON’T FIND IT IN THE INDEX, LOOK
VERY CAREFULLY THROUGH THE ENTIRE
CATALOG”

Hashing first proposed];)y Arnold Dumey (1956)
Hash codes
Chaining

Open addressing

HASING - GENERAL IDEAS

Top level view

Arbitrary objects h(object) O}
(strings, doubles, ints) ' ' oLy

int with

wide range

n Objects
actually
used

Compression
function

| Wewill also call
this the hash function

Good Hash Function

* If key, # key,, then it’s extremely unlikely that
hikey,) = hikey,)

— Collision problem!

* Pigeonhole principle

— K+1 pigeons, K holes = at least one hole with > 2 pigeons

Division method

h(s) =s mod m

* How does this function perform for different m?

Separate chaining
C
Open a(,l(,lrcssing

Cuckoo hashing

COLLISION RESOLUTION

Separate Chaining

Open Addressing

* Store all entries in the hash table itself, no pointer to the
“outside”

* Advantage
— Less space wasle

— Perhaps good cache usage

* Disadvantage
— More complex collision resolution

— Slower operations

Open Addressing

5

h(”Knuth” 0)

h(“Dijkstra”, 1)

BN

h(“Karp”, 0)

h(“Dijkstra”, 2)

18

h(“Dijkstra”, 0)

h(“Karp”, 1)

External Hashing

Hashing for disk files
Target address space 1s made of buckets
Hashing function maps a key into relative bucket number

Convert the bucket number into corresponding disk block
address

Bucket Number to Disk Block address

Number Block address on disk
0 B
1
2 B
>
M-2 —
M -1 8
d A/\
\\——/

Bucket Number to Disk Block address

Bucket 0

Bucket 1

Bucket 2

Bucket 9

Main buckets

340

460

Record pointer

321

761

91

Record pointer

22

72

522

Record pointer

399

89

Record pointer

—

= NULL
Overflow buckets
981 Record pointer
Record pointer
—(182 Record pointer

.

= NULL

—

652

Record pointer

Record pointer

Record pointer

—

= NULL

(Pointers are to records within the overflow blocks)

= NULL

1. B+ TREES

B+ Trees

e Search trees

— B does not mean binary!

* [dea in B Trees:
—make 1 node = 1 physical page
— Balanced, height adjusted tree (not the B either)

e [dea in B+ Trees:

— Make leaves into a linked list (for range queries)

10

20

30

B+ Tree Basics

Parameter d = the

degree
EQcn non-ieay [INTerior-)

node has = d and < 2d
keys*

*except for root node, which
can have between 1 and 2d keys

10

20

30

}

k<10

b

\

B+ Tree Basics

The n keys in a
node define n+1
ranges

20< k<30

10< k<20

30< k

Non-leaf or internal node

10

20

30

B+ Tree Basics

22

25

28

For each range, in a non-leaf
node, there is a pointer to
another node with keys in
that range

B+ Tree Basics

Leaf nodes also have
between d and 2d keys,

Non-leaf or internal node) .
and are different in that:

10 20 30

— / | N

/ Leaf nodes

22 25 28 29 32 34 37 38

B+ Tree Basics

Leaf nodes also have
between d and 2d keys,

Non-leaf or internal nod - :
on-ieat orinternal node and are different in that:
10 20 30
- L | > Their key slots contain
/ / pointers to data records
Leaf nodes
12 17 I 22 25 28 29 32 34 37 38
; AR /

SWSARWERN

1 1 21 22 27 28 30 3

B+ Tree Basics

Leaf nodes also have
between d and 2d keys,

Non-leaf or internal node) .
and are different in that:

10 20 30

- L | > Their key slots contain
/ / L pointers to data records
eaf nodes

12 17 I 2 25 28 29 32 34 37 38 . .
They contain a pomter
11 Tl 1l . A
to the next leaf node as
/) / / l \ \ well, for faster
1 1 21 22 27 28 30 33 35 37 sequent"a[traversal

1 5

B+ Tree Basics

Non-leaf or internal node

10 20 30

— /1 N
Leaf nodes
12 17 I 2 25 28 29 32 34 37 38
— >
\\ I |/l i \ \\ \\ NN
Name: Jake Name: Bess Name: Sally Name: Sue
Age: 15 Age: 22 Age: 28 Age: 33
VL Jr Name: Jess
Name: Joe Name: John Name: Bob Name: Sal Age: 35
Age: 11 Age: 21 Age: 27 Age: 30

Note that the pointers at
the leaf level will be to the
actual data records (rows).

We might truncate these
for simpler display (as
before)...

Name: Alf
Age: 37

Acknowledgement

* Some of the slides in this presentation are taken from the
slides provided by the authors.

* Many of these slides are taken from csi45 course offered by
Stanford University.

