
CSC 261/461 – Database Systems
Lecture 19

Fall 2017

CSC	261,	Fall	2017,	UR	

Announcements

• CIRC:
– CIRC is down!!!
–MongoDB and Spark (mini) projects are at stake. L

• Project 1 Milestone 4
– is out
– Due date: Last date of class
• We will check your website after that date
• But, finish early

• Due Dates:
– Suggestions:

CSC	261,	Fall	2017,	UR	

Due Dates

• 11/12 to 11/18

• 11/19 to 11/25 (Thanksgiving Week)

• 11/26 to 12/02

• 12/03 to 12/09:
– Term Paper Due: 12/08

• 12/10 to 12/13 (Last Class):
– Poster Session on: 12/11
– Project 1 Milestone 4 is due on 12/13

• Final: December 18, 2017 at 7:15 pm

CSC	261,	Fall	2017,	UR	

MongoDB

Spark

Term	Paper

Poster	Session

Topics for Today

• Query Processing (Chapter 18)
• Query Optimization (Chapter 19) on Wednesday

CSC	261,	Fall	2017,	UR	

QUERY PROCESSING

CSC	261,	Fall	2017,	UR	

Steps in Query Processing

• Scanning

• Parsing

• Validation

• Query Tree Creation

• Query Optimization (Query planning)

• Code generation (to execute the plan)

• Running the query code

CSC	261,	Fall	2017,	UR	

Steps in Query Processing

CSC	261,	Fall	2017,	UR	

SQL Queries

• SQL Queries are decomposed into Query blocks:
– Select…From…Where…Group By…Having

• Translate Query blocks into Relational Algebraic expression

• Remember, SQL includes aggregate operators:
–MIN, MAX, SUM, COUNT etc.
– Part of the extended algebra
– Let’s go back to Chapter 8 (Section 8.4.2)

CSC	261,	Fall	2017,	UR	

Aggregate Functions and Grouping (Relational Algebra)

• Aggregate function: ℑ

•
< 𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔	𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 >

ℑ
< 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑙𝑖𝑠𝑡 >

(R)

CSC	261,	Fall	2017,	UR	

Dno ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE).

Semijoin (⋉)

• R ⋉ S = P A1,…,An (R ⋈ S)
• Where A1, …, An are the

attributes in R
• Example:
– Employee ⋉	Dependents

SELECT DISTINCT
sid,sname,gpa

FROM
Students,People

WHERE
sname = pname;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋉ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

SELECT DISTINCT
sid,sname,gpa

FROM
Students

WHERE
sname IN

(SELECT pname FROM People);

OR

CSC	261,	Fall	2017,	UR	

EXTERNAL SORTING

CSC	261,	Fall	2017,	UR	

External Merge Sort

Why are Sort Algorithms Important?

• Data requested from DB in sorted order is extremely
common
– e.g., find students in increasing GPA order

• Why not just use quicksort in main memory??
–What about if we need to sort 1TB of data with 1GB of

RAM…

A	classic	problem	in	computer	science!

So how do we sort big files?

1. Split into chunks small enough to sort in memory (“runs”)

2. Merge pairs (or groups) of runs using the external merge
algorithm

3. Keep merging the resulting runs (each time = a “pass”)
until left with one sorted file!

2. EXTERNAL MERGE & SORT

Challenge: Merging Big Files with Small Memory

How do we efficiently merge two sorted files when both
are much larger than our main memory buffer?

External Merge Algorithm

• Input: 2 sorted lists of length M and N

• Output: 1 sorted list of length M + N

• Required: At least 3 Buffer Pages

• IOs: 2(M+N)

Key (Simple) Idea

To find an element that is no larger than all elements in two lists,
one only needs to compare minimum elements from each list.

If:
𝐴: ≤ 𝐴< ≤ ⋯ ≤ 𝐴>
𝐵: ≤ 𝐵< ≤ ⋯ ≤ 𝐵@

Then:
𝑀𝑖𝑛(𝐴:, 𝐵:) ≤ 𝐴E
𝑀𝑖𝑛(𝐴:, 𝐵:) ≤ 𝐵F

for	i=1….N	and	j=1….M	

External Merge Algorithm

7,11 20,31

23,24 25,30

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

Disk

Main	Memory

Buffer
1,5

2,22

F1

F2

External Merge Algorithm

7,11 20,31

23,24 25,30

Disk

Main	Memory

Buffer

1,5 2,22
Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

External Merge Algorithm

7,11 20,31

23,24 25,30

Disk

Main	Memory

Buffer

5 22 1,2
Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

External Merge Algorithm

7,11 20,31

23,24 25,30

Disk

Main	Memory

Buffer

5 22

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

External Merge Algorithm

20,31

23,24 25,30

Disk

Main	Memory

Buffer

522

1,2

This	is	all	the	algorithm	
“sees”…	Which	file	to	load	a	
page	from	next?

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

7,11

External Merge Algorithm

20,31

23,24 25,30

Disk

Main	Memory

Buffer

522

1,2

We	know	that	F2 only	
contains	values	≥ 22…	so	we	
should	load	from	F1!

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

7,11

External Merge Algorithm

20,31

23,24 25,30

Disk

Main	Memory

Buffer

522

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
7,11

External Merge Algorithm

20,31

23,24 25,30

Disk

Main	Memory

Buffer

5,722

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
11

External Merge Algorithm

20,31

23,24 25,30

Disk

Main	Memory

Buffer

5,7

22

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
11

External Merge Algorithm

23,24 25,30

Disk

Main	Memory

Buffer

5,7

22

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
11

20,31

And	so	on…

We can merge lists of arbitrary
length with only 3 buffer pages.

If	lists	of	size	M	and	N,	then
Cost: 2(M+N)	IOs

Each	page	is	read	once,	written	once

External Merge Sort Algorithm

27,24 3,1

Example:
• 3	Buffer	

pages
• 6-page	file

Disk Main	Memory

Buffer

18,22

F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Orange	file	
=	unsorted

EXTERNAL MERGE SORT (BEFORE
MERGE)

CSC	261,	Spring	2017,	UR	

External Merge Sort Algorithm

27,24 3,1

Disk Main	Memory

Buffer

18,22

F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Example:
• 3	Buffer	

pages
• 6-page	file

Orange	file	
=	unsorted

External Merge Sort Algorithm

27,24 3,1

Disk Main	Memory

Buffer

18,22

F1

F2
33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Example:
• 3	Buffer	

pages
• 6-page	file

Orange	file	
=	unsorted

External Merge Sort Algorithm

27,24 3,1

Disk Main	Memory

Buffer

18,22

F1

F2
31,33 44,5510,12

Example:
• 3	Buffer	

pages
• 6-page	file

1. Split into chunks small enough to sort in memory

Orange	file	
=	unsorted

External Merge Sort Algorithm

Disk Main	Memory

Buffer
F1

F2

31,33 44,5510,12

And	similarly	for	F2

27,24 3,118,22
18,22 24,271,3

1. Split	into	chunks	small	enough	to	sort	in	memory

Example:
• 3	Buffer	

pages
• 6-page	file
Each	
sorted	file	
is	a	called	
a	run

External Merge Sort Algorithm

Disk Main	Memory

Buffer
F1

F2

2. Now just run the external merge algorithm & we’re done!

31,33 44,5510,12

18,22 24,271,3

Example:
• 3	Buffer	

pages
• 6-page	file

Calculating IO Cost

For 3 buffer pages, 6 page file:

1. Split into two 3-page files and sort in memory
= 1 R + 1 W for each file = 2*(3 + 3) = 12 IO operations

2. Merge each pair of sorted chunks using the external
merge algorithm
= 2*(3 + 3) = 12 IO operations

3. Total cost = 24 IO

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

18,43 24,2745,38

Assume	we	still	
only	have	3 buffer	
pages	(Buffer	not	
pictured)

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

18,43 24,2745,38

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

1.	Split	into	files	small	enough	to	
sort	in	buffer…

Assume	we	still	
only	have	3 buffer	
pages	(Buffer	not	
pictured)

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

1.	Split	into	files	small	enough	to	
sort	in	buffer…	and	sort

Assume	we	still	
only	have	3 buffer	
pages	(Buffer	not	
pictured)

Call	each	of	these	
sorted	files	a	run

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

2.	Now	merge	
pairs	of	(sorted)	
files…	the	
resulting	files	
will	be	sorted!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Assume	we	still	
only	have	3 buffer	
pages	(Buffer	not	
pictured)

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

3.	And	repeat…

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Assume	we	still	
only	have	3 buffer	
pages	(Buffer	not	
pictured)

Call	each	of	these	
steps	a	pass

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

4.	And	repeat!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Disk

3,10 10,101,3

12,16 18,1812,12

20,22 22,2318,18

24,24 27,2723,24

31,31 31,3327,31

33,38 39,4033,33

43,44 44,4541,42

48,55 55,5546,47

Simplified 3-page Buffer Version

Assume for simplicity that we split an N-page file into N single-
page runs and sort these; then:

• First pass: Merge N/2 pairs of runs each of length 1 page

• Second pass: Merge N/4 pairs of runs each of length 2 pages

• In general, for N pages, we do 𝒍𝒐𝒈𝟐 𝑵 passes
– +1 for the initial split & sort

• Each pass involves reading in & writing out all the pages = 2N
IO

Unsorted	input	file

Split	&	sort

Merge

Merge

Sorted!

à 2N*(𝒍𝒐𝒈𝟐 𝑵 +1)	total	IO	cost!		

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

1. Increase length of initial runs. Sort B+1 at a time!
At the beginning, we can split the N pages into runs of length
B+1 and sort these in memory

2𝑁(log< 𝑁 + 1)

IO	Cost:

Starting	with	runs	
of	length	1

2𝑁(log<
𝑵

𝑩 + 𝟏 + 1)

Starting	with	runs	of	
length	B+1

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

2. Perform a B-way merge.
On each pass, we can merge groups of B runs at a time (vs.
merging pairs of runs)!

IO	Cost:

2𝑁(log< 𝑁 + 1) 2𝑁(log<
𝑵

𝑩 + 𝟏 + 1)

Starting	with	runs	
of	length	1

Starting	with	runs	of	
length	B+1

2𝑁(logV
𝑵

𝑩 + 𝟏 + 1)

Performing	B-way	
merges

Algorithm fro Select Operation

• Read Section 18.3 (18.3.1 , 18.3.2, 18.3.3, 18.3.4)
• Mostly covers searching:

• 1. Linear Search
• 2. Binary Search
• 3. Indexing
• 4. Hashing
• 5. B+ Tree

• (Skip bitmap index and functional index)

CSC	261,	Fall	2017,	UR	

Algorithm for Join Operation

• The most time consuming operation

CSC	261,	Fall	2017,	UR	

What you will learn about in this section

1. Nested	Loop	Join	(NLJ)

2. Block	Nested	Loop	Join	(BNLJ)

3. Index	Nested	Loop	Join	(INLJ)

4. Sorted-Merge	Join

5. Hash	Join

CSC	261,	Fall	2017,	UR	

RECAP: Joins

CSC	261,	Fall	2017,	UR	

Joins: Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

CSC	261,	Fall	2017,	UR	

Joins: Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

CSC	261,	Fall	2017,	UR	

Joins: Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

CSC	261,	Fall	2017,	UR	

Joins: Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

CSC	261,	Fall	2017,	UR	

Joins: Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

CSC	261,	Fall	2017,	UR	

Semantically: A Subset of the Cross Product

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

×
Cross	
Produc
t

Filter	by	
conditions
(r.A =	s.A)

… Can	we	actually	
implement	a	
join	in	this	way?

𝐑 ⋈ 𝑺

CSC	261,	Fall	2017,	UR	

Notes

• We write 𝐑 ⋈ 𝑺 to mean join R and S by returning all tuple
pairs where all shared attributes are equal

• We write 𝐑 ⋈ 𝑺 on A to mean join R and S by returning all
tuple pairs where attribute(s) A are equal

• For simplicity, we’ll consider joins on two tables and with
equality constraints (“equijoins”)

However	joins	canmerge	>	2	tables,	
and	some	algorithms	do	support	
non-equality	constraints!

CSC	261,	Fall	2017,	UR	

Nested Loop Joins

CSC	261,	Fall	2017,	UR	

Notes

• We are again considering “IO aware”
algorithms: care about disk IO

• Given a relation R, let:
– T(R) = # of tuples in R
– P(R) = # of pages in R

• Note also that we omit ceilings in
calculations… good exercise to put
back in!

Recall	that	we	read	/	write	
entire	pages	with	disk	IO

CSC	261,	Fall	2017,	UR	

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

CSC	261,	Fall	2017,	UR	

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)

1. Loop	over	the	tuples	in	R

Note	that	our	IO	cost	is	
based	on	the	number	of	
pages loaded,	not	the	
number	of	tuples!

Cost:

CSC	261,	Fall	2017,	UR	

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)	+	T(R)*P(S)

Have	to	read	all	of	S	from	disk	for	every	tuple	in	R!

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

Cost:

CSC	261,	Fall	2017,	UR	

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)	+	T(R)*P(S)

Note	that	NLJ	can	handle	things	other	than	equality	
constraints…	just	check	in	the	if	statement!

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

3. Check	against	join	
conditions

Cost:

CSC	261,	Fall	2017,	UR	

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)	+	T(R)*P(S)	+	OUT

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

3. Check	against	join	conditions

4. Write	out	(to	page,	then	
when	page	full,	to	disk)

Cost:

CSC	261,	Fall	2017,	UR	

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)	+	T(R)*P(S)	+	OUT

What	if	R	(“outer”)	and	S	
(“inner”)	switched?

Cost:

P(S)	+	T(S)*P(R)	+	OUT

Outer	vs.	inner	selection	makes	a	huge	difference-
DBMS	needs	to	know	which	relation	is	smaller!

CSC	261,	Fall	2017,	UR	

Block Nested Loop Join (BNLJ)

CSC	261,	Fall	2017,	UR	

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each page pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

P(𝑅)

Given	3	pages	of	memory

1. Load	in	1	page	of	R	at	a	time	
(leaving	1	page	each	free	for	
S	&	output)

Cost:

Note:	There	could	be	some	
speedup	here	due	to	the	fact	
that	we’re	reading	in	multiple	
pages	sequentially	however	
we’ll	ignore	this	here!

CSC	261,	Fall	2017,	UR	

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each page pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Block Nested Loop Join (BNLJ)

P 𝑅 + 𝑃 𝑅 . 𝑃(𝑆)

Given	3	pages	of	memory

Note:	Faster	to	iterate	over	
the	smaller relation	first!

1. Load	in	1	page	of	R	at	a	time	
(leaving	1	page	each	free	for	
S	&	output)

2. For	each	page	segment	of	R,	
load	each	page	of	S

Cost:

CSC	261,	Fall	2017,	UR	

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each page pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Block Nested Loop Join (BNLJ)

Given	3 pages	of	memory

1. Load	in	1	page	of	R	at	a	time	
(leaving	1	page	each	free	for	
S	&	output)

2. For	each	page	segment	of	R,	
load	each	page	of	S

3. Check	against	the	join	
conditions

BNLJ	can	also	handle	non-equality	
constraints

Cost:

CSC	261,	Fall	2017,	UR	

P 𝑅 + 𝑃 𝑅 . 𝑃(𝑆)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each page pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Block Nested Loop Join (BNLJ)

Given	3	pages	of	memory

1. Load	1	page	of	R	at	a	time	
(leaving	1	page	each	free	for	
S	&	output)

2. For	each	page	segment	of	R,	
load	each	page	of	S

3. Check	against	the	join	
conditions

4. Write	out

Cost:

CSC	261,	Fall	2017,	UR	

P 𝑅 + 𝑃 𝑅 . 𝑃(𝑆)

Block Nested Loop Join (BNLJ) (B+1 pages of Memory)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

P(𝑅)

Given	B+1 pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

Cost:

Note:	There	could	be	some	
speedup	here	due	to	the	fact	
that	we’re	reading	in	multiple	
pages	sequentially	however	
we’ll	ignore	this	here!

CSC	261,	Fall	2017,	UR	

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in
ps:

if r[A] == s[A]:
yield (r,s)

P 𝑅 +	
𝑃 𝑅
𝐵 − 1𝑃(𝑆)

Given	B+1	pages	of	memory

Note:	Faster	to	iterate	over	
the	smaller relation	first!

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

Cost:

CSC	261,	Fall	2017,	UR	

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in
ps:

if r[A] == s[A]:
yield (r,s)

Given	B+1	pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

3. Check	against	the	join	
conditions

BNLJ	can	also	handle	non-equality	
constraints

Cost:

P 𝑅 +	
𝑃 𝑅
𝐵 − 1𝑃(𝑆)

CSC	261,	Fall	2017,	UR	

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in
ps:

if r[A] == s[A]:
yield (r,s)

P 𝑅 +	b c
Vd:

𝑃(𝑆) +	OUT

Given	B+1	pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

3. Check	against	the	join	
conditions

4. Write	out

Cost:

CSC	261,	Fall	2017,	UR	

BNLJ vs. NLJ: Benefits of IO Aware

• In BNLJ, by loading larger chunks of R, we minimize the
number of full disk reads of S
–We only read all of S from disk for every (B-1)-page segment of R!
– Still the full cross-product, but more done only in memory

P 𝑅 +	b c
Vd:

𝑃(𝑆) +	OUTP(R)	+	T(R)*P(S)	+	OUT
NLJ BNLJ

BNLJ	is	faster	by		roughly	(Vd:)e(c)
b(c)

CSC	261,	Fall	2017,	UR	

BNLJ vs. NLJ: Benefits of IO Aware

• Example:
– R: 500 pages
– S: 1000 pages
– 100 tuples / page
– We have 12 pages of memory (B = 11)

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~= 140 hours

• BNLJ: Cost = 500 + fgg∗:ggg
:g

= 50 Thousand IOs ~= 0.14 hours

A	very	real	difference	from	a	small	
change	in	the	algorithm!

Ignoring	OUT	
here…

CSC	261,	Fall	2017,	UR	

Acknowledgement

• Some of the slides in this presentation are taken from the
slides provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

CSC	261,	Fall	2017,	UR	

