CSC 261/461 – Database Systems Lecture 19

Fall 2017

Announcements

- CIRC:
 - CIRC is down!!!
 - MongoDB and Spark (mini) projects are at stake. ⊗
- Project 1 Milestone 4
 - is out
 - Due date: Last date of class
 - We will check your website after that date
 - But, finish early
- Due Dates:
 - Suggestions:

Due Dates

- 11/12 to 11/18
- 11/19 to 11/25 (Thanksgiving Week)
- 11/26 to 12/02
- 12/03 to 12/09:
 - Term Paper Due: 12/08
- 12/10 to 12/13 (Last Class):
 - Poster Session on: 12/11
 - Project i Milestone 4 is due on 12/13
- Final: December 18, 2017 at 7:15 pm

MongoDB

Spark

Term Paper

Poster Session

Topics for Today

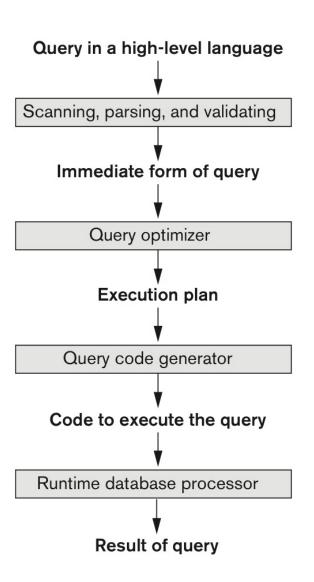
- Query Processing (Chapter 18)
- Query Optimization (Chapter 19) on Wednesday

QUERY PROCESSING

Steps in Query Processing

- Scanning
- Parsing
- Validation
- Query Tree Creation
- Query Optimization (Query planning)
- Code generation (to execute the plan)
- Running the query code

Steps in Query Processing



Code can be:

Executed directly (interpreted mode)

Stored and executed later whenever needed (compiled mode)

SQL Queries

- SQL Queries are decomposed into Query blocks:
 - Select...From...Where...Group By...Having
- Translate Query blocks into Relational Algebraic expression
- Remember, SQL includes aggregate operators:
 - MIN, MAX, SUM, COUNT etc.
 - Part of the extended algebra
 - Let's go back to Chapter 8 (Section 8.4.2)

Aggregate Functions and Grouping (Relational Algebra)

• Aggregate function: 3

•
$$<$$
 grouping attributes $>$ \Im $<$ function list $>$ (R)

Dno	Count_ssn	Average_salary
5	4	33250
4	3	31000
1	1	55000

Semijoin (⋉)

- $R \ltimes S = \prod_{A_1,...,A_n} (R \bowtie S)$
- Where $A_1, ..., A_n$ are the attributes in R
- Example:
 - Employee ➤ Dependents

```
Students(sid,sname,gpa)
People(ssn,pname,address)
```

SQL:

```
SELECT DISTINCT
   sid, sname, gpa
FROM
   Students, People
WHERE
   sname = pname;
```

0R

```
SELECT DISTINCT
sid, sname, gpa
FROM
Students
WHERE
sname IN
(SELECT pname FROM People);
```

RA:

 $Students \ltimes People$

EXTERNAL SORTING

External Merge Sort

Why are Sort Algorithms Important?

- Data requested from DB in sorted order is extremely common
 - e.g., find students in increasing GPA order
- Why not just use quicksort in main memory??
 - What about if we need to sort iTB of data with iGB of RAM...

A classic problem in computer science!

So how do we sort big files?

- 1. Split into chunks small enough to **sort in memory** ("runs")
- 2. Merge pairs (or groups) of runs using the external merge algorithm
- 3. **Keep merging** the resulting runs (each time = a "pass") until left with one sorted file!

2. EXTERNAL MERGE & SORT

Challenge: Merging Big Files with Small Memory

How do we *efficiently* merge two sorted files when both are much larger than our main memory buffer?

• Input: 2 sorted lists of length M and N

• Output: 1 sorted list of length M + N

• Required: At least 3 Buffer Pages

• IOs: 2(M+N)

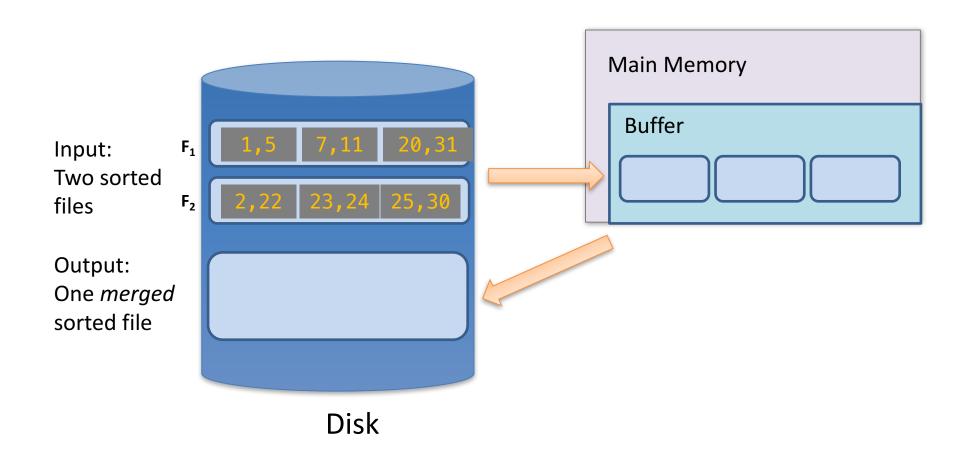
Key (Simple) Idea

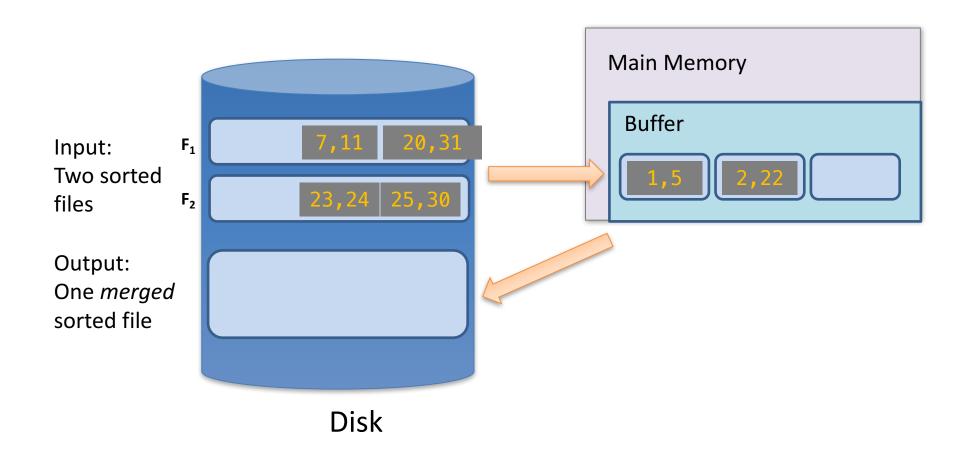
To find an element that is no larger than all elements in two lists, one only needs to compare minimum elements from each list.

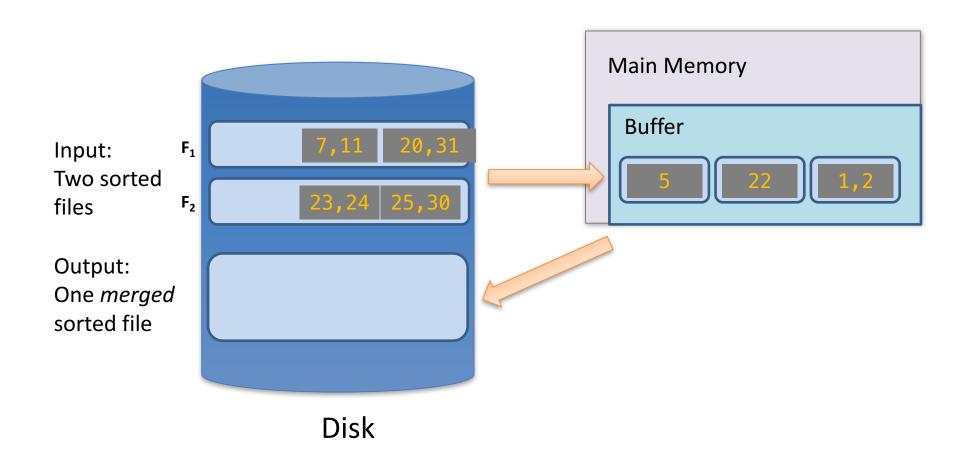
If:
$$A_1 \leq A_2 \leq \cdots \leq A_N$$

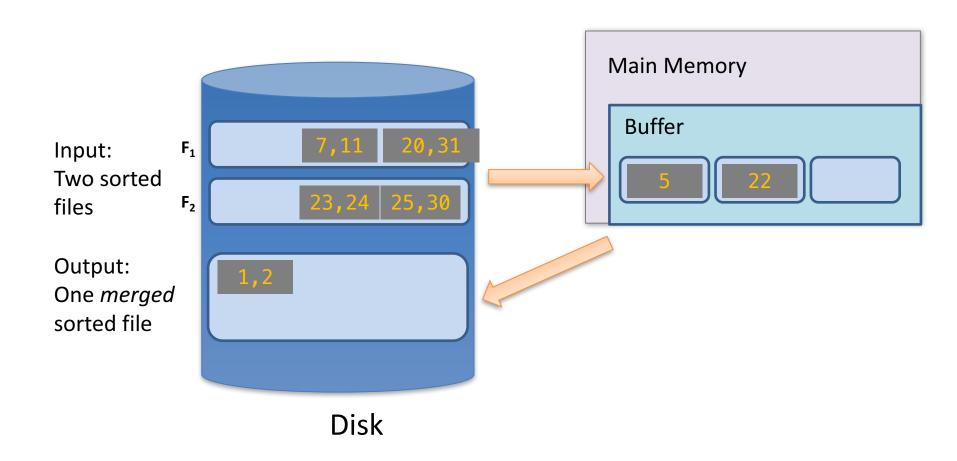
$$B_1 \leq B_2 \leq \cdots \leq B_M$$
 Then:
$$Min(A_1, B_1) \leq A_i$$

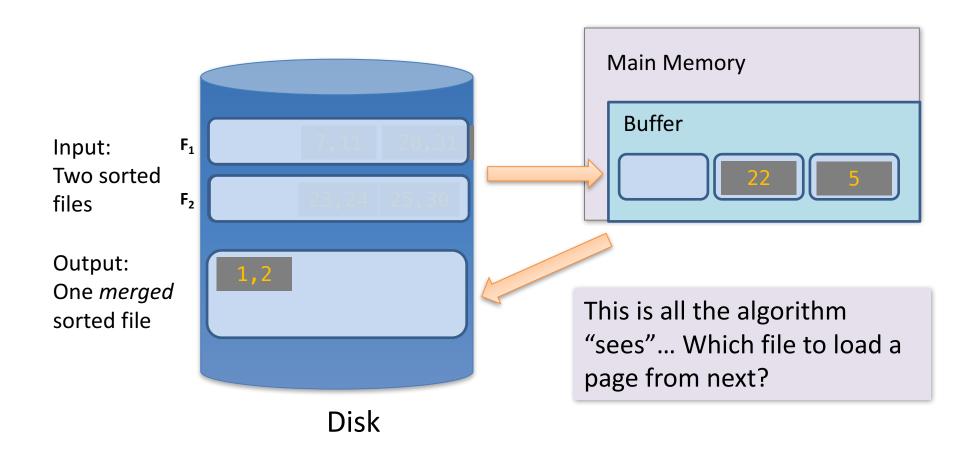
$$Min(A_1, B_1) \leq B_j$$
 for i=1....N and j=1....M

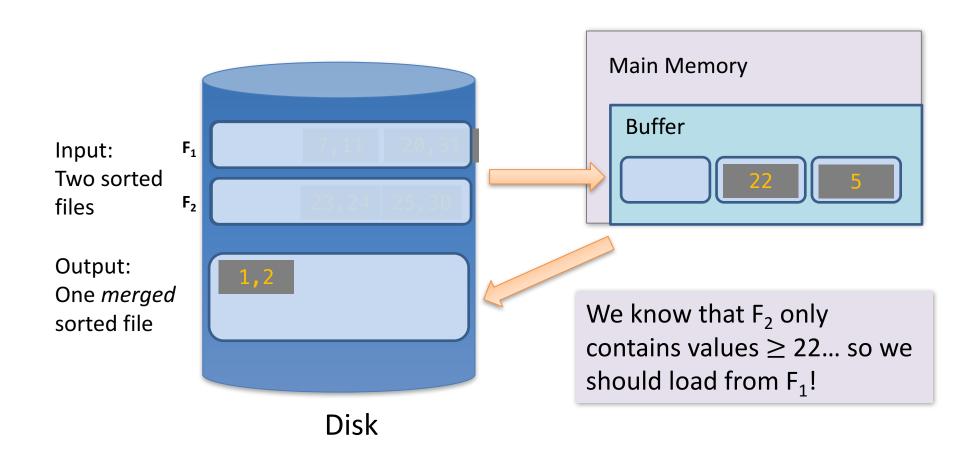


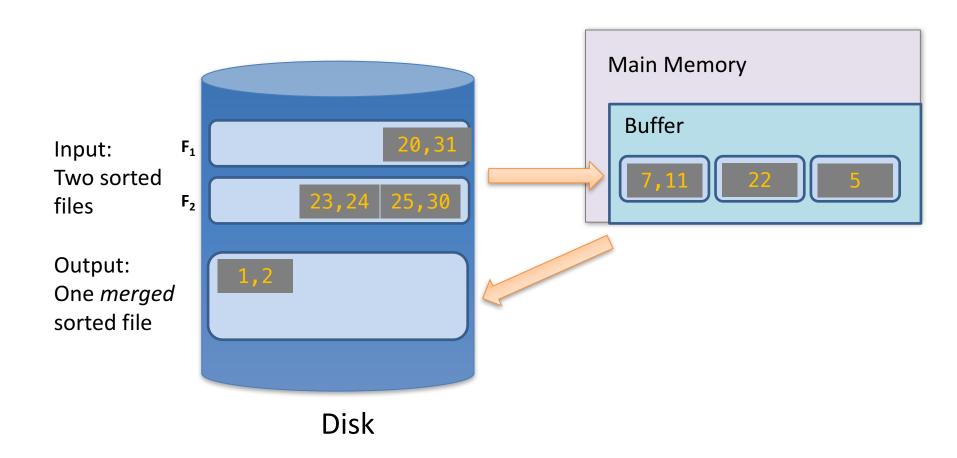


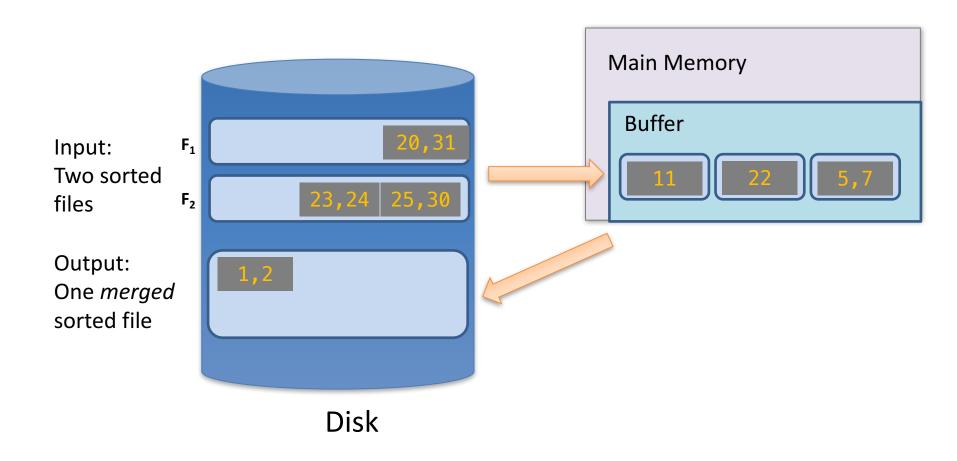


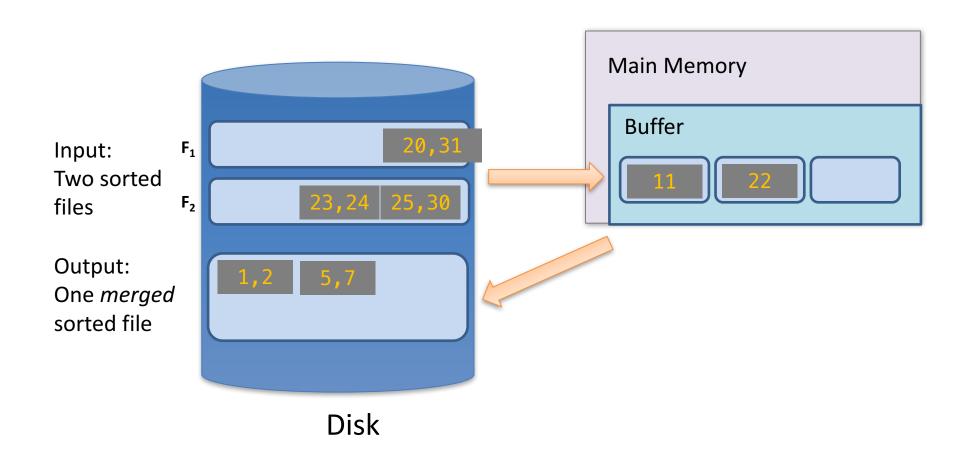


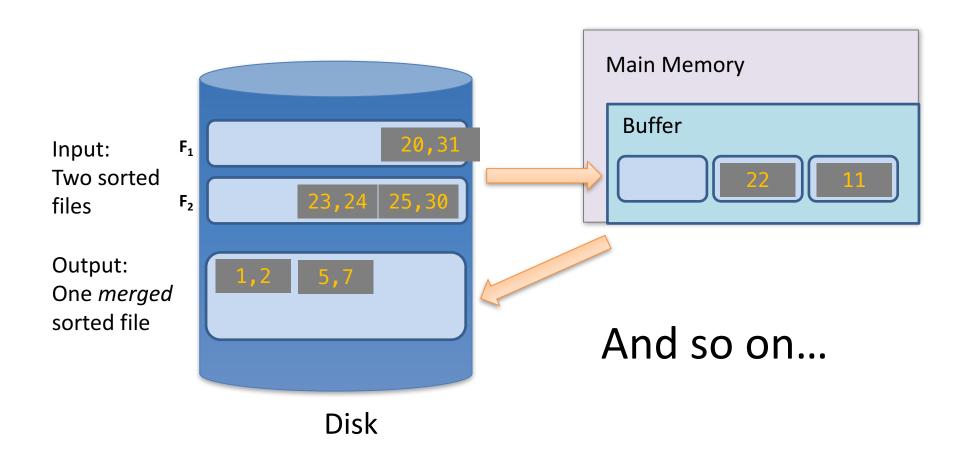








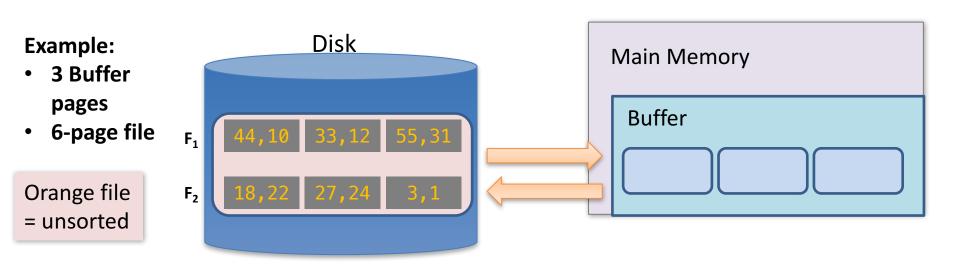




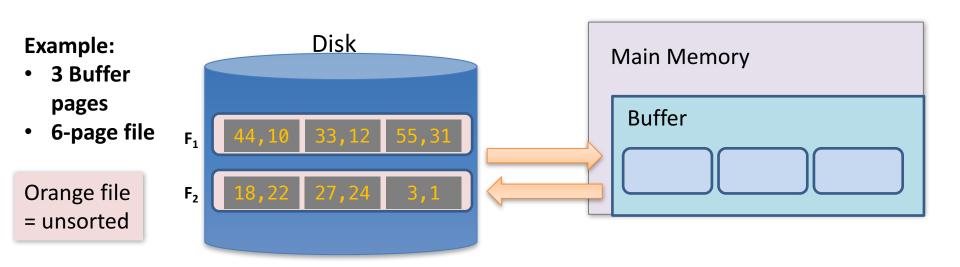
We can merge lists of **arbitrary length** with *only* 3 buffer pages.

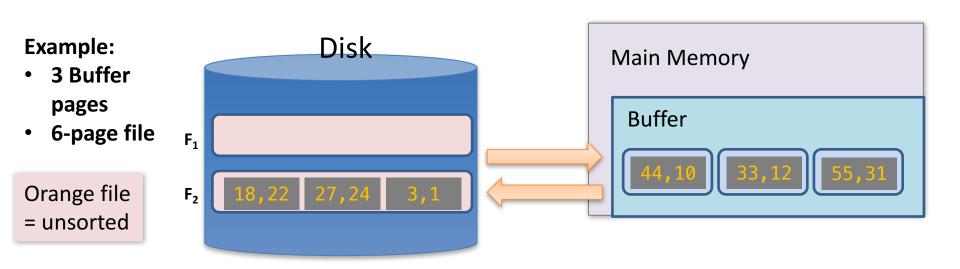
If lists of size M and N, then Cost: 2(M+N) IOs

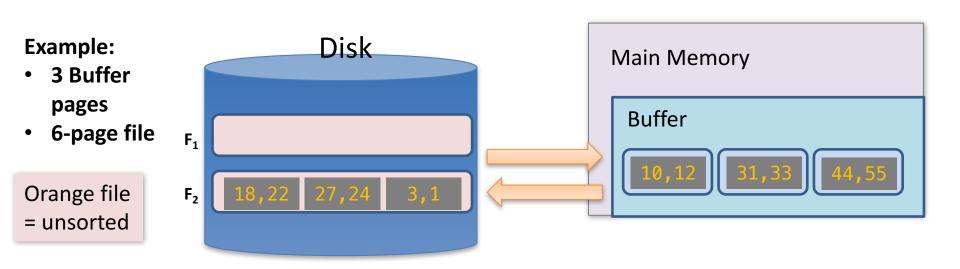
Each page is read once, written once

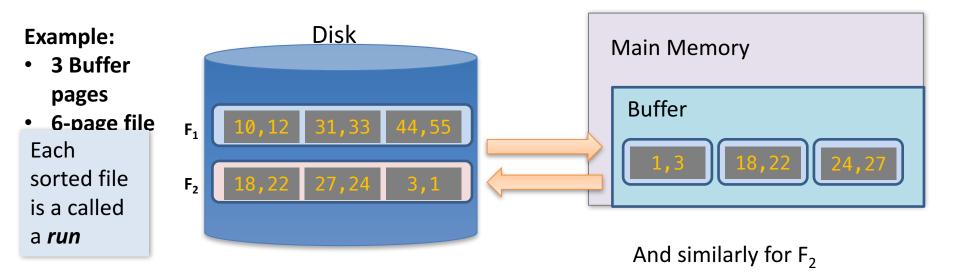


EXTERNAL MERGE SORT (BEFORE MERGE)



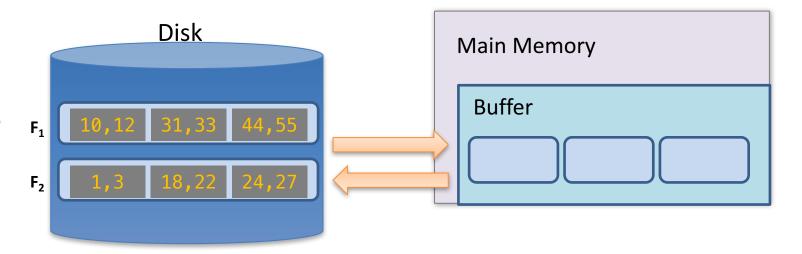






Example:

- 3 Buffer pages
- 6-page file

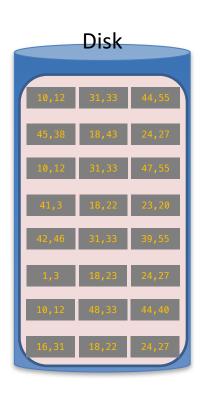


2. Now just run the external merge algorithm & we're done!

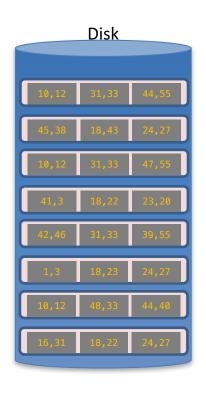
Calculating IO Cost

For 3 buffer pages, 6 page file:

- I. Split into <u>two 3-page files</u> and sort in memory = 1 R + 1 W for each file = 2*(3 + 3) = 12 IO operations
- 2. Merge each pair of sorted chunks using the external merge algorithm
 - = 2*(3 + 3) = 12 IO operations
- 3. Total cost = 24 IO

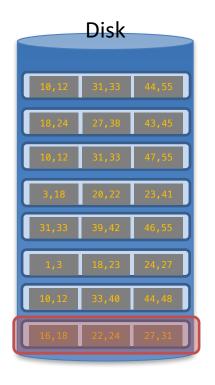


Assume we still only have 3 buffer pages (Buffer not pictured)



1. Split into files small enough to sort in buffer...

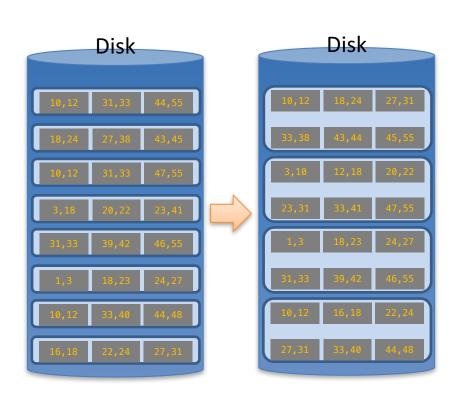
Assume we still only have 3 buffer pages (Buffer not pictured)



1. Split into files small enough to sort in buffer... and sort

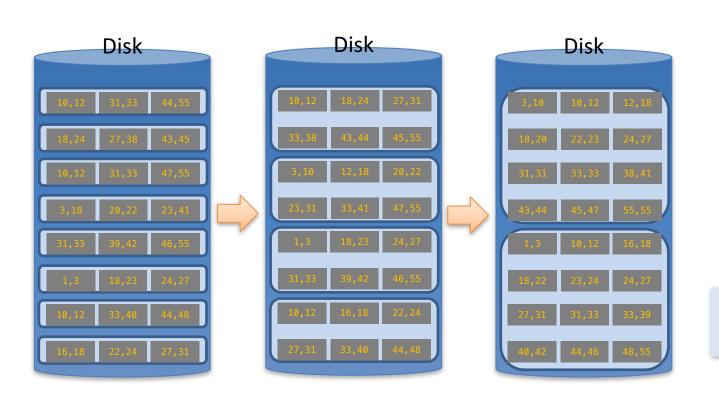
Assume we still only have 3 buffer pages (Buffer not pictured)

Call each of these sorted files a *run*



Assume we still only have 3 buffer pages (Buffer not pictured)

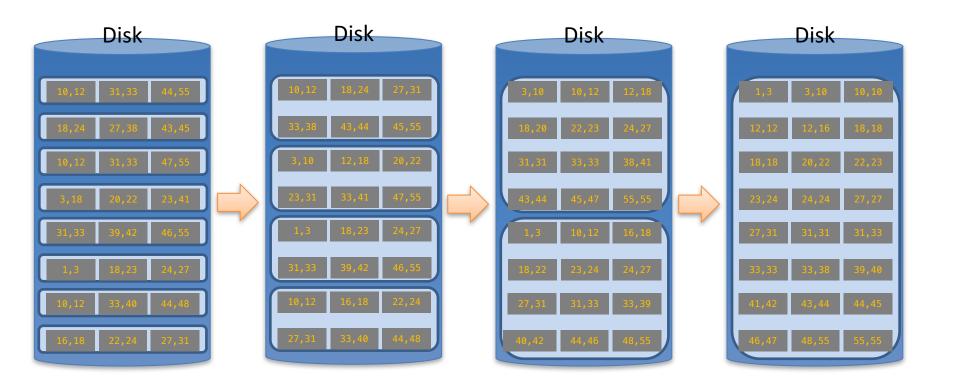
2. Now merge pairs of (sorted) files... the resulting files will be sorted!



Assume we still only have 3 buffer pages (Buffer not pictured)

3. And repeat...

Call each of these steps a *pass*

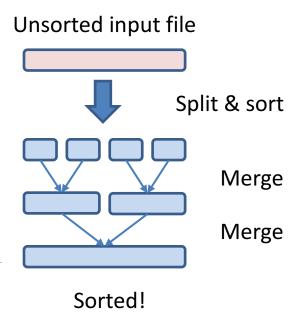


4. And repeat!

Simplified 3-page Buffer Version

Assume for simplicity that we split an N-page file into N single-page *runs* and sort these; then:

- First pass: Merge N/2 pairs of runs each of length 1 page
- Second pass: Merge N/4 pairs of runs each of length 2 pages
- In general, for N pages, we do [log₂ N] passes
 +1 for the initial split & sort
- Each pass involves reading in & writing out all the pages = 2N



 \rightarrow 2N*([log₂ N]+1) total IO cost!

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

1. Increase length of initial runs. Sort B+1 at a time! At the beginning, we can split the N pages into runs of length B+1 and sort these in memory

IO Cost:

$$2N(\lceil \log_2 N \rceil + 1) \implies 2N(\lceil \log_2 \frac{N}{B+1} \rceil + 1)$$
Starting with runs of length 1 Starting with runs of length $B+1$

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

2. Perform a B-way merge.

On each pass, we can merge groups of \boldsymbol{B} runs at a time (vs. merging pairs of runs)!

IO Cost:

$$2N(\lceil \log_2 N \rceil + 1) \implies 2N(\lceil \log_2 \frac{N}{B+1} \rceil + 1) \implies 2N(\lceil \log_B \frac{N}{B+1} \rceil + 1)$$
Starting with runs of length 1 Starting with runs of length B+1 Performing B-way merges

Algorithm fro Select Operation

- Read Section 18.3 (18.3.1, 18.3.2, 18.3.3, 18.3.4)
- Mostly covers searching:
- 1. Linear Search
- 2. Binary Search
- 3. Indexing
- 4. Hashing
- 5. B+ Tree
- (Skip bitmap index and functional index)

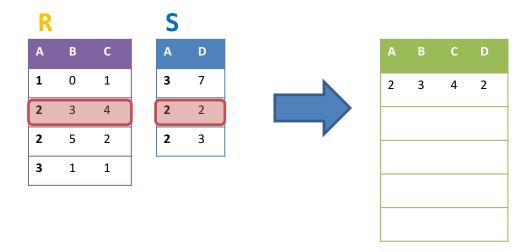
Algorithm for Join Operation

• The most time consuming operation

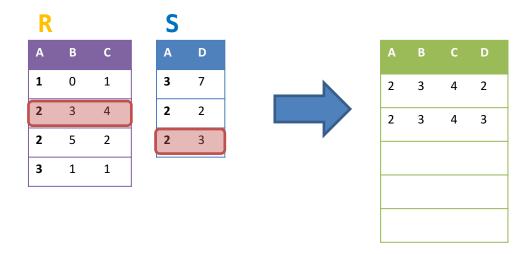
What you will learn about in this section

- 1. Nested Loop Join (NLJ)
- 2. Block Nested Loop Join (BNLJ)
- 3. Index Nested Loop Join (INLJ)
- 4. Sorted-Merge Join
- 5. Hash Join

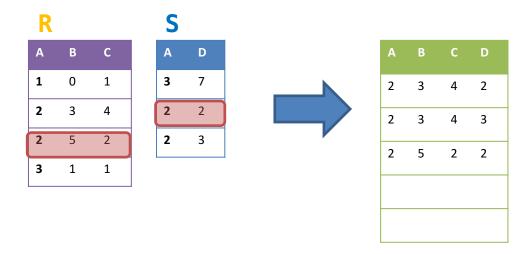
RECAP: Joins



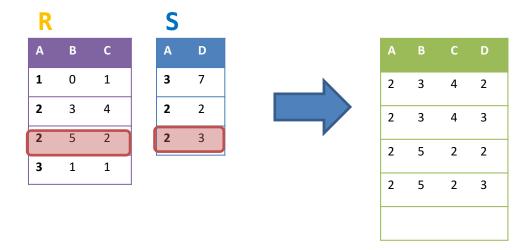
$$R \bowtie S$$
 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

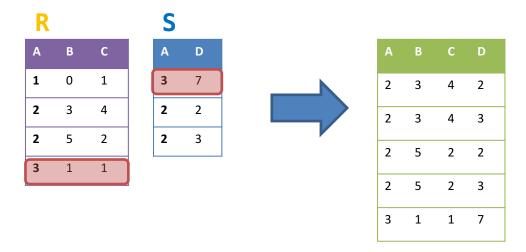


$$R \bowtie S$$
 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A



$$R \bowtie S$$
 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

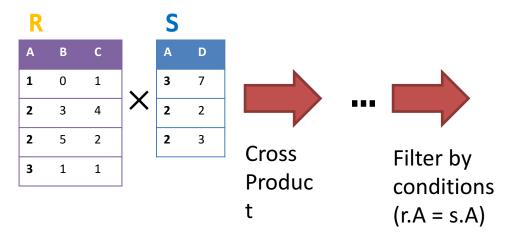




Semantically: A Subset of the Cross Product

R M S SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A

Example: Returns all pairs of tuples $r \in R$, $s \in S$ such that r.A = s.A



Α	В	С	D
2	3	4	2
2	3	4	3
2	5	2	2
2	5	2	3
3	1	1	7

Can we actually implement a join in this way?

Notes

- We write $\mathbf{R} \bowtie \mathbf{S}$ to mean join R and S by returning all tuple pairs where **all shared attributes** are equal
- We write $\mathbf{R} \bowtie \mathbf{S}$ on \mathbf{A} to mean join R and S by returning all tuple pairs where $\mathbf{attribute}(\mathbf{s}) \mathbf{A}$ are equal
- For simplicity, we'll consider joins on **two tables** and with **equality constraints** ("equijoins")

However joins *can* merge > 2 tables, and some algorithms do support non-equality constraints!

Nested Loop Joins

Notes

- We are again considering "IO aware" algorithms: *care about disk IO*
- Given a relation R, let:
 - -T(R) = # of tuples in R
 - -P(R) = # of pages in R

Recall that we read / write entire pages with disk IO

• Note also that we omit ceilings in calculations... good exercise to put back in!

```
Compute R ⋈ S on A:
  for r in R:
   for s in S:
    if r[A] == s[A]:
      yield (r,s)
```

```
Compute R ⋈ S on A:
    for r in R:
    for s in S:
        if r[A] == s[A]:
        yield (r,s)
```

Cost:

P(R)

1. Loop over the tuples in R

Note that our IO cost is based on the number of pages loaded, not the number of tuples!

```
Compute R \bowtie S \text{ on } A:

for r in R:

for s in S:

if r[A] == s[A]:

yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S)$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S

Have to read *all of S* from disk for *every tuple in R!*

```
Compute R ⋈ S on A:
  for r in R:
  for s in S:
    if r[A] == s[A]:
      yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S)$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S
- 3. Check against join conditions

Note that NLJ can handle things other than equality constraints... just check in the *if* statement!

```
Compute R \bowtie S \text{ on } A:

for r in R:

for s in S:

if r[A] == s[A]:

yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S) + OUT$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S
- 3. Check against join conditions
- 4. Write out (to page, then when page full, to disk)

```
Compute R ⋈ S on A:
  for r in R:
  for s in S:
   if r[A] == s[A]:
    yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S) + OUT$$

What if R ("outer") and S ("inner") switched?

$$P(S) + T(S)*P(R) + OUT$$

Outer vs. inner selection makes a huge difference-DBMS needs to know which relation is smaller!

Given 3 pages of memory

Cost:

Compute R ⋈ S on A: for each page pr of R: for page ps of S: for each tuple r in pr: for each tuple s in ps: if r[A] == s[A]: yield (r,s)

P(R)

 Load in 1 page of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we're reading in multiple pages sequentially however we'll ignore this here!

Given 3 pages of memory

Cost:

```
Compute R ⋈ S on A:
   for each page pr of R:
    for page ps of S:
      for each tuple r in pr:
        for each tuple s in ps:
        if r[A] == s[A]:
        yield (r,s)
```

$$P(R) + P(R) \cdot P(S)$$

- Load in 1 page of R at a time (leaving 1 page each free for S & output)
- 2. For each page segment of R, load each page of S

Note: Faster to iterate over the *smaller* relation first!

Given 3 pages of memory

Cost:

Compute R ⋈ S on A: for each page pr of R: for page ps of S: for each tuple r in pr: for each tuple s in ps: if r[A] == s[A]: yield (r,s)

$$P(R) + P(R) \cdot P(S)$$

- Load in 1 page of R at a time (leaving 1 page each free for S & output)
- 2. For each page segment of R, load each page of S
- 3. Check against the join conditions

BNLJ can also handle non-equality constraints

Given 3 pages of memory

Cost:

Compute R ⋈ S on A: for each page pr of R: for page ps of S: for each tuple r in pr: for each tuple s in ps: if r[A] == s[A]: yield (r,s)

$$P(R) + P(R) \cdot P(S)$$

- Load 1 page of R at a time (leaving 1 page each free for S & output)
- 2. For each page segment of R, load each page of S
- 3. Check against the join conditions

4. Write out

Block Nested Loop Join (BNLJ) (B+1 pages of Memory)

Given **B+1** pages of memory

Cost:

Compute R ⋈ S on A: for each B-1 pages pr of R: for page ps of S: for each tuple r in pr: for each tuple s in ps: if r[A] == s[A]: yield (r,s)

P(R)

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we're reading in multiple pages sequentially however we'll ignore this here!

```
Compute R ⋈ S on A:
   for each B-1 pages pr of R:
     for page ps of S:
        for each tuple r in pr:
           for each tuple s in
ps:
        if r[A] == s[A]:
```

yield (r,s)

Given **B+1** pages of memory

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S)$$

- 1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S

Note: Faster to iterate over the *smaller* relation first!

Given **B+1** pages of memory

Compute $R \bowtie S \ on \ A$:

for each B-1 pages pr of R: for page ps of S:

for each tuple r in pr:

for each tuple s in

ps:

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S)$$

- Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S
- 3. Check against the join conditions

BNLJ can also handle non-equality constraints

Given **B+1** pages of memory

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S) + OUT$$

- 1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S
- 3. Check against the join conditions

4. Write out

BNLJ vs. NLJ: Benefits of IO Aware

- In BNLJ, by loading larger chunks of R, we minimize the number of full *disk reads* of S
 - We only read all of S from disk for *every* (*B-1*)-page segment of *R*!
 - Still the full cross-product, but more done only in memory

P(R) + T(R)*P(S) + OUT

BNLJ

$$P(R) + \frac{P(R)}{B-1}P(S) + OUT$$

BNLJ is faster by roughly $\frac{(B-1)T(R)}{P(R)}$

BNLJ vs. NLJ: Benefits of IO Aware

- Example:
 - R: 500 pages
 - S: 1000 pages
 - 100 tuples / page
 - We have 12 pages of memory (B = II)

Ignoring OUT here...

- NLJ: Cost = 5oo + 50,000*1000 = 50 Million $IOs \sim = 140$ hours
- BNLJ: Cost = $500 + \frac{500*1000}{10} = 50$ Thousand IOs $\sim = 0.14$ hours

A very real difference from a small change in the algorithm!

Acknowledgement

- Some of the slides in this presentation are taken from the slides provided by the authors.
- Many of these slides are taken from cs145 course offered by Stanford University.