Announcements

• Project 3 (MongoDB) is out
 – Due on Dec 01

• Term paper is due on:
 – Dec 08, 2017
 – (You need to finish your poster before that to have ample time for getting it printed)
 – Details will follow…
Topics for Today

• MongoDB
• Query Processing (Chapter 18)
• Query Optimization (Chapter 19)
MONGODB
What is MongoDB

- Scalable High-Performance Open-source, Document-orientated database.
- Built for Speed
- Full Index Support for High Performance.
- Map / Reduce for Aggregation.
Why use MongoDB?

- SQL was invented in the 70’s to store data.
- MongoDB stores documents (or) objects
- Embedded documents and arrays reduce need for joins
Why will we use Mongodb?

• Semi-Structured Content Management
XML -> Tables

• Items -> User, Item, Category, Bid
Object-relational impedance mismatch

• A set of conceptual and technical difficulties that are often encountered:
 – when a relational database management system (RDBMS) is being served by an application program (or multiple application programs) written in an object-oriented programming language

• Objects or class definitions must be mapped to database tables defined by relational schema.
// your application code
class Foo { int x; string [] tags;}

// mongo document for Foo
{ x: 1, tags: ['abc','xyz'] }
When I say **Database**

Think Database

- Made up of Multiple *Collections*.
- Created *on-the-fly* when referenced for the first time.
When I say **Collection**

Think **Table**

- Schema-less, and contains **Documents**.
- **Indexable** by one/more keys.
- Created **on-the-fly** when referenced for the first time.
- **Capped Collections**: Fixed size, older records get dropped after reaching the limit.
When I say **Document** Think **Record/Row**

- Stored in a **Collection**.
- Have _id key – works like Primary keys in MySQL.
- Supported Relationships – **Embedded (or) References**.
- Document storage in **BSON** (Binary form of JSON).
The Document Model

var post = {
 '_id': ObjectId('3432'),
 'author': ObjectId('2311'),
 'title': 'Introduction to MongoDB',
 'body': 'MongoDB is an open sources.. ',
 'timestamp': Date('01-04-12'),
 'tags': ['MongoDB', 'NoSQL'],
 'comments': [{
 'author': ObjectId('5331'),
 'date': Date('02-04-12'),
 'text': 'Did you see.. ',
 'upvotes': 7}
]
}

> db.posts.insert(post);
// find posts which has ‘MongoDB’ tag.
> db.posts.find({tags: ‘MongoDB’});

// find posts by author’s comments.
> db.posts.find({‘comments.author’: ‘Johnson’}).count();

// find posts written after 31st March.
> db.posts.find({‘timestamp’: {‘$gte’: Date(‘31-03-12’)}});
`db.foo.find(query, projection)`

Which documents?

Which fields?
Find: Projection

> db.posts.find({}, {title:1})

{ "_id" : ObjectId("5654381f37f63ffc4ebf1964"),
 "title" : "NodeJS server" }
{ "_id" : ObjectId("5654385c37f63ffc4ebf1965"),
 "title" : "Introduction to MongoDB" }

Like

select title from posts

Empty projection like

select * from posts
Find

- Query criteria
- Single value field
- Array field
- Sub-document /dot notation

Projection

- Field inclusion and exclusion

Cursor

- Sort
- Limit
- Skip
> db.posts.update(
 {
 "_id" : ObjectId("5654381f37f63ffc4ebf1964"),
 {
 title:"NodeJS server"
 }
 });

This will replace the document by {title:"NodeJS server"}
Update: Change part of the document

> db.posts.update(
 {
 "_id" : ObjectId("5654381f37f63ffc4ebf1964")},
 {
 $addToSet: {tags:"JS"},
 $set: {title:"NodeJS server"},
 $unset: { comments: 1}
 });

$set, $unset
$push, $pull, $pop, $addToSet
$inc, $decr, many more...
Update

```
db.foo.update(query, update, options);
```

Which Document?

Collection Name

One? Many? Upsert?

What Change?

Options:

- `{multi: true}` – will change all found documents; by default only first found will be updated
- `{upsert: true}` – will insert document if it was not found
Remove

- `db.collection.remove(<query>, <justOne>)`

- `db.items.remove({Currently: { $gt: 20 }})"
Aggregation

Collection

```javascript
db.orders.aggregate([
  {$match: { status: "A" }},
  {$group: { _id: "$cust_id", total: { $sum: "$amount" } }}
])
```

orders

- cust_id: "A123",
 amount: 500,
 status: "A"
- cust_id: "A123",
 amount: 250,
 status: "A"
- cust_id: "B212",
 amount: 200,
 status: "A"
- cust_id: "A123",
 amount: 300,
 status: "D"

$match

$group

Results

- cust_id: "A123",
 total: 750
- cust_id: "B212",
 total: 200
Aggregation

- https://docs.mongodb.com/v3.0/applications/aggregation/
- https://www.safaribooksonline.com/blog/2013/06/21/aggregation-in-mongodb/
MapReduce

def db.orders.mapReduce:
 map =
 function() {
 emit(this.cust_id, this.amount);
 },
 reduce =
 function(key, values) {
 return Array.sum(values);
 },
 query =
 query: {
 status: "A"
 },
 output =
 "order_totals"

orders

{ cust_id: "A123", amount: 500, status: "A" }
{ cust_id: "A123", amount: 250, status: "A" }
{ cust_id: "B212", amount: 200, status: "A" }
{ cust_id: "A123", amount: 300, status: "D" }

query

reduce

order_totals

{ id: "A123", value: 750 }
{ id: "B212", value: 200 }

CSC 261, Fall 2017
Acknowledgement

• Many of these slides are produced by Luxoft.com
QUERY PROCESSING
Steps in Query Processing

• Scanning

• Parsing

• Validation

• Query Tree Creation

• Query Optimization (Query planning)

• Code generation (to execute the plan)

• Running the query code
Nested Loop Joins
• We are again considering “IO aware” algorithms: *care about disk IO*

• Given a relation R, let:
 – $T(R) = \#$ of tuples in R
 – $P(R) = \#$ of pages in R

• Note also that we omit ceilings in calculations… good exercise to put back in!

Recall that we read / write entire pages with disk IO
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

```
for r in R:
    for s in S:
        if r[A] == s[A]:
            yield (r, s)
```
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

```python
for r in R:
    for s in S:
        if r[A] == s[A]:
            yield (r, s)
```

Cost:

$P(R)$

1. Loop over the tuples in R

Note that our IO cost is based on the number of *pages* loaded, not the number of tuples!
Nested Loop Join (NLJ)

Compute $R \bowtie S$ **on** A:

```python
for r in R:
    for s in S:
        if r[A] == s[A]:
            yield (r, s)
```

Cost:

$P(R) + T(R) \times P(S)$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S

Have to read **all of S** from disk for every tuple in R!
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

for r in R:
 for s in S:
 if $r[A] == s[A]$:
 yield (r, s)

Cost:

$P(R) + T(R) \times P(S)$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S
3. Check against join conditions

Note that NLJ can handle things other than equality constraints... just check in the if statement!
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

```python
for r in R:
    for s in S:
        if r[A] == s[A]:
            yield (r, s)
```

Cost:

$$P(R) + T(R) \times P(S) + OUT$$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S
3. Check against join conditions
4. Write out (to page, then when page full, to disk)
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

for r in R:
 for s in S:
 if $r[A] == s[A]$:
 yield (r, s)

Cost:

$P(R) + T(R) \times P(S) + \text{OUT}$

What if R ("outer") and S ("inner") switched?

$P(S) + T(S) \times P(R) + \text{OUT}$

Outer vs. inner selection makes a huge difference—DBMS needs to know which relation is smaller!
Block Nested Loop Join (BNLJ)
Block Nested Loop Join (BNLJ)

Compute $R \bowtie S$ on A:

- for each page pr of R:
 - for page ps of S:
 - for each tuple r in pr:
 - for each tuple s in ps:
 - if $r[A] == s[A]$:
 - yield (r,s)

Given 3 pages of memory

Cost:

- $P(R)$
 - 1. Load in 1 page of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we’re reading in multiple pages sequentially however we’ll ignore this here!
Block Nested Loop Join (BNLJ)

Compute $R \bowtie S$ on A:

for each page pr of R:

 for page ps of S:

 for each tuple r in pr:

 for each tuple s in ps:

 if $r[A] == s[A]$:

 yield (r, s)

Note: Faster to iterate over the smaller relation first!

Cost:

$P(R) + P(R) \cdot P(S)$

Given 3 pages of memory

1. Load in 1 page of R at a time (leaving 1 page each free for S & output)

2. For each page segment of R, load each page of S
Compute $R \bowtie S$ on A:

for each page pr of R:
 for page ps of S:
 for each tuple r in pr:
 for each tuple s in ps:
 if $r[A] = s[A]$:
 yield (r, s)

Given 3 pages of memory

Cost:

$P(R) + P(R).P(S)$

1. Load in 1 page of R at a time (leaving 1 page each free for S & output)
2. For each page segment of R, load each page of S
3. Check against the join conditions

BNLJ can also handle non-equality constraints
Block Nested Loop Join (BNLJ)

Compute $R \bowtie S$ on A:

- for each page pr of R:
 - for page ps of S:
 - for each tuple r in pr:
 - for each tuple s in ps:
 - if $r[A] == s[A]$:
 - yield (r, s)

Given 3 pages of memory

Cost:

$$P(R) + P(R).P(S)$$

1. Load 1 page of R at a time (leaving 1 page each free for S & output)
2. For each page segment of R, load each page of S
3. Check against the join conditions
4. Write out
Compute $R \bowtie S$ on A:

for each $B-1$ pages pr of R:
 for page ps of S:
 for each tuple r in pr:
 for each tuple s in ps:
 if $r[A] == s[A]$:
 yield (r, s)

Given $B+1$ pages of memory

Cost:

1. Load in $B-1$ pages of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we’re reading in multiple pages sequentially however we’ll ignore this here!
Block Nested Loop Join (BNLJ)

Compute $R \bowtie S$ on A:

- for each $B-1$ pages pr of R:
 - for page ps of S:
 - for each tuple r in pr:
 - for each tuple s in ps:
 - if $r[A] == s[A]$:
 - yield (r,s)

Cost:

$$P(R) + \frac{P(R)}{B-1} P(S)$$

Given $B+1$ pages of memory

1. Load in $B-1$ pages of R at a time (leaving 1 page each free for S & output)
2. For each $(B-1)$-page segment of R, load each page of S

Note: Faster to iterate over the smaller relation first!
Block Nested Loop Join (BNLJ)

Compute \(R \bowtie S \) on \(A \):

for each \(B-1 \) pages \(pr \) of \(R \):
 for page \(ps \) of \(S \):
 for each tuple \(r \) in \(pr \):
 for each tuple \(s \) in \(ps \):
 if \(r[A] == s[A] \):
 yield \((r,s)\)

Given \(B+1 \) pages of memory

Cost:

\[P(R) + \frac{P(R)}{B-1} P(S) \]

1. Load in \(B-1 \) pages of \(R \) at a time (leaving 1 page each free for \(S \) & output)

2. For each \((B-1)\)-page segment of \(R \), load each page of \(S \)

3. Check against the join conditions

BNLJ can also handle non-equality constraints
Block Nested Loop Join (BNLJ)

Compute $R \bowtie S$ on A:

for each B-1 pages pr of R:
 for page ps of S:
 for each tuple r in pr:
 for each tuple s in ps:
 if $r[A] == s[A]$:
 yield (r, s)

Cost:

$$P(R) + \frac{P(R)}{B-1} P(S) + \text{OUT}$$

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)

2. For each (B-1)-page segment of R, load each page of S

3. Check against the join conditions

4. Write out

Given $B+1$ pages of memory
• In BNLJ, by loading larger chunks of R, we minimize the number of full disk reads of S
 – We only read all of S from disk for every \((B-1)\)-page segment of R!
 – Still the full cross-product, but more done only in memory

\[
P(R) + T(R)P(S) + \text{OUT}
\]

BNLJ is faster by roughly

\[
\frac{(B-1)T(R)}{P(R)}
\]
BNLJ vs. NLJ: Benefits of IO Aware

• Example:
 – R: 500 pages
 – S: 1000 pages
 – 100 tuples / page
 – We have 12 pages of memory (B = 11)

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~ = 140 hours

• BNLJ: Cost = 500 + \(\frac{500*1000}{10} \) = 50 Thousand IOs ~ = 0.14 hours

A very real difference from a small change in the algorithm!
Smarter than Cross-Products
Smarter than Cross-Products: From Quadratic to Nearly Linear

• All joins that compute the full cross-product have some quadratic term
 – For example we saw:

\[
\text{NLJ: } P(R) + T(R)P(S) + \text{OUT}
\]

\[
\text{BNLJ: } P(R) + \frac{P(R)}{B-1} P(S) + \text{OUT}
\]

• Now we’ll see some (nearly) linear joins:
 – \(\sim O(P(R) + P(S) + OUT)\), where again \(OUT\) could be quadratic but is usually better

We get this gain by **taking advantage of structure**- moving to equality constraints ("equijoin") only!
Index Nested Loop Join (INLJ)

Compute \(R \bowtie S \) on \(A \):

Given index \(\text{idx} \) on \(S.A \):

\[
\text{for } r \text{ in } R:
\quad s \text{ in } \text{idx}(r[A]):
\quad \text{yield } r, s
\]

\[P(R) + T(R) \times L + \text{OUT}\]

Cost:

where \(L \) is the IO cost to access all the distinct values in the index; assuming these fit on one page, \(L \sim 3 \) is good est.

\(\rightarrow \) We can use an index (e.g. B+ Tree) to \textbf{avoid doing the full cross-product!}
Sort-Merge Join (SMJ)
What you will learn about in this section

1. Sort-Merge Join
2. “Backup” & Total Cost
3. Optimizations
Sort Merge Join (SMJ): Basic Procedure

To compute $R \bowtie S$ on A:

1. Sort R, S on A using *external merge sort*

2. *Scan* sorted files and “merge”

3. [*May need to “backup”* - see next subsection]

Note that if R, S are already sorted on A, SMJ will be awesome!
SMJ Example: $R \bowtie S$ on A with 3 page buffer

- For simplicity: Let each page be *one tuple*, and let the first value be A
SMJ Example: $R \bowtie S$ on A with 3 page buffer

1. Sort the relations R, S on the join key (first value)
SMJ Example: $R \bowtie S$ on A with 3 page buffer

2. Scan and “merge” on join key!
SMJ Example: $R \bowtie S$ on A with 3 page buffer

2. Scan and “merge” on join key!

![Diagram showing the process of scanning and merging on join key with an example of sets R, S, and output set.]

CSC 261, Fall 2017
SMJ Example: $R \bowtie S$ on A with 3 page buffer

2. Scan and “merge” on join key!
SMJ Example: $R \bowtie S$ on A with 3 page buffer

2. Done!
What happens with duplicate join keys?
Multiple tuples with Same Join Key: "Backup"

1. Start with sorted relations, and begin scan / merge…

\[(0,a) (0,j) (0,b)\]
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…
1. Start with sorted relations, and begin scan / merge…
1. Start with sorted relations, and begin scan / merge…

Have to “backup” in the scan of S and read tuple we’ve already read!
Backup

• At best, no backup \(\Rightarrow \) scan takes \(P(R) + P(S) \) reads
 – For ex: if no duplicate values in join attribute

• At worst (e.g. full backup each time), scan could take \(P(R) \times P(S) \) reads!
 – For ex: if all duplicate values in join attribute, i.e. all tuples in R and S have the same value for the join attribute
 – Roughly: For each page of R, we’ll have to \textit{backup} and read each page of S…

• Often not that bad however
Cost of SMJ is **cost of sorting** R and S…

- Plus the **cost of scanning**: \(\sim P(R) + P(S) \)
 - Because of *backup*: in worst case \(P(R) \times P(S) \); but this would be very unlikely

- Plus the **cost of writing out**: \(\sim P(R) + P(S) \) but in worst case \(T(R) \times T(S) \)

\[
\sim \text{Sort}(P(R)) + \text{Sort}(P(S)) + P(R) + P(S) + \text{OUT}
\]
SMJ vs. BNLJ

• If we have 100 buffer pages, P(R) = 1000 pages and P(S) = 500 pages:
 – Sort both in two passes: $2 \times 2 \times 1000 + 2 \times 2 \times 500 = 6,000$ IOs
 – Merge phase $1000 + 500 = 1,500$ IOs
 – $= 7,500$ IOs + OUT

What is BNLJ?

 – $500 + 1000 \times \left\lceil \frac{500}{98} \right\rceil = 6,500$ IOs + OUT

• But, if we have 35 buffer pages?
 – Sort Merge has same behavior (still 2 passes)
 – BNLJ? $15,500$ IOs + OUT!
Basic SMJ

Sort Phase (Ext. Merge Sort)

Merge / Join Phase

Unsorted input relations

Given \(B+1 \) buffer pages

Joined output file created!

CSC 261, Fall 2017
If input already sorted on join key, skip the sorts.
 – SMJ is basically linear.
 – Nasty but unlikely case: Many duplicate join keys.
4. HASH JOIN (HJ)
What you will learn about in this section

1. Hash Join

2. Memory requirements
• **Magic of hashing:**
 – A hash function h_B maps into $[0,B-1]$
 – And maps nearly uniformly

• **A hash collision is when** $x \neq y$ but $h_B(x) = h_B(y)$
 – Note however that it will **never** occur that $x = y$ but $h_B(x) \neq h_B(y)$
To compute $R \bowtie S$ on A:

1. **Partition Phase**: Using one (shared) hash function h_B, partition R and S into B buckets

2. **Matching Phase**: Take pairs of buckets whose tuples have the same values for h, and join these
 1. Use BNLJ here; or hash again \Rightarrow either way, operating on small partitions so fast!

We *decompose* the problem using h_B, then complete the join

Note again that we are only considering equality constraints here
Hash Join: High-level procedure

1. **Partition Phase:** Using one (shared) hash function h_B, partition R and S into B buckets

Note our new convention: pages each have two tuples (one per row)

More detail in a second...
2. **Matching Phase:** Take pairs of buckets whose tuples have the same values for h_B, and join these.
2. **Matching Phase:** Take pairs of buckets whose tuples have the same values for h_B, and join these.
Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into buckets such that if $h_B(t_i.A) = h_B(t_j.A)$ they are in the same bucket

Given $B+1$ buffer pages, we partition into B buckets:

– We use B buffer pages for output (one for each bucket), and 1 for input
 • For each tuple t in input, copy to buffer page for $h_B(t.A)$
 • When page fills up, flush to disk.
How big are the resulting buckets?

Given N input pages, we partition into B buckets:
- Ideally our buckets are each of size $\sim \frac{N}{B}$ pages

Given $B+1$ buffer pages
How big do we want the resulting buckets?

• Ideally, our buckets would be of size \(\leq B - 1 \) pages
 – 1 for input page, 1 for output page, \(B-1 \) for each bucket

• Recall: If we want to join a bucket from R and one from S, we can do BNLJ in linear time if for one of them (wlog say R), \(P(R) \leq B - 1 \!
 – And more generally, being able to fit bucket in memory is advantageous

• We can keep partitioning buckets that are > B-1 pages, until they are \(\leq B - 1 \) pages
 – Using a new hash key which will split them...

Given \(B+1 \) buffer pages

Recall for BNLJ:
\[
P(R) + \frac{P(R)P(S)}{B - 1}
\]

We’ll call each of these a “pass” again...
Hash Join Phase 1: Partitioning

We partition into $B = 2$ buckets using hash function h_2 so that we can have one buffer page for each partition (and one for input).

Given $B+1 = 3$ buffer pages

For simplicity, we’ll look at partitioning one of the two relations- we just do the same for the other relation!

Recall: our goal will be to get $B = 2$ buckets of size $\leq B-1 \rightarrow 1$ page each
Hash Join Phase 1: Partitioning

1. We read pages from R into the “input” page of the buffer…

Given $B+1 = 3$ buffer pages

CSC 261, Fall 2017
2. Then we use hash function h_2 to sort into the buckets, which each have one page in the buffer.
Given $B+1 = 3$ buffer pages

2. Then we use hash function h_2 to sort into the buckets, which each have one page in the buffer
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Given $B+1 = 3$ buffer pages

![Diagram showing partitioning and buffer pages]
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Given $B+1 = 3$ buffer pages

<table>
<thead>
<tr>
<th>Input</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>page</td>
<td>Output (bucket) pages</td>
<td></td>
</tr>
</tbody>
</table>

```plaintext
R

Dis

k

(5,b) (5,a) (0,j)

CSC 261, Fall 2017
```
3. We repeat until the buffer bucket pages are full…

Given \(B+1 = 3 \) buffer pages
3. We repeat until the buffer bucket pages are full… then flush to disk
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full... then flush to disk

Given $B+1 = 3$ buffer pages

![Diagram showing partitioning and flushing to disk]

CSC 261, Fall 2017
Hash Join Phase 1: Partitioning

Note that collisions can occur!

Given $B+1 = 3$ buffer pages

Collision!!!
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages

```

<table>
<thead>
<tr>
<th>(5, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, a)</td>
</tr>
<tr>
<td>(0, j)</td>
</tr>
<tr>
<td>(3, a)</td>
</tr>
<tr>
<td>(3, j)</td>
</tr>
</tbody>
</table>

Main Memory

$\text{Buffer}$

\begin{align*}
\text{Input} & \quad 0 \quad 1 \\
\text{Output (bucket) pages} & \\
\end{align*}

CSC 261, Fall 2017
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages

---

**Tables**

<table>
<thead>
<tr>
<th>Disk</th>
<th>B0</th>
<th>B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>(0,a)</td>
<td>(3,a)</td>
</tr>
<tr>
<td></td>
<td>(0,j)</td>
<td>(3,j)</td>
</tr>
</tbody>
</table>
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

Collision!!!

Finish this pass...

Input pageOutput (bucket) pages
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

We wanted buckets of size $B-1 = 1...$ however we got larger ones due to:

1. Duplicate join keys
2. Hash collisions
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!

What hash function should we use?

Do another pass with a different hash function, $h'_2$, ideally such that:

$$h'_2(3) \neq h'_2(5)$$
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!

What hash function should we use?

Do another pass with a different hash function, $h'_2$, ideally such that:

$$h'_2(3) \neq h'_2(5)$$
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

What about duplicate join keys? Unfortunately this is a problem... but usually not a huge one.

We call this unevenness in the bucket size **skew**

<table>
<thead>
<tr>
<th>Bucket</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_0$</td>
<td>$(0,a)$, $(0,j)$, $(0,j)$</td>
</tr>
<tr>
<td>$B_1$</td>
<td>$(3,a)$, $(3,j)$</td>
</tr>
<tr>
<td>$B_2$</td>
<td>$(5,a)$, $(5,b)$</td>
</tr>
</tbody>
</table>
Now that we have partitioned $R$ and $S$...
Hash Join Phase 2: Matching

- Now, we just join pairs of buckets from R and S that have the same hash value to complete the join!
Hash Join Phase 2: Matching

• Note that since \( x = y \Rightarrow h(x) = h(y) \), we only need to consider pairs of buckets (one from \( R \), one from \( S \)) that have the same hash function value.

• If our buckets are \( \sim B - 1 \) pages, can join each such pair using BNLJ in linear time; recall (with \( P(R) = B^{-1} \)):

\[
\text{BNLJ Cost: } P(R) + \frac{P(R)P(S)}{B-1} = P(R) + \frac{(B-1)P(S)}{B-1} = P(R) + P(S)
\]

Joining the pairs of buckets is linear! (As long as smaller bucket <= B-1 pages)
Hash Join Phase 2: Matching

R \bowtie S \text{ on } A
Hash Join Phase 2: Matching

To perform the join, we ideally just need to explore the dark blue regions – the tuples with same values of the join key A.

R \bowtie S on A
Hash Join Phase 2: Matching

With a join algorithm like BNLJ that doesn’t take advantage of equijoin structure, we’d have to explore this **whole grid!**
Hash Join Phase 2: Matching

With HJ, we only explore the blue regions

= the tuples with same values of \( h(A) \)!

We can apply BNLJ to each of these regions
Hash Join Phase 2: Matching

R \bowtie S on A

An alternative to applying BNLJ:

We could also hash again, and keep doing passes in memory to reduce further!
Hash Join Summary

– **Partitioning** requires reading + writing each page of R, S
  • \( \rightarrow 2(P(R)+P(S)) \) IOs

– **Matching** (with BNLJ) requires reading each page of R, S
  • \( \rightarrow P(R) + P(S) \) IOs

– **Writing out results** could be as bad as \( P(R) \times P(S) \) … but probably closer to \( P(R) + P(S) \)

HJ takes \( \sim 3(P(R)+P(S)) + OUT \) IOs!
Sort-Merge vs. Hash Join

- *Given enough memory*, both SMJ and HJ have performance:

  \[ \sim 3(P(R) + P(S)) + OUT \]

- "Enough" memory =
  - SMJ: \( B^2 > \max\{P(R), P(S)\} \)
  - HJ: \( B^2 > \min\{P(R), P(S)\} \)

Hash Join superior if relation sizes *differ greatly*. Why?
Further Comparisons of Hash and Sort Joins

- Hash Joins are highly parallelizable.

- Sort-Merge less sensitive to data skew and result is sorted
Summary

• Saw IO-aware join algorithms
  – Massive differences in performance.
Acknowledgement

• Some of the slides in this presentation are taken from the slides provided by the authors.
• Many of these slides are taken from cs145 course offered by Stanford University.