CSC 261/461 – Database Systems Lecture 20

Fall 2017

Announcements

- Project 3 (MongoDB) is out
 - Due on Dec oi
- Term paper is due on:
 - -Dec 08, 2017
 - (You need to finish your poster before that to have ample time for getting it printed)
 - Details will follow...

Topics for Today

- MongoDb
- Query Processing (Chapter 18)
- Query Optimization (Chapter 19)

MONGODB

What is MongoDB

- Scalable High-Performance Open-source, Document-orientated database.
- Built for Speed
- Rich Document based queries for Easy readability.
- Full Index Support for High Performance.
- Map / Reduce for Aggregation.

Why use MongoDB?

- SQL was invented in the 70's to store data.
- MongoDB stores documents (or) objects
- Embedded documents and arrays reduce need for joins

Why will we use Mongodb?

Semi-Structured Content Management

XML -> Tables

• Items -> User, Item, Category, Bid

Object-relational impedance mismatch

- A set of conceptual and technical difficulties that are often encountered:
 - when a relational database management system (RDBMS) is being served by an application program (or multiple application programs) written in an object-oriented programming language
- Objects or class definitions must be mapped to database tables defined by relational schema.

MongoDB: No Impedance Mismatch

```
// your application code
class Foo { int x; string [] tags;}

// mongo document for Foo
{ x: 1, tags: ['abc','xyz'] }
```

When I say Database

Think Database

- Made up of Multiple Collections.
- Created on-the-fly when referenced for the first time.

When I say Collection

Think

Table

- Schema-less, and contains Documents.
- Indexable by one/more keys.
- Created on-the-fly when referenced for the first time.
- Capped Collections: Fixed size, older records get dropped after reaching the limit.

When I say

Think Record/Row

Stored in a Collection.

Document

- Have _id key works like Primary keys in MySQL.
- Supported Relationships Embedded (or) References.
- Document storage in **BSON** (Binary form of JSON).

The Document Model

```
var post = {
         ' id': ObjectId('3432'),
         'author': ObjectId('2311'),
         'title': 'Introduction to MongoDB',
         'body': 'MongoDB is an open sources..',
         'timestamp': Date('01-04-12'),
         'tags': ['MongoDB', 'NoSQL'],
         'comments': [{'author': ObjectId('5331'),
                                     'date': Date('02-04-12'),
                                     'text': 'Did you see.. ',
                                     'upvotes': 7}]
> db.posts.insert(post);
```

Find

```
// find posts which has 'MongoDB' tag.
> db.posts.find({tags: 'MongoDB'});

// find posts by author's comments.
> db.posts.find({'comments.author': 'Johnson'}).count();

// find posts written after 31<sup>st</sup> March.
> db.posts.find({'timestamp': {'$gte': Date('31-03-12')}});
```

\$gt, \$lt, \$gte, \$lte, \$ne, \$all, \$in, \$nin...

Find

Which fields?

db.foo.find(query, projection)

Which documents?

Find: Projection

> db.posts.find({}, {title:1}) { " id" : ObjectId("5654381f37f63ffc4ebf1964"), "title": "NodeJS server" } { " id" : ObjectId("5654385c37f63ffc4ebf1965"), "title": "Introduction to MongoDB" } Like select **title** from **posts** Empty projection like

select * from posts

Find

Find

- Query criteria
 - Single value field
 - Array field
 - Sub-document / dot notation

Projection

• Field inclusion and exclusion

Cursor

- Sort
- •Limit
- Skip

Update

This will **replace** the document by {title:"NodeJS server"}

Update: Change part of the document

```
> db.posts.update(
        {"_id" : ObjectId("5654381f37f63ffc4ebf1964")},
                $addToSet: {tags:"JS"},
                $set: {title:"NodeJS server"},
                $unset: { comments: 1}
        });
 $set, $unset
 $push, $pull, $pop, $addToSet
 $inc, $decr, many more...
```


Options:

Remove

• db.collection.remove(<query>, <justOne>)

• db.items.remove({Currently:{Sgt:20}})

Aggregation

```
Collection
db.orders.aggregate( [
    $group stage → { $group: { _id: "$cust_id",total: { $sum: "$amount" } } }
   cust_id: "A123",
   amount: 500,
   status: "A"
                                     cust_id: "A123",
                                                                          Results
                                     amount: 500,
                                     status: "A"
   cust_id: "A123",
                                                                        _id: "A123",
   amount: 250,
                                                                        total: 750
   status: "A"
                                     cust_id: "A123",
                                      amount: 250,
                       $match
                                                         $group
                                      status: "A"
   cust_id: "B212",
   amount: 200,
                                                                        _id: "B212",
   status: "A"
                                                                        total: 200
                                                                      }
                                     cust_id: "B212",
                                     amount: 200,
                                      status: "A"
   cust_id: "A123",
   amount: 300,
   status: "D"
      orders
```

Aggregation

• https://docs.mongodb.com/v3.o/applications/aggregation/

• https://www.safaribooksonline.com/blog/2013/06/21/aggregation-in-mongodb/

MapReduce

```
Collection
db.orders.mapReduce(
                            function() { emit( this.cust_id, this.amount ); },
           map
                           function(key, values) { return Array.sum( values ) },
           reduce —
                              query: { status: "A" },
           query
                              out: "order_totals"
          output ----
  cust_id: "A123",
  amount: 500,
  status: "A"
                               cust_id: "A123",
                               amount: 500,
                               status: "A"
  cust_id: "A123",
                                                                                           _id: "A123",
  amount: 250,
                                                          "A123": [ 500, 250 ] }
                                                                                           value: 750
   status: "A"
                               cust_id: "A123",
                               amount: 250,
                   query
                                                 map
                               status: "A"
  cust_id: "B212",
                                                         { "B212": 200 }
                                                                                           id: "B212",
  amount: 200,
  status: "A"
                                                                                           value: 200
                               cust_id: "B212",
                               amount: 200.
                               status: "A"
                                                                                         order_totals
  cust_id: "A123",
  amount: 300,
  status: "D"
                                            CSC 261, Fall 2017
```

orders

Acknowledgement

• Many of these slides are produced by Luxoft.com

QUERY PROCESSING

Steps in Query Processing

- Scanning
- Parsing
- Validation
- Query Tree Creation
- Query Optimization (Query planning)
- Code generation (to execute the plan)
- Running the query code

Nested Loop Joins

Notes

- We are again considering "IO aware" algorithms: *care about disk IO*
- Given a relation R, let:
 - -T(R) = # of tuples in R
 - -P(R) = # of pages in R

Recall that we read / write entire pages with disk IO

• Note also that we omit ceilings in calculations... good exercise to put back in!

```
Compute R \bowtie S \text{ on } A:

for r in R:

for s in S:

if r[A] == s[A]:

yield (r,s)
```

```
Compute R ⋈ S on A:
    for r in R:
    for s in S:
        if r[A] == s[A]:
        yield (r,s)
```

Cost:

P(R)

1. Loop over the tuples in R

Note that our IO cost is based on the number of pages loaded, not the number of tuples!

```
Compute R ⋈ S on A:
  for r in R:
    for s in S:
    if r[A] == s[A]:
      yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S)$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S

Have to read *all of S* from disk for *every tuple in R!*

```
Compute R ⋈ S on A:
  for r in R:
  for s in S:
    if r[A] == s[A]:
      yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S)$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S
- 3. Check against join conditions

Note that NLJ can handle things other than equality constraints... just check in the *if* statement!

```
Compute R \bowtie S \text{ on } A:

for r in R:

for s in S:

if r[A] == s[A]:

yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S) + OUT$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S
- 3. Check against join conditions
- 4. Write out (to page, then when page full, to disk)

Nested Loop Join (NLJ)

```
Compute R ⋈ S on A:
  for r in R:
  for s in S:
   if r[A] == s[A]:
    yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S) + OUT$$

What if R ("outer") and S ("inner") switched?

$$P(S) + T(S)*P(R) + OUT$$

Outer vs. inner selection makes a huge difference-DBMS needs to know which relation is smaller!

Given 3 pages of memory

Cost:

Compute R ⋈ S on A: for each page pr of R: for page ps of S: for each tuple r in pr: for each tuple s in ps: if r[A] == s[A]: yield (r,s)

P(R)

 Load in 1 page of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we're reading in multiple pages sequentially however we'll ignore this here!

Given 3 pages of memory

Cost:

```
Compute R ⋈ S on A:
   for each page pr of R:
    for page ps of S:
      for each tuple r in pr:
        for each tuple s in ps:
        if r[A] == s[A]:
        yield (r,s)
```

$$P(R) + P(R) \cdot P(S)$$

- Load in 1 page of R at a time (leaving 1 page each free for S & output)
- 2. For each page segment of R, load each page of S

Note: Faster to iterate over the *smaller* relation first!

Given 3 pages of memory

Cost:

Compute R ⋈ S on A: for each page pr of R: for page ps of S: for each tuple r in pr: for each tuple s in ps: if r[A] == s[A]: yield (r,s)

$$P(R) + P(R) \cdot P(S)$$

- Load in 1 page of R at a time (leaving 1 page each free for S & output)
- 2. For each page segment of R, load each page of S
- 3. Check against the join conditions

BNLJ can also handle non-equality constraints

Given 3 pages of memory

Cost:

```
Compute R ⋈ S on A:
   for each page pr of R:
    for page ps of S:
      for each tuple r in pr:
        for each tuple s in ps:
        if r[A] == s[A]:
        yield (r,s)
```

$$P(R) + P(R) \cdot P(S)$$

- Load 1 page of R at a time (leaving 1 page each free for S & output)
- 2. For each page segment of R, load each page of S
- 3. Check against the join conditions

4. Write out

Block Nested Loop Join (BNLJ) (B+1 pages of Memory)

Given **B+1** pages of memory

Cost:

P(R)

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we're reading in multiple pages sequentially however we'll ignore this here!

```
Compute R ⋈ S on A:
   for each B-1 pages pr of R:
     for page ps of S:
        for each tuple r in pr:
          for each tuple s in
ps:
        if r[A] == s[A]:
        yield (r,s)
```

Given **B+1** pages of memory

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S)$$

- 1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S

Note: Faster to iterate over the *smaller* relation first!

Given **B+1** pages of memory

Compute $R \bowtie S \ on \ A$:

for each B-1 pages pr of R: for page ps of S:

for each tuple r in pr:

for each tuple s in

ps:

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S)$$

- 1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S
- 3. Check against the join conditions

BNLJ can also handle non-equality constraints

```
Compute R ⋈ S on A:
   for each B-1 pages pr of R:
     for page ps of S:
        for each tuple r in pr:
          for each tuple s in
ps:
        if r[A] == s[A]:
        yield (r,s)
```

Given **B+1** pages of memory

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S) + OUT$$

- 1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S
- 3. Check against the join conditions

4. Write out

BNLJ vs. NLJ: Benefits of IO Aware

- In BNLJ, by loading larger chunks of R, we minimize the number of full *disk reads* of S
 - We only read all of S from disk for *every* (*B-1*)-page segment of *R*!
 - Still the full cross-product, but more done only *in memory*

NLJ
$$P(R) + T(R)*P(S) + OUT$$

$$P(R) + \frac{P(R)}{B-1}P(S) + OUT$$

BNLJ is faster by roughly $\frac{(B-1)T(R)}{P(R)}$

BNLJ vs. NLJ: Benefits of IO Aware

- Example:
 - -R: 500 pages
 - -S: 1000 pages
 - -100 tuples / page
 - -We have 12 pages of memory (B = 11)

Ignoring OUT here...

- NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs $\sim = 140$ hours
- BNLJ: Cost = $500 + \frac{500*1000}{10} = 50$ Thousand IOs $\sim = 0.14$ hours

A very real difference from a small change in the algorithm!

Smarter than Cross-Products

Smarter than Cross-Products: From Quadratic to Nearly Linear

• All joins that compute the *full cross-product* have some quadratic term

- For example we saw: P(R) + T(R)P(S) + OUT

BNLJ
$$P(R) + \frac{P(R)}{B-1}P(S) + OUT$$

- Now we'll see some (nearly) linear joins:
 - $-\sim O(P(R)+P(S)+\textit{OUT})$, where again OUT could be quadratic but is usually better

We get this gain by *taking advantage of structure*- moving to equality constraints ("equijoin") only!

Index Nested Loop Join (INLJ)

```
Compute R ⋈ S on A:
    Given index idx on
S.A:
    for r in R:
        s in idx(r[A]):
        yield r,s
```

Cost:

$$P(R) + T(R)*L + OUT$$

where \boldsymbol{L} is the IO cost to access all the distinct values in the index; assuming these fit on one page, L \sim 3 is good est.

→ We can use an **index** (e.g. B+ Tree) to **avoid doing** the full cross-product!

Sort-Merge Join (SMJ)

What you will learn about in this section

- 1. Sort-Merge Join
- 2. "Backup" & Total Cost
- 3. Optimizations

Sort Merge Join (SMJ): Basic Procedure

To compute $R \bowtie S$ on A:

Note that we are only considering equality join conditions here

- 1. Sort R, S on A using *external merge sort*
- 2. Scan sorted files and "merge"
- 3. [May need to "backup" see next subsection]

Note that if R, S are already sorted on A, SMJ will be awesome!

• For simplicity: Let each page be *one tuple*, and let the first value be A

1. Sort the relations R, S on the join key (first value)

2. Scan and "merge" on join key!

2. Scan and "merge" on join key!

2. Scan and "merge" on join key!

2. Done!

What happens with duplicate join keys?

Backup

- At best, no backup \rightarrow scan takes P(R) + P(S) reads
 - For ex: if no duplicate values in join attribute
- At worst (e.g. full backup each time), scan could take P(R)
 P(S) reads!
 - For ex: if *all* duplicate values in join attribute, i.e. all tuples in R and S have the same value for the join attribute
 - Roughly: For each page of R, we'll have to *back up* and read each page of S...
- Often not that bad however

SMJ: Total cost

- Cost of SMJ is cost of sorting R and S...
- Plus the cost of scanning: $\sim P(R) + P(S)$
 - Because of backup: in worst case P(R)*P(S); but this would be very unlikely
- Plus the cost of writing out: $\sim P(R) + P(S)$ but in worst case T(R) * T(S)

SMJ vs. BNLJ

- If we have 100 buffer pages, P(R) = 1000 pages and P(S) = 500 pages:
 - Sort both in two passes: 2 * 2 * 1000 + 2 * 2 * 500 = 6,000 IOs
 - Merge phase 1000 + 500 = 1,500 IOs
 - = 7,500 IOs + OUT

What is BNLJ?

$$-500 + 1000* \left[\frac{500}{98} \right] = 6.500 \text{ IOs} + \text{OUT}$$

- But, if we have 35 buffer pages?
 - Sort Merge has same behavior (still 2 passes)
 - BNLJ? <u>15,500 IOs + OUT!</u>

Basic SMJ

Given **B+1** buffer Unsorted input relations

R **Sort Phase** Split & sort Split & sort (Ext. Merge Sort) Merge Merge Merge Merge Merge / Join **Phase** Joined output file created! CSC 261, Fall 2017

Takeaway points from SMJ

If input already sorted on join key, skip the sorts.

- SMJ is basically linear.
- Nasty but unlikely case: Many duplicate join keys.

4. HASH JOIN (HJ)

What you will learn about in this section

1. Hash Join

2. Memory requirements

Recall: Hashing

- Magic of hashing:
 - A hash function h_B maps into [0,B-1]
 - And maps nearly uniformly
- A hash collision is when x != y but $h_B(x) = h_B(y)$
 - Note however that it will <u>never</u> occur that x = y but $h_B(x) != h_B(y)$

To compute $R \bowtie S$ on A:

Note again that we are only considering equality constraints here

- 1. Partition Phase: Using one (shared) hash function h_B , partition R and S into B buckets
- 2. Matching Phase: Take pairs of buckets whose tuples have the same values for *h*, and join these
 - Use BNLJ here; or hash again → either way, operating on small partitions so fast!

We **decompose** the problem using h_B , then complete the join

1. Partition Phase: Using one (shared) hash function h_B ,

2. Matching Phase: Take pairs of buckets whose tuples have the same values for h_B , and join these

2. Matching Phase: Take pairs of buckets whose tuples have the same values for h_B , and join these

Goal: For each relation, partition relation into buckets such that if $h_B(t_i.A) = h_B(t_i.A)$ they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:

- We use B buffer pages for output (one for each bucket), and 1 for input
 - For each tuple t in input, copy to buffer page for h_B(t.A)
 - When page fills up, flush to disk.

How big are the resulting buckets?

Given **B+1** buffer pages

- Given N input pages, we partition into B buckets:
 - → Ideally our buckets are each of size ~ N/B pages

How big do we want the resulting buckets?

- Ideally, our buckets would be of size $\leq B 1$ pages
 - 1 for input page, 1 for output page, B-1 for each bucket

Given **B+1** buffer pages

- Recall: If we want to join a bucket from R and one from S, we can do BNLJ **in linear time** if for *one of them* $(wlog\ say\ R),\ P(R) \leq B-1!$
 - And more generally, being able to fit bucket in memory is advantageous

Recall for BNLJ: P(R)+ $\frac{P(R)P(S)}{R-1}$

- We can keep partitioning buckets that are > B-1 pages, until they are $\le B-1$ pages
 - Using a new hash key which will split them...

We'll call each of these a "pass" again...

Given **B+1 = 3** buffer pages

We partition into B = 2 buckets using hash function h_2 so that we can have one buffer page for each partition (and one for input)

For simplicity, we'll look at partitioning one of the two relations- we just do the same for the other relation!

Recall: our goal will be to get B = 2buckets of size $\leq B-1 \rightarrow 1$ page each

Given **B+1 = 3** buffer pages

I. We read pages from R into the "input" page of the buffer...

Given **B+1 = 3** buffer pages

2. Then we use **hash function** h_2 to sort into the buckets, which each have one page in the buffer

Given **B+1 = 3** buffer pages

2. Then we use **hash function** h_2 to sort into the buckets, which each have one page in the buffer

Given **B+1 = 3** buffer pages

3. We repeat until the buffer bucket pages are full...

Given **B+1 = 3** buffer pages

3. We repeat until the buffer bucket pages are full...

Given **B+1 = 3** buffer pages

3. We repeat until the buffer bucket pages are full...

Given **B+1 = 3** buffer pages

3. We repeat until the buffer bucket pages are full... then flush to disk

Given **B+1 = 3** buffer pages

3. We repeat until the buffer bucket pages are full... then flush to disk

Given **B+1 = 3** buffer pages

Note that collisions can occur!

Given **B+1 = 3** buffer pages

Given **B+1 = 3** buffer pages

Given **B+1 = 3** buffer pages

Given **B+1 = 3** buffer pages

Given **B+1 = 3** buffer pages

We wanted buckets of size **B-1** = **1**... however we got larger ones due to:

- (1) Duplicate join keys
- (2) Hash collisions

Given **B+1 = 3** buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!
What hash function should we use?

Do another pass with a different hash function, h'_{2} , ideally such that:

$$h'_{2}(3) != h'_{2}(5)$$

Given **B+1 = 3** buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!
What hash function should we use?

Do another pass with a different hash function, h'_{2,} ideally such that:

$$h'_{2}(3) != h'_{2}(5)$$

Given **B+1 = 3** buffer pages

What about duplicate join keys? Unfortunately this is a problem... but usually not a huge one.

We call this unevenness in the bucket size **skew**

Now that we have partitioned R and S...

• Now, we just join pairs of buckets from R and S that have the same hash value to complete the join!

- Note that since $x = y \rightarrow h(x) = h(y)$, we only need to consider pairs of buckets (one from R, one from S) that have the same hash function value
- If our buckets are $\sim B 1$ pages, can join each such pair using BNLJ *in linear time*; recall (with P(R) = B-1):

BNLJ Cost:
$$P(R) + \frac{P(R)P(S)}{B-1} = P(R) + \frac{(B-1)P(S)}{B-1} = P(R) + P(S)$$

Joining the pairs of buckets is linear! (As long as smaller bucket <= B-1 pages)

 $R \bowtie S \ on \ A$

To perform the join, we ideally just need to explore the dark blue regions

= the tuples with same values of the join key A

 $R \bowtie S \ on \ A$

With a join algorithm like BNLJ that doesn't take advantage of equijoin structure, we'd have to explore this **whole grid!**

 $R \bowtie S \ on \ A$

With HJ, we only explore the *blue* regions

= the tuples with same values of h(A)!

We can apply BNLJ to each of these regions

R.A hashed values

S.A hashed values

 $R \bowtie S \ on \ A$

An alternative to applying BNLJ:

We could also hash again, and keep doing passes in memory to reduce further!

Hash Join Summary

- Partitioning requires reading + writing each page of R,S
 - \rightarrow 2(P(R)+P(S)) IOs
- Matching (with BNLJ) requires reading each page of R,S
 - \rightarrow P(R) + P(S) IOs
- Writing out results could be as bad as P(R)*P(S)... but probably closer to P(R)+P(S)

HJ takes $^{\sim}3(P(R)+P(S)) + OUT IOs!$

Sort-Merge vs. Hash Join

• Given enough memory, both SMJ and HJ have performance: ~3(P(R)+P(S)) +

• "Enough" memory =

– SMJ: $B^2 > max\{P(R), P(S)\}$

- HJ: $B^2 > min\{P(R), P(S)\}$

Hash Join superior if relation sizes differ greatly. Why?

OUT

Further Comparisons of Hash and Sort Joins

· Hash Joins are highly parallelizable.

• Sort-Merge less sensitive to data skew and result is sorted

Summary

- Saw IO-aware join algorithms
 - Massive differences in performance.

Acknowledgement

- Some of the slides in this presentation are taken from the slides provided by the authors.
- Many of these slides are taken from cs145 course offered by Stanford University.