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Announcement

• Quiz 6 
– Due: Tonight at 11:59 pm

• Project 1 Milepost 3 
– Due: Nov 10

• Project 2 Part 2 (Optional)
– Due: Nov 15
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The IO Model & External Sorting
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Today’s Lecture

1. Chapter	16	(Disk	Storage,	File	Structure	and	Hashing)
2. Chapter	17	(Indexing)
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Self-Study

• Buffering of Blocks
– Pin Count and Dirty Bit
– Buffer Replacement Strategies
• Least recently used (LRU)
• Clock Policy
• First in First Out (FIFO)
• MRU (Most recently used)
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RECORDS AND FILES
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Records and Record Types

Data in Database 
= 

A set of records organized into a set of files

• Each record consists of a collection of related data values or 
items

• Each value corresponds to a particular attribute
– Takes one or more bytes
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Fixed Length Records vs Variable Length Records

• Fig 16.5 (from textbook)
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Record Blocking

• Block Size = 𝐵	bytes
• Fixed Record Size = 𝑅 bytes

• With 𝐵 > 𝑅:
– Records per block = 𝑏𝑓𝑟	 = ⌊+

,
⌋

– Unused space per block = 𝐵	– 	𝑏𝑓𝑟 ∗ 𝑅 = B mod R

• Number of Blocks required = ⌈ 𝑅/𝑏𝑓𝑟 ⌉

• Two scenarios:
– Spanned: records can span more than one block
– Unspanned: records can’t span more than one block
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Unspanned vs Spanned

Unspanned

Spanned
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Heap Files vs Sorted Files

• Insertion 
• (Heap vs Sorted)
• For Sorted files: Overflow

• Deletion 
– Deletion Marker

• Modifying
– For Sorted files: May consist of Deletion and Insertion

• Searching
– How many block access?
– (by record number) What if the records are numbered and are of 

fixed size?
– Searching by range (Heap vs Sorted)
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Another variety

• Another type of files beyond: 
– Heap Files and Sorted Files

–Hash Files
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2. HASHING TECHNIQUES
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“IF YOU DON’T FIND IT IN THE INDEX, LOOK 
VERY CAREFULLY THROUGH THE ENTIRE 
CATALOG”

- Sears, Roebuck and Co., Consumers Guide, 1897
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HASING – GENERAL IDEAS

- Hashing first proposed by Arnold Dumey (1956)
- Hash codes
- Chaining
- Open addressing
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Example 

Java	HashCode
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Top level view

Arbitrary	objects
(strings,	doubles,	ints)

n Objects	
actually	
used

Hash	
code

{0,1,…,m-1}
int with	
wide	range

h(object)

Compression	
function

m

We	will	also		call
this	the	hash	function
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Example (Once again!) 

Java	HashCode
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True / False

• Unequal objects must have different hash codes 

• Objects with the same hash code must be equal

• Both Wrong 
–We would like this but it’s impossible to achieve 
– Still possible for a particular set of values but impossible if input 

values are unknown prior to applying the hashcode. 
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Good Hash Function

• If key1 ≠ key2, then it’s extremely unlikely that 
h(key1) = h(key2)
– Collision problem!

• Pigeonhole principle
– K+1 pigeons, K holes à at least one hole with ≥ 2 pigeons
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Division method

• How does this function perform for different m?
h(s) = s mod m
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COLLISION RESOLUTION

Separate chaining

Open addressing
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Separate Chaining

Turing

Cantor

Knuth

Karp

Dijkstra

Index Pointer

0

1

2

3

4

Turing Knuth Dijkstra

Karp Cantor
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Open Addressing

• Store all entries in the hash table itself, no pointer to the 
“outside”
– If a particular index  i is full, try the next index (i+C) where C is a 

constant.  

• Advantage
– Less space waste
– Perhaps good cache usage

• Disadvantage
–More complex collision resolution
– Slower operations
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Open Addressing

Turing

Cantor

Knuth

Karp

Dijkstra

Index Pointer

0

1

2

3

4

5

6

7

Turing

Knuth

Dijkstra
Karp

Cantor

h(“Knuth”,	0)
h(“Knuth”,	1)

h(“Karp”,	0) h(“Karp”,	1)

h(“Dijkstra”,	0)

h(“Dijkstra”,	1)

h(“Dijkstra”,	2)

C=2
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External Hashing

• Hashing for disk files

• Target address space is made of buckets

• Hashing function maps a key into relative bucket number

• Convert the bucket number into corresponding disk block 
address
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Bucket Number to Disk Block address
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Bucket Number to Disk Block address
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REVIEW 
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What Did We Learn

• Disk Storage 
– Hardware Description of Disk Devices 
• Sections to study: 16.2.1 and 16.2.2

• Buffering of Blocks 
• Buffer Management
• Buffer Replacement Strategies
• Sections to study: 16.3

• Placing File Records on Disk
• Records and Record Types
• Fixed-Length, Variable-Length, Spanned, Unspanned
• Sections to study: 16.4.1 to 16.4.4
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What did we learn

• Operations on Files
• Insert, Modify, and Delete
• And others. 
• Sections to study: 16.5

• Heap Files vs Sorted Files
• Sections to study: 16.6 and 16.7

• Hash Files
• Internal Hashing and External Hashing
• Sections to study: 16.8.1 and 16.8.2
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INDEXING
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Types of Indexing

• Primary Indexes

• Clustering Indexes

• Secondary Indexes

• Multilevel Indexes
– Dynamic Multilevel Indexes

• Hash Indexes
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What you will learn about in this section

1. Indexes:	Motivation

2. Indexes:	Basics
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Index Motivation

• Suppose we want to search for people of a specific age

• First idea: Sort the records by age… we know how to do 
this fast!

• How many IO operations to search over N sorted records?
– Simple scan: O(N)
– Binary search: O(𝐥𝐨𝐠𝟐 𝑵)

Person(name, age)

Could	we	get	even	cheaper	search?		E.g.	go	from	
𝐥𝐨𝐠𝟐 𝑵à 𝐥𝐨𝐠𝟐𝟎𝟎 𝑵?
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Index Motivation

• What about if we want to insert a new person, but keep 
the list sorted?

• We would have to potentially shift N records, requiring up 
to ~ 2*N/P IO operations (where P = # of records per 
page)!
– We could leave some “slack” in the pages…

4,5 6,71,3 3,4 5,61,2

2

7,

Could	we	get	faster	insertions?
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Index Motivation

• What about if we want to be able to search quickly 
along multiple attributes (e.g. not just age)?
–We could keep multiple copies of the records, each sorted 

by one attribute set… this would take a lot of space

Can	we	get	fast	search	over	multiple	attribute	
(sets)	without	taking	too	much	space?

We’ll	create	separate	data	structures	called	
indexes to	address	all	these	points
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Further Motivation for Indexes: NoSQL!

• NoSQL engines are (basically) just indexes!

– A lot more is left to the user in NoSQL… one of the 
primary remaining functions of the DBMS is still to 
provide index over the data records, for the reasons we just 
saw!

– Sometimes use B+ Trees, sometimes hash indexes

Indexes	are	critical	across	all	DBMS	types
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Indexes: High-level

• An index on a file speeds up selections on the search 
key fields for the index.
– Search key properties

• Any subset of fields
• is not the same as key of a relation

• Example: On	which	attributes	
would	you	build	

indexes?
Product(name, maker, price)
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More precisely

• An index is a data structure mapping search keys to 
sets of rows in a database table

– Provides efficient lookup & retrieval by search key value-
usually much faster than searching through all the rows of 
the database table

• An index can store:
– Full rows it points to (primary index) or 
– Pointers to those rows (secondary index)
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Operations on an Index

• Search: Quickly find all records which meet some condition
on the search key attributes
–More sophisticated variants as well. Why?

Indexing	is	one	the	most	important	features	
provided	by	a	database	for	performance
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Conceptual Example

What	if	we	want	to	
return	all	books	
published	after	1867?		
The	above	table	might	
be	very	expensive	to	
search	over	row-by-
row…

SELECT *
FROM Russian_Novels
WHERE Published > 1867

BID Title Author Published Full_text

001 War	and	Peace Tolstoy 1869 …

002 Crime	and	
Punishment

Dostoyevsky 1866 …

003 Anna	Karenina Tolstoy 1877 …

Russian_Novels
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Conceptual Example

BID Title Author Published Full_text

001 War	and	Peace Tolstoy 1869 …

002 Crime	and	
Punishment

Dostoyevsky 1866 …

003 Anna	Karenina Tolstoy 1877 …

Published BID

1866 002

1869 001

1877 003

Maintain	an	index	for	this,	and	search	over	
that!

Russian_NovelsBy_Yr_Index

Why	might	just	keeping	the	table	
sorted	by	year	not	be	good	enough?
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Conceptual Example

BID Title Author Published Full_text

001 War	and	Peace Tolstoy 1869 …

002 Crime	and	
Punishment

Dostoyevsky 1866 …

003 Anna	Karenina Tolstoy 1877 …

Published BID

1866 002

1869 001

1877 003

Indexes	shown	here	as	tables,	but	in	reality	
we	will	use	more	efficient	data	structures…

Russian_NovelsBy_Yr_Index

Author Title BID

Dostoyevsky Crime and	
Punishment

002

Tolstoy Anna	Karenina 003

Tolstoy War and	Peace 001

By_Author_Title_Index Can	have	multiple	indexes	to	
support	multiple	search	keys
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Covering Indexes

Published BID

1866 002

1869 001

1877 003

By_Yr_Index

We	say	that	an	index	is	covering for	a	specific	
query if	the	index	contains	all	the	needed	
attributes-meaning	the	query	can	be	answered	
using	the	index	alone!

The	“needed”	attributes	are	the	union	of	those	in	
the	SELECT	and	WHERE	clauses…

SELECT Published, BID
FROM Russian_Novels
WHERE Published > 1867

Example:
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TYPES OF INDEXES
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Types of Indexing

• Primary Indexes

• Clustering Indexes

• Secondary Indexes

• Multilevel Indexes
– Dynamic Multilevel Indexes

• Hash Indexes
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Primary Indexes: Index for Sorted (Ordered) Files
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Clustering Indexes (Index for Sorted (on non-key) Files)
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Secondary Indexes (on a key field)

• Secondary 
means of 
accessing a 
data file

• File records 
could be 
ordered, 
unordered, 
or hashed

CSC	261,	Fall	2017



Secondary Indexes (on a non-key field)
Extra level of indirection

• Provides logical 
ordering
– Though records are not 

physically ordered
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High-level Categories of Index Types

• Multilevel Indexes
– Very good for range queries, sorted data
– Some old databases only implemented B-Trees
– We will mostly look at a variant called B+ Trees

• Hash Tables 
– Very good for searching

Real	difference	between	structures:	costs	of	
ops	determines	which	index	you	pick	and	why
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MULTILEVEL INDEXES
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What you will learn about in this section

1. ISAM

2. B+	Tree
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1. ISAM
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ISAM

• Indexed Sequential 
Access Method

– For an index 
with	𝑏9	blocks
• Earlier: log=	b?	block 

access
• Now: log@A	b? block 

access
• (𝑓𝑜 = 𝑓𝑎𝑛𝑜𝑢𝑡)
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1. B+ TREES
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What you will learn about in this section

1. B+	Trees:	Basics

2. B+	Trees:	Design	&	Cost

3. Clustered	Indexes
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B+ Trees

• Search trees 
– B does not mean binary!

• Idea in B Trees:
–make 1 node = 1 physical page
– Balanced, height adjusted tree (not the B either)

• Idea in B+ Trees:
–Make leaves into a linked list (for range queries)
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B+ Tree Basics

10 20 30

Each	non-leaf	(“interior”)	
node has	≥ d	and	≤	2d	
keys*

*except	for	root	node,	which	
can	have	between	1	and	2d	keys

Parameter	d	=	degree	
The	minimum	number	of	key	an	
interior	node	can	have	

CSC	261,	Fall	2017



B+ Tree Basics

10 20 30

k	<	10

10	≤ 𝑘	<	20

20	≤ 𝑘	<	30
30	≤ 𝑘

The	n	keys	in	a	
node	define	n+1	
ranges	
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B+ Tree Basics

10 20 30

Non-leaf	or	internal	node

22 25 28

For	each	range,	in	a	non-leaf	
node,	there	is	a	pointer to	
another	node	with	keys	in	
that	range
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B+ Tree Basics

10 20 30

Leaf	nodes	also	have	
between	d	and	2d	keys,	
and	are	different	in	that:

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17
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B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

Leaf	nodes	also	have	
between	d	and	2d	keys,	
and	are	different	in	that:

Their	key	slots	contain	
pointers	to	data	records

21 22 27 28 30 33 35 371
5

1
1
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B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

21 22 27 28 30 33 35 371
5

1
1

Leaf	nodes	also	have	
between	d	and	2d	keys,	
and	are	different	in	that:

Their	key	slots	contain	
pointers	to	data	records

They	contain	a	pointer	
to	the	next	leaf	node	as	
well,	for	faster	
sequential	traversal
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B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

Note	that	the	pointers	at	
the	leaf	level	will	be	to	the	
actual	data	records	(rows).		

We	might	truncate	these	
for	simpler	display	(as	
before)…

Name:	John
Age:	21

Name:	Jake
Age:	15

Name:	Bob
Age:	27

Name:	Sally
Age:	28

Name:	Sue
Age:	33

Name:	Jess
Age:	35

Name:	Alf
Age:	37Name:	Joe

Age:	11

Name:	Bess
Age:	22

Name:	Sal
Age:	30
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Some finer points of B+ Trees
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Searching a B+ Tree

• For exact key values:
–Start at the root
–Proceed down, to the leaf

• For range queries:
–As above
–Then sequential traversal

SELECT name
FROM people
WHERE age = 25

SELECT name
FROM people
WHERE 20 <= age
AND  age <= 30
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B+ Tree Exact Search Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 60 63 80 84 89

K	=	30?	

30	<	80

30	in	[20,60)

To	the	
data!

Not	all	nodes	pictured

30	in	[30,40)
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B+ Tree Range Search Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 59 63 80 84 89

K	in	[30,85]?	

30	<	80

30	in	[20,60)

To	the	
data!

Not	all	nodes	pictured

30	in	[30,40)

CSC	261,	Fall	2017



B+ Tree Design

• How large is d?

• Example:
– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 bytes

• We want each node to fit on a single block/page
– 2d x 4  + (2d+1) x 8  <=  4096 à d <= 170
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B+ Tree: High Fanout = Smaller & Lower IO

• As compared to e.g. binary search 
trees, B+ Trees have high fanout
(between d+1 and 2d+1)

• This means that the depth of the 
tree is small à getting to any 
element requires very few IO 
operations!
– Also can often store most or all of the 

B+ Tree in main memory!

The	fanout is	defined	as	the	
number	of	pointers	to	child	
nodes	coming	out	of	a	node

Note	that	fanout is	dynamic-
we’ll	often	assume	it’s	
constant	just	to	come	up	with	
approximate	eqns!
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Simple Cost Model for Search
• Let:

– f = fanout, which is in [d+1, 2d+1] (we’ll assume it’s constant for our cost model…)
– N = the total number of pages we need to index
– F = fill-factor (usually ~= 2/3)

• Our B+ Tree needs to have room to index N / F pages!
– We have the fill factor in order to leave some open slots for faster insertions

• What height (h) does our B+ Tree need to be?
– h=1 à Just the root node- room to index f pages
– h=2 à f leaf nodes- room to index f2 pages
– h=3 à f2 leaf nodes- room to index f3 pages
– …
– h à fh-1 leaf nodes- room to index fh pages!

àWe	need	a	B+	Tree	
of	height	h	=	 logK

L
M
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Fast Insertions & Self-Balancing

– Same cost as exact search
– Self-balancing: B+ Tree remains balanced (with respect to 

height) even after insert

B+	Trees	also	(relatively)	fast	for	single	insertions!
However,	can	become	bottleneck	if	many	insertions	(if	fill-

factor	slack	is	used	up…)
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Insertion

• Perform a search to determine what bucket the new record 
should go into.

• If the bucket is not full (at most (b-1) entries after the insertion), 
add the record.

• Otherwise, split the bucket.
– Allocate new leaf and move half the bucket's elements to the new bucket.
– Insert the new leaf's smallest key and address into the parent.
– If the parent is full, split it too.

• Add the middle key to the parent node.
– Repeat until a parent is found that need not split.

• If the root splits, create a new root which has one key and two 
pointers. (That is, the value that gets pushed to the new root gets 
removed from the original node)

• Note: B-trees grow at the root and not at the leave
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Insertion (Insert 85)
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b	=	f	=	branching	factor/	fan-out	=	3

20 40 80 90

40 80



Insertion (Insert 85)
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b	=	f	=	branching	factor/	fan-out	=	3

20 40 80 90

40 80

85

This	is	what	we	would	
like.	But	the	maximum	
number	of	keys	in	any	
node	is	(3-1)	=	2	
So,	split.



Insertion (Insert 85)
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b	=	f	=	branching	factor/	fan-out	=	3

20 40 80

40 80

85

Allocate	new	leaf	
and	move	half	the	
bucket's	elements	
to	the	new	bucket.

90



Insertion (Insert 85)
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b	=	f	=	branching	factor/	fan-out	=	3

20 40 80

40 80

85

Insert	the	new	
leaf's	smallest	key	
and	address	into	
the	parent.

90

85



Insertion (Insert 85)
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b	=	f	=	branching	factor/	fan-out	=	3

20 40 80

40 80

85

This	is	not	allowed,	
as	the	parent	is	
full.	Need	to	split

90

85



Insertion (Insert 85)
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b	=	f	=	branching	factor/	fan-out	=	3

20 40 80

40

80

85

If	the	parent	is	full,	split	it	
too.

Add	the	middle	key	
to	the	parent	node.

Repeat	until	a	parent	is	
found	that	needs	no	
spliting

90

85



Insertion (Insert 85)

CSC	261,	Fall	2017

b	=	f	=	branching	factor/	fan-out	=	3

20 40 80

40

80

85

If	the	root	splits,	create	a	new	
root	which	has	one	key	and	
two	pointers.	

(That	is,	the	value	that	gets	
pushed	to	the	new	root	gets	
removed	from	the	original	
node)

90

85



Deletion

• Start at root, find leaf L where entry belongs.
• Remove the entry.
– If L is at least half-full, done!
– If L has fewer entries than it should,

• If sibling (adjacent node with same parent as L) is more than half-full, re-
distribute, borrowing an entry from it.

• Otherwise, sibling is exactly half-full, so we can merge L and sibling.
• If merge occurred, must delete entry (pointing to L or sibling) 

from parent of L.
• Merge could propagate to root, decreasing height.

• https://www.cs.usfca.edu/~galles/visualization/B
PlusTree.html

• The degree in this visualization is actually fan-out f or branching factor b.
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• Find 86
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• Delete it
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• Stealing from right sibling (redistribute).
• Modify the parent node
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• Finally,
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