
CSC 261/461 – Database Systems
Lecture 20

Fall 2017

CSC	261,	Fall	2017

Announcements

• Project 3 (MongoDB) is out
– Due on Dec 01

• Term paper is due on:
– Dec 08, 2017
– (You need to finish your poster before that to have ample time for

getting it printed)
– Details will follow…

CSC	261,	Fall	2017

Topics for Today

• MongoDb
• Query Processing (Chapter 18)
• Query Optimization (Chapter 19)

CSC	261,	Fall	2017

CSC	261,	Fall	2017

MONGODB

CSC	261,	Fall	2017

What is MongoDB

• Scalable	High-Performance	Open-source,	Document-orientated	
database.

•	Built	for	Speed

•	Rich	Document	based	queries	for	Easy	readability.	

•	Full	Index	Support	for	High	Performance.	

•	Map	/	Reduce	for	Aggregation.

CSC	261,	Fall	2017

Why use MongoDB?

• SQL	was	invented	in	the	70’s	to	store	data.

•	MongoDB	stores	documents	(or)	objects

•	Embedded	documents	and	arrays	reduce	need	for	joins

CSC	261,	Fall	2017

Why will we use Mongodb?

• Semi-Structured	Content	Management

CSC	261,	Fall	2017

XML -> Tables

• Items -> User, Item, Category, Bid

CSC	261,	Fall	2017

Object-relational impedance mismatch

• A set of conceptual and technical difficulties that are often
encountered:
– when a relational database management system (RDBMS) is being

served by an application program (or multiple application
programs) written in an object-oriented programming language

• Objects or class definitions must be mapped to database
tables defined by relational schema.

CSC	261,	Fall	2017

MongoDB: No Impedance Mismatch

// your application code
class Foo { int x; string [] tags;}

// mongo document for Foo
{ x: 1, tags: [‘abc’,’xyz’] }

CSC	261,	Fall	2017

Database

When I say

Database
Think

•	Made	up	of	Multiple	Collections.

•	Created	on-the-fly	when	referenced	for	the	first	time.

CSC	261,	Fall	2017

Collection

When I say

Table
Think

•	Schema-less,	and	contains	Documents.

•	Indexable	by	one/more	keys.

•	Created	on-the-fly	when	referenced	for	the	first	time.

•	Capped	Collections: Fixed	size,	older	records	get	dropped	after	
reaching	the	limit.

CSC	261,	Fall	2017

Document

When I say

Record/Row
Think

•	Stored	in	a	Collection.

•	Have	_id	key	– works	like	Primary	keys	in	MySQL.	

•	Supported	Relationships	– Embedded	(or)	References.

•	Document	storage	in	BSON (Binary	form	of	JSON).

CSC	261,	Fall	2017

The Document Model

CSC	261,	Fall	2017

var post	=	{
‘_id’:	ObjectId(‘3432’),
‘author’:	ObjectId(‘2311’),	
‘title’:	‘Introduction	to	MongoDB’,
‘body’:	‘MongoDB	is	an	open	sources..	‘,
‘timestamp’:	Date(’01-04-12’),
‘tags’:	[‘MongoDB’,	‘NoSQL’],
‘comments’:	[{‘author’:	ObjectId(‘5331’),

‘date’:	Date(’02-04-12’),
‘text’:	‘Did	you	see..	‘,
‘upvotes’:	7}]

}

>	db.posts.insert(post);

//	find	posts	which	has	‘MongoDB’ tag.
>	db.posts.find({tags:	‘MongoDB’});

//	find	posts	by	author’s	comments.
>	db.posts.find({‘comments.author’:	‘Johnson’}).count();

//	find	posts	written	after	31st March.	
>	db.posts.find({‘timestamp’:	{‘$gte’:	Date(’31-03-12’)}});

$gt,	$lt,	$gte,	$lte,	$ne,	$all,	$in,	$nin…

Find

CSC	261,	Fall	2017

Which fields?

db.foo.find(query, projection)

Which documents?

Find

CSC	261,	Fall	2017

Find: Projection

> db.posts.find({}, {title:1})

{ "_id" : ObjectId("5654381f37f63ffc4ebf1964"),
"title" : "NodeJS server" }

{ "_id" : ObjectId("5654385c37f63ffc4ebf1965"),
"title" : "Introduction to MongoDB" }

Like
select title from posts

Empty projection like
select * from posts

CSC	261,	Fall	2017

•Query criteria
•Single	value field
•Array field
•Sub-document	/	dot notation

Find

•Field	inclusion	andexclusionProjection

•Sort
•Limit
•Skip

Cursor

Find

CSC	261,	Fall	2017

>	db.posts.update(
{"_id"	:	ObjectId("5654381f37f63ffc4ebf1964")},	
{

title:"NodeJS	server"
});

This will replace the document by {title:"NodeJS	server"}

Update

CSC	261,	Fall	2017

>	db.posts.update(
{"_id"	:	ObjectId("5654381f37f63ffc4ebf1964")},	
{

$addToSet:	{tags:"JS"},	
$set:	{title:"NodeJS server"},
$unset:	{	comments:	1}	

});

$set,	$unset
$push,	$pull,	$pop,	$addToSet
$inc,	$decr,	many	more…

Update: Change part of the document

CSC	261,	Fall	2017

db.foo.update(query,update,options);

CollectionName

Which		
Document?

What		
Change?

One?		
Many?		
Upsert?

Options:
{multi: true} – will change all found documents;

by default only first found will be updated
{upsert: true} – will insert document if it was not found

Update

CSC	261,	Fall	2017

Remove

• db.collection.remove(<query>, <justOne>)

• db.items.remove({Currently: { $gt: 20 } })

CSC	261,	Fall	2017

Aggregation

CSC	261,	Fall	2017

Aggregation

• https://docs.mongodb.com/v3.0/applications/aggregation/

• https://www.safaribooksonline.com/blog/2013/06/21/aggregati
on-in-mongodb/

CSC	261,	Fall	2017

MapReduce

CSC	261,	Fall	2017

Acknowledgement

• Many of these slides are produced by Luxoft.com

CSC	261,	Fall	2017

QUERY PROCESSING

CSC	261,	Fall	2017

Steps in Query Processing

• Scanning

• Parsing

• Validation

• Query Tree Creation

• Query Optimization (Query planning)

• Code generation (to execute the plan)

• Running the query code

CSC	261,	Fall	2017

Nested Loop Joins

CSC	261,	Fall	2017

Notes

• We are again considering “IO aware”
algorithms: care about disk IO

• Given a relation R, let:
– T(R) = # of tuples in R
– P(R) = # of pages in R

• Note also that we omit ceilings in
calculations… good exercise to put
back in!

Recall	that	we	read	/	write	
entire	pages	with	disk	IO

CSC	261,	Fall	2017

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

CSC	261,	Fall	2017

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)

1. Loop	over	the	tuples	in	R

Note	that	our	IO	cost	is	
based	on	the	number	of	
pages loaded,	not	the	
number	of	tuples!

Cost:

CSC	261,	Fall	2017

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)	+	T(R)*P(S)

Have	to	read	all	of	S	from	disk	for	every	tuple	in	R!

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

Cost:

CSC	261,	Fall	2017

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)	+	T(R)*P(S)

Note	that	NLJ	can	handle	things	other	than	equality	
constraints…	just	check	in	the	if	statement!

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

3. Check	against	join	
conditions

Cost:

CSC	261,	Fall	2017

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)	+	T(R)*P(S)	+	OUT

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

3. Check	against	join	conditions

4. Write	out	(to	page,	then	
when	page	full,	to	disk)

Cost:

CSC	261,	Fall	2017

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)	+	T(R)*P(S)	+	OUT

What	if	R	(“outer”)	and	S	
(“inner”)	switched?

Cost:

P(S)	+	T(S)*P(R)	+	OUT

Outer	vs.	inner	selection	makes	a	huge	difference-
DBMS	needs	to	know	which	relation	is	smaller!

CSC	261,	Fall	2017

Block Nested Loop Join (BNLJ)

CSC	261,	Fall	2017

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each page pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

P(𝑅)

Given	3	pages	of	memory

1. Load	in	1	page	of	R	at	a	time	
(leaving	1	page	each	free	for	
S	&	output)

Cost:

Note:	There	could	be	some	
speedup	here	due	to	the	fact	
that	we’re	reading	in	multiple	
pages	sequentially	however	
we’ll	ignore	this	here!

CSC	261,	Fall	2017

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each page pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Block Nested Loop Join (BNLJ)

P 𝑅 + 𝑃 𝑅 . 𝑃(𝑆)

Given	3	pages	of	memory

Note:	Faster	to	iterate	over	
the	smaller relation	first!

1. Load	in	1	page	of	R	at	a	time	
(leaving	1	page	each	free	for	
S	&	output)

2. For	each	page	segment	of	R,	
load	each	page	of	S

Cost:

CSC	261,	Fall	2017

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each page pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Block Nested Loop Join (BNLJ)

Given	3 pages	of	memory

1. Load	in	1	page	of	R	at	a	time	
(leaving	1	page	each	free	for	
S	&	output)

2. For	each	page	segment	of	R,	
load	each	page	of	S

3. Check	against	the	join	
conditions

BNLJ	can	also	handle	non-equality	
constraints

Cost:

CSC	261,	Fall	2017

P 𝑅 + 𝑃 𝑅 . 𝑃(𝑆)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each page pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Block Nested Loop Join (BNLJ)

Given	3	pages	of	memory

1. Load	1	page	of	R	at	a	time	
(leaving	1	page	each	free	for	
S	&	output)

2. For	each	page	segment	of	R,	
load	each	page	of	S

3. Check	against	the	join	
conditions

4. Write	out

Cost:

CSC	261,	Fall	2017

P 𝑅 + 𝑃 𝑅 . 𝑃(𝑆)

Block Nested Loop Join (BNLJ) (B+1 pages of Memory)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

P(𝑅)

Given	B+1 pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

Cost:

Note:	There	could	be	some	
speedup	here	due	to	the	fact	
that	we’re	reading	in	multiple	
pages	sequentially	however	
we’ll	ignore	this	here!

CSC	261,	Fall	2017

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in
ps:

if r[A] == s[A]:
yield (r,s)

P 𝑅 +	
𝑃 𝑅
𝐵 − 1𝑃(𝑆)

Given	B+1	pages	of	memory

Note:	Faster	to	iterate	over	
the	smaller relation	first!

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

Cost:

CSC	261,	Fall	2017

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in
ps:

if r[A] == s[A]:
yield (r,s)

Given	B+1	pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

3. Check	against	the	join	
conditions

BNLJ	can	also	handle	non-equality	
constraints

Cost:

P 𝑅 +	
𝑃 𝑅
𝐵 − 1𝑃(𝑆)

CSC	261,	Fall	2017

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in
ps:

if r[A] == s[A]:
yield (r,s)

P 𝑅 +	2 3
456

𝑃(𝑆) +	OUT

Given	B+1	pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

3. Check	against	the	join	
conditions

4. Write	out

Cost:

CSC	261,	Fall	2017

BNLJ vs. NLJ: Benefits of IO Aware

• In BNLJ, by loading larger chunks of R, we minimize the
number of full disk reads of S
– We only read all of S from disk for every (B-1)-page segment of R!
– Still the full cross-product, but more done only in memory

P 𝑅 +	2 3
456

𝑃(𝑆) +	OUTP(R)	+	T(R)*P(S)	+	OUT
NLJ BNLJ

BNLJ	is	faster	by		roughly	(456)7(3)
2(3)

CSC	261,	Fall	2017

BNLJ vs. NLJ: Benefits of IO Aware

• Example:
–R: 500 pages
–S: 1000 pages
– 100 tuples / page
–We have 12 pages of memory (B = 11)

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~= 140 hours

• BNLJ: Cost = 500 + 899∗6999
69

= 50 Thousand IOs ~= 0.14 hours

A	very	real	difference	from	a	small	
change	in	the	algorithm!

Ignoring	OUT	
here…

CSC	261,	Fall	2017

Smarter than Cross-Products

CSC	261,	Fall	2017

Smarter than Cross-Products: From Quadratic to Nearly Linear

• All joins that compute the full cross-product have some
quadratic term
– For example we saw:

• Now we’ll see some (nearly) linear joins:
– ~ O(P(R) + P(S) + OUT), where again OUT could be quadratic

but is usually better

P 𝑅 +	𝑷 𝑹
456

𝑷(𝑺) +	OUT

P(R)	+	T(R)P(S)	+	OUTNLJ

BNLJ

We	get	this	gain	by	taking	advantage	of	structure- moving	
to	equality	constraints	(“equijoin”)	only!

CSC	261,	Fall	2017

Index Nested Loop Join (INLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
Given index idx on

S.A:
for r in R:

s in idx(r[A]):
yield r,s

P(R)	+	T(R)*L	+	OUT

àWe	can	use	an	index (e.g.	B+	Tree)	to	avoid	doing	
the	full	cross-product!

where	L	is	the	IO	cost	to	
access	all	the	distinct	values	in	
the	index;	assuming	these	fit	
on	one	page,	L	~	3 is	good	
est.	

Cost:

CSC	261,	Fall	2017

Sort-Merge Join (SMJ)

CSC	261,	Fall	2017

What you will learn about in this section

1. Sort-Merge	Join

2. “Backup”	&	Total	Cost

3. Optimizations

CSC	261,	Fall	2017

Sort Merge Join (SMJ): Basic Procedure

To compute R ⋈ 𝑆	𝑜𝑛	𝐴:

1. Sort R, S on A using external merge sort

2. Scan sorted files and “merge”

3. [May need to “backup”- see next subsection]

Note	that	if	R,	S	are	already	sorted	on	A,	
SMJ	will	be	awesome!

Note	that	we	are	only	
considering	equality	
join	conditions	here

CSC	261,	Fall	2017

SMJ Example: R ⋈ 𝑆	𝑜𝑛	𝐴	with 3 page buffer

• For simplicity: Let each page be one tuple, and let the first
value be A

Dis
k Main	Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

We	show	the	
file	HEAD,	
which	is	the	
next	value	to	
be	read!

CSC	261,	Fall	2017

SMJ Example: R ⋈ 𝑆	𝑜𝑛	𝐴	with 3 page buffer

1. Sort the relations R, S on the join key (first value)

Dis
k Main	Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

(3,j) (5,b)(0,a)

(3,g) (7,f)(0,j)

CSC	261,	Fall	2017

SMJ Example: R ⋈ 𝑆	𝑜𝑛	𝐴	with 3 page buffer

2. Scan and “merge” on join key!

Dis
k Main	Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)

(0,a)(0,a)

(0,j)

CSC	261,	Fall	2017

SMJ Example: R ⋈ 𝑆	𝑜𝑛	𝐴	with 3 page buffer

2. Scan and “merge” on join key!

Dis
k Main	Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)(0,a)

(0,a)

(0,j)
(0,a,j)

CSC	261,	Fall	2017

SMJ Example: R ⋈ 𝑆	𝑜𝑛	𝐴	with 3 page buffer

2. Scan and “merge” on join key!

Disk

Main	Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,a)

(0,j)

(0,a,j)

(3,j,g)

(3,j)

(3,g)

(5,b)

(7,f)

CSC	261,	Fall	2017

SMJ Example: R ⋈ 𝑆	𝑜𝑛	𝐴	with 3 page buffer

2. Done!

Disk

Main	Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,a)

(0,j)

(0,a,j)

(3,j)

(3,g)

(3,j,g)

(5,b)

(7,f)

CSC	261,	Fall	2017

What happens with duplicate join keys?

CSC	261,	Fall	2017

Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Dis
k Main	Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,j)

(0,a)

(0,j)

CSC	261,	Fall	2017

Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Dis
k Main	Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,j) (0,a,j)

CSC	261,	Fall	2017

Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Disk
Main	Memory

Buffer
R

S (0,g) 7,f

(0,j) 5,b

Output

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,a,j)

(0,a,g)
(0,g)

(0,j)

CSC	261,	Fall	2017

Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Dis
k Main	Memory

Buffer
R

S 0,g 7,f

0,j 5,b

Output

(0,j) (0,b)

(7,f)

(0,a)

(0,a,j)

(0,g)

(0,a,g)

(0,j
)

Have	to	“backup”	in	the	scan	of	S	
and	read	tuple	we’ve	already	read!

(0,j)(0,j)

CSC	261,	Fall	2017

Backup

• At best, no backup à scan takes P(R) + P(S) reads
– For ex: if no duplicate values in join attribute

• At worst (e.g. full backup each time), scan could take P(R) *
P(S) reads!
– For ex: if all duplicate values in join attribute, i.e. all tuples in R

and S have the same value for the join attribute
– Roughly: For each page of R, we’ll have to back up and read each

page of S…

• Often not that bad however

CSC	261,	Fall	2017

SMJ: Total cost

• Cost of SMJ is cost of sorting R and S…

• Plus the cost of scanning: ~P(R)+P(S)
– Because of backup: in worst case P(R)*P(S); but this would be very

unlikely

• Plus the cost of writing out: ~P(R)+P(S) but in worst case
T(R)*T(S)

~	Sort(P(R))	+	Sort(P(S))	
+	P(R)	+	P(S) +	OUT

CSC	261,	Fall	2017

SMJ vs. BNLJ

• If we have 100 buffer pages, P(R) = 1000 pages and P(S) =
500 pages:
– Sort both in two passes: 2 * 2 * 1000 + 2 * 2 * 500 = 6,000 IOs
– Merge phase 1000 + 500 = 1,500 IOs
– = 7,500 IOs + OUT

What is BNLJ?

– 500 + 1000* 899
AB

= 6,500 IOs + OUT

• But, if we have 35 buffer pages?
– Sort Merge has same behavior (still 2 passes)
– BNLJ? 15,500 IOs + OUT!

CSC	261,	Fall	2017

Merge	/	Join	
Phase

Sort	Phase
(Ext.	Merge	
Sort)

Basic SMJ

SR

Split	&	sortSplit	&	sort

Given	B+1	buffer	
pages

Joined	output	
file	created!

Unsorted	input	relations

MergeMerge

MergeMerge

CSC	261,	Fall	2017

Takeaway points from SMJ

If input already sorted on join key, skip the sorts.
– SMJ is basically linear.
– Nasty but unlikely case: Many duplicate join keys.

CSC	261,	Fall	2017

4. HASH JOIN (HJ)

CSC	261,	Fall	2017

What you will learn about in this section

1. Hash	Join

2. Memory	requirements

CSC	261,	Fall	2017

Recall: Hashing

• Magic of hashing:
– A hash function hB maps into [0,B-1]
– And maps nearly uniformly

• A hash collision is when x != y but hB(x) = hB(y)
– Note however that it will never occur that x = y but hB(x) != hB(y)

CSC	261,	Fall	2017

Hash Join: High-level procedure

To compute R ⋈ 𝑆	𝑜𝑛	𝐴:

1. Partition Phase: Using one (shared) hash function hB,
partition R and S into B buckets

2. Matching Phase: Take pairs of buckets whose tuples have
the same values for h, and join these
1. Use BNLJ here; or hash again à either way, operating on small

partitions so fast!

Note	again	that	we	are	only	
considering	equality	constraints	here

We	decompose the	problem	using	hB,	then	
complete	the	join

CSC	261,	Fall	2017

Hash Join: High-level procedure

1. Partition Phase: Using one (shared) hash function hB,
partition R and S into B buckets

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

More	detail	in	
a	second…

(0,a)
(0,a)

(0,j)

(3,j)
(3,b)

(0,a)
(0,j)

(5,b)(5,b)

Note	our	new	
convention:	
pages	each	
have	two	
tuples	(one	per	
row)

CSC	261,	Fall	2017

Hash Join: High-level procedure

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join	
matchin
g	
buckets

2.	Matching	Phase:	Take	pairs	of	buckets	whose	tuples	have	the	same	
values	for	hB,	and	join	these

(3,j)
(3,b)

CSC	261,	Fall	2017

Hash Join: High-level procedure

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Don’t	have	
to	join	the	
others!		
E.g.	(S1 and	
R2)!

2.	Matching	Phase:	Take	pairs	of	buckets	whose	tuples	have	the	same	
values	for	hB,	and	join	these

(3,j)
(3,b)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into buckets such
that if hB(ti.A) = hB(tj.A) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:
– We use B buffer pages for output (one for each bucket), and 1 for

input
• For each tuple t in input, copy to buffer page for hB(t.A)
• When page fills up, flush to disk.

CSC	261,	Fall	2017

How big are the resulting buckets?

• Given N input pages, we partition into B buckets:
– à Ideally our buckets are each of size ~ N/B pages

Given	B+1	buffer
pages

CSC	261,	Fall	2017

How big do we want the resulting buckets?

• Ideally, our buckets would be of size ≤ 𝑩 − 𝟏 pages
– 1 for input page, 1 for output page, B-1 for each bucket

• Recall: If we want to join a bucket from R and one from
S, we can do BNLJ in linear time if for one of them
(wlog say R), 	𝑷(𝑹) ≤ 𝑩 − 𝟏!
– And more generally, being able to fit bucket in memory is

advantageous

• We can keep partitioning buckets that are > B-1 pages,
until they are ≤ 𝑩 − 𝟏 pages
– Using a new hash key which will split them…

We’ll	call	each	of	
these	a	“pass”	again…

Given	B+1	buffer
pages

Recall	for	BNLJ:
P 𝑅

+	
𝑃 𝑅 𝑃(𝑆)
𝐵 − 1

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

We partition into B = 2 buckets using hash function h2 so that we
can have one buffer page for each partition (and one for input)

Dis
k

R

(3,j)
(0,j)

Given	B+1	=	3	buffer pages

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

For	simplicity,	we’ll	look	at	partitioning	
one	of	the	two	relations- we	just	do	the	
same	for	the	other	relation!

Recall:	our	goal	will	be	to	get	B	=	2	
buckets of	size	<=	B-1	à 1	page	each

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

1. We read pages from R into the “input” page of the
buffer…

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

2. Then we use hash function h2 to sort into the
buckets, which each have one page in the buffer

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

(3,a)

h2(0)	=	0

(0,a)
(3,a)

(0,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

CSC	261,	Fall	2017

Main	Memory

Buffer

Hash Join Phase 1: Partitioning

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

(3,a)

h2(3)	=	1

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

2.	Then	we	use	hash	function	h2 to	sort	into	the	buckets,	which	each	
have	one	page	in	the	buffer

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(3)	=	1

(3,j)
(0,j)

(3,a)
(3,j)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(0)	=	0

(3,a)
(3,j)

(0,a)
(0,j)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…
then flush to disk

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

(5,b) (5,a)
(0,j)

B0

B1

(3,a)
(3,j)

(0,a)
(0,j)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…
then flush to disk

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)
(0,j)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

Note that collisions can occur!

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(5)	=	1

Collision!!!

(5,a)
(0,j)

(5,a)

h2(5)	=	h2(3)	=	1

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

Finish this pass…

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(0)	=	0

(5,a)(0,j)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

Finish this pass…

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)

(5,b)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

Finish this pass…

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)(5,b)

h2(5)	=	1

(5,a)
(5,b)

h2(5)	=	h2(3)	=	1

Collision!!!

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

Finish this pass…

Main	Memory

Buffer

Inpu
t	

page

0 1

Output	(bucket)	pages

Dis
k

R

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j) (5,a)
(5,b)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

Dis
k

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

We	wanted	buckets	of	size	B-1	=	
1…	however	we	got	larger	ones	
due	to:

(1)	Duplicate	join	
keys

(2)	Hash	collisions

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

Dis
k

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

To	take	care	of	larger	
buckets	caused	by	(2)	hash	
collisions,	we	can	just	do	
another	pass!
What	hash	function	should	
we	use?

Do	another	pass	with	a	
different	hash	function,	h’2,	
ideally	such	that:

h’2(3)	!=	h’2(5)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

Dis
k

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

To	take	care	of	larger	
buckets	caused	by	(2)	hash	
collisions,	we	can	just	do	
another	pass!
What	hash	function	should	
we	use?

Do	another	pass	with	a	
different	hash	function,	h’2,	
ideally	such	that:

h’2(3)	!=	h’2(5)

B2
(5,a)
(5,b)

CSC	261,	Fall	2017

Hash Join Phase 1: Partitioning

Dis
k

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

What	about	duplicate	join	keys?		
Unfortunately	this	is	a	problem…	
but	usually	not	a	huge	one.

B2
(5,a)
(5,b)

We	call	this	unevenness	
in	the	bucket	size	skew

CSC	261,	Fall	2017

Now that we have partitioned R and S…

CSC	261,	Fall	2017

Hash Join Phase 2: Matching

• Now, we just join pairs of buckets from R and S that have
the same hash value to complete the join!

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join	
matchin
g	
buckets

(3,j)
(3,b)

CSC	261,	Fall	2017

Hash Join Phase 2: Matching

• Note that since x = y à h(x) = h(y), we only need to consider pairs
of buckets (one from R, one from S) that have the same hash
function value

• If our buckets are ~𝑩 − 𝟏 pages, can join each such pair using
BNLJ in linear time; recall (with P(R) = B-1):

BNLJ	Cost: P 𝑅 +	2 3 2(Q)
456

= 𝑃(𝑅) +	 (456)2(Q)
456

=	P(R)	+	P(S)

Joining	the	pairs	of	buckets	is	linear!		
(As	long	as	smaller	bucket	<=	B-1	pages)

CSC	261,	Fall	2017

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A	
hashed	
values

S.A	hashed	
values

R ⋈ 𝑆	𝑜𝑛	𝐴	

CSC	261,	Fall	2017

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A	
hashed	
values

S.A	hashed	
values

R ⋈ 𝑆	𝑜𝑛	𝐴	

To	perform	the	join,	we	
ideally	just	need	to	
explore	the	dark	blue	
regions	

=	the	tuples	with	same	
values	of	the	join	key	A

A=1

A=2

A=3

A=4
A=5

A=6

CSC	261,	Fall	2017

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A	
hashed	
values

S.A	hashed	
values

R ⋈ 𝑆	𝑜𝑛	𝐴	

With	a	join	algorithm	like	
BNLJ	that	doesn’t	take	
advantage	of	equijoin	
structure,	we’d	have	to	
explore	this	whole	grid!

CSC	261,	Fall	2017

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A	
hashed	
values

S.A	hashed	
values

R ⋈ 𝑆	𝑜𝑛	𝐴	
h(A)=0

h(A)=1

h(A)=2

With	HJ,	we	only	
explore	the	blue	
regions

=	the	tuples	with	
same	values	of	h(A)!

We	can	apply	BNLJ	to	
each	of	these	regions

CSC	261,	Fall	2017

Hash Join Phase 2: Matching

R.A	
hashed	
values

S.A	hashed	
values

R ⋈ 𝑆	𝑜𝑛	𝐴	h'(A)=0

h'(A)
=2

An	alternative	to	
applying	BNLJ:

We	could	also	hash	
again,	and	keep	
doing	passes	in	
memory	to	reduce	
further!

h'(A)=1

h'(A
)=3 h'(A

)=4

h'(A)=5

CSC	261,	Fall	2017

Hash Join Summary

– Partitioning requires reading + writing each page of R,S
• à 2(P(R)+P(S)) IOs

– Matching (with BNLJ) requires reading each page of R,S
• à P(R) + P(S) IOs

– Writing out results could be as bad as P(R)*P(S)… but
probably closer to P(R)+P(S)

HJ	takes	~3(P(R)+P(S))	+	OUT IOs!

CSC	261,	Fall	2017

Sort-Merge vs. Hash Join

• Given enough memory, both SMJ and HJ have
performance:

• “Enough” memory =

– SMJ: B2 > max{P(R), P(S)}

– HJ: B2 > min{P(R), P(S)}

Hash	Join	superior	if	relation	sizes	differ	greatly.		Why?

~3(P(R)+P(S))	+	
OUT

CSC	261,	Fall	2017

Further Comparisons of Hash and Sort Joins

• Hash Joins are highly parallelizable.

• Sort-Merge less sensitive to data
skew and result is sorted

CSC	261,	Fall	2017

Summary

• Saw IO-aware join algorithms
– Massive differences in performance.

CSC	261,	Fall	2017

Acknowledgement

• Some of the slides in this presentation are taken from the
slides provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

CSC	261,	Fall	2017

