
CSC 261/461 – Database Systems
Lecture 22

Fall 2017

Announcement

• Quiz #9 (Free Quiz)
– Due: This Wednesday
– https://goo.gl/forms/rkbwYw7u0cLHKy5s1

• Poster Printing Guidelines:
– https://piazza.com/class/j6it7h5r49y3t1?cid=122

Topics for Today

• Query Optimization (Chapter 19)

We will cover

1. Logical	Optimization

2. Physical	Optimization

Logical vs. Physical Optimization

• Logical optimization:
– Find equivalent plans that are more efficient
– Intuition: Minimize # of tuples at each step by

changing the order of RA operators

• Physical optimization:
– Find algorithm with lowest IO cost to execute

our plan
– Intuition: Calculate based on physical

parameters (buffer size, etc.) and estimates of
data size (histograms)

Execution

SQL	Query

Relational	
Algebra	(RA)	Plan

Optimized
RA	Plan

1. LOGICAL OPTIMIZATION

What you will learn about in this section

1. Optimization	of	RA	Plans

RDBMS Architecture

How does a SQL engine work ?

SQL	
Query

Relational	
Algebra	
(RA)	Plan

Optimized
RA	Plan Execution

Declarative	
query	(from	
user)

Translate	to	
relational	algebra	
expresson

Find	logically	
equivalent- but	
more	efficient- RA	
expression

Execute	each	
operator	of	the	
optimized	plan!

RDBMS Architecture

How does a SQL engine work ?

SQL	
Query

Relational	
Algebra	
(RA)	Plan

Optimized
RA	Plan Execution

Relational	Algebra	allows	us	to	translate	declarative	(SQL)	
queries	into	precise	and	optimizable expressions!

Recall: Logical Equivalence of RA Plans

• Given relations R(A,B) and S(B,C):

– Here, projection & selection commute:

• 𝜎"#$(Π"(𝑅)) = Π"(𝜎"#$(𝑅))

–What about here?

• 𝜎"#$(Π*(𝑅))	?= Π*(𝜎"#$(𝑅))

We’ll	look	at	this	in	more	depth	later	in	the	lecture…

RDBMS Architecture

How does a SQL engine work ?

SQL	
Query

Relational	
Algebra	
(RA)	Plan

Optimized
RA	Plan Execution

We’ll	look	at	how	to	then	optimize	these	
plans	now

Note: We can visualize the plan as a tree

Π*

R(A,B) S(B,C)

Π*(𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶)

Bottom-up	tree	traversal	=	order	of	operation	execution!	

A simple plan

Π*

R(A,B) S(B,C)

What	SQL	query	does	this	
correspond	to?

Are	there	any	logically	
equivalent	RA	expressions?

“Pushing down” projection

Π*

R(A,B) S(B,C)

Π*

R(A,B) S(B,C)

Π*

Why	might	we	prefer	this	
plan?

Takeaways

• This process is called logical optimization

• Many equivalent plans used to search for “good plans”

• Relational algebra is an important abstraction.

Optimizing the SFW RA Plan

RA commutators

• The basic commutators:
– Push projection through (1) selection, (2) join
– Push selection through (3) selection, (4) projection, (5) join
– Also: Joins can be re-ordered!

• Note that this is not an exhaustive set of operations

This	simple	set	of	tools	allows	us	to	greatly	improve	the	
execution	time	of	queries	by	optimizing	RA	plans!

Π",3

R(A,B) S(B,C)

T(C,D)

sA<10

Π",3(𝜎"456 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C)
T(C,D)

Translating to RA

Logical Optimization

• Heuristically, we want selections and projections to occur as
early as possible in the plan
– Terminology:
• “push down selections” and “push down projections.”

• Intuition: We will have fewer tuples in a plan.

Π",3

R(A,B) S(B,C)

T(C,D)

sA<10

Π",3(𝜎"456 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing RA Plan

Push	down	
selection	on	A	so	
it	occurs	earlier	

Π",3

R(A,B)

S(B,C)

T(C,D)

Π",3 𝑇 ⋈ 𝜎"456(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C)
T(C,D)

Optimizing RA Plan

Push	down	
selection	on	A	so	
it	occurs	earlier	

sA<10

Π",3

R(A,B)

S(B,C)

T(C,D)

Π",3 𝑇 ⋈ 𝜎"456(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C)
T(C,D)

Optimizing RA Plan

Push	down	
projection	so	it	
occurs	earlier	

sA<10

Π",3

R(A,B)

S(B,C)

T(C,D)

Π",3 𝑇 ⋈ Π",8 𝜎"456(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C)
T(C,D)

Optimizing RA Plan

We	eliminate	B	
earlier!

sA<10

Π",9

In	general,	when	
is	an	attribute	
not	needed…?

Logical optimization

• Selections and Cross Product can be combined into joins
• Selections and projections can be pushed down (below

joins)
• Joins can be extensively reordered.

Equivalent Trees

(a) Two left-deep join query trees. (b) A right-deep join query
tree. (c) A bushy query tree.

How to Handle Many Joins

Reasons for Left-deep plans

• As the number of joins increases, the number of alternative
plans increases rapidly. It becomes necessary to prune the
space of alternative plans

• Left-deep trees allow us to fully pipelined plans.

2. PHYSICAL OPTIMIZATION

Cost functions for SELECT operation

• Teminology:
– r: Number of records
– b: Number of blocks
– bfr: blocking factor
– sl: selectivity (fraction of record satisfying the condition
– s: selection cardinality = sl * r
– x: Number of levels (you can treat as depth)
– l : number of leaves (# number of first level blocks)

Cost functions for Select (Section: 19.4)

Algorithm Cost Special	Cases

Linear	Search b/2 b (if	not	found)

Binary	Search log=𝑏 +
𝑠
𝑏𝑓𝑟 − 1 log=𝑏 (if	on	a	

unique key)
Primary Index 𝑥 + 1

Hash	Key 1

Ordering	index	 (>,	<	,	>=,	<=) 𝑥 + (𝑏/2)

Clustering	Index 𝑥 +
𝑠
𝑏𝑓𝑟

B+	tree	index 𝑥 + 1 + 𝑠 𝑥 + 𝑙/2 + 𝑟/2

What you will learn about in this section

1. Index	Selection

2. Histograms

Index Selection

Input:
– Schema of the database
– Workload description: set of (query template, frequency) pairs

Goal: Select a set of indexes that minimize execution time of
the workload.
– Cost / benefit balance: Each additional index may help with some

queries, but requires updating

This	is	an	optimization	problem!

Example

SELECT pname
FROM Product
WHERE year = ? AND Category = ?
AND manufacturer = ?

SELECT pname
FROM Product
WHERE year = ? AND category = ?

Frequency	
10,000,000

Workload	
description:

Frequency	
10,000,000

Which	indexes	might	we	choose?

Example

SELECT pname
FROM Product
WHERE year = ? AND Category =?
AND manufacturer = ?

SELECT pname
FROM Product
WHERE year = ? AND category =?

Frequency
10,000,000

Workload	
description:

Frequency
100

Now	which	indexes	might	we	choose?		Worth	keeping	an	
index	with	manufacturer	in	its	search	key	around?

Estimating index cost?

• Note that to frame as optimization problem, we first need an
estimate of the cost of an index lookup

• Need to be able to estimate the costs of different indexes /
index types…

We	will	see	this	mainly	depends	on	
getting	estimates	of	result	set	size!

Ex: Clustered vs. Unclustered

Cost to do a range query for M entries over N-page file (P per
page):

– Clustered:
• To traverse: Logf(1.5N)

• To scan: 1 random IO + IJ5
K

	sequential IO

– Unclustered:
• To traverse: Logf(1.5N)
• To scan: ~ M random IO

Suppose	we	are	using	
a	B+	Tree	index	with:
• Fanout f
• Fill	factor	2/3

Plugging in some numbers

• Clustered:
– To traverse: LogF(1.5N)

– To scan: 1 random IO + IJ5
K

sequential IO

• Unclustered:
– To traverse: LogF(1.5N)
– To scan: ~ M random IO

• If M = 1, then there is no difference!
• If M = 100,000 records, then difference is ~10min. Vs. 10ms!

To	simplify:
• Random	IO	=	~10ms
• Sequential	IO	=	free

~	1	random	IO	=	10ms

~	M random	IO	=	M*10ms

If	only	we	had	good	estimates	of	M…

HISTOGRAMS & IO COST
ESTIMATION

IO Cost Estimation via Histograms

• For index selection:
– What is the cost of an index lookup?

• Also for deciding which algorithm to use:
– Ex: To execute R ⋈ 𝑆, which join algorithm should DBMS use?

– What if we want to compute 𝝈𝑨O𝟏𝟎(𝐑) ⋈ 𝝈𝑩#𝟏(𝑺)?

• In general, we will need some way to estimate intermediate result
set sizes

Histograms	provide	a	way	to	efficiently	
store	estimates	of	these	quantities

Histograms

• A histogram is a set of value ranges (“buckets”) and the
frequencies of values in those buckets occurring

• How to choose the buckets?
– Equiwidth & Equidepth

• Turns out high-frequency values are very important

0

5

10

1 2 3 4 5 6 7 8 9 101112131415
Values

Frequency

How	do	we	
compute	how	
many	values	
between	8	and	
10?	
(Yes,	it’s	obvious)

Problem:	counts	take	up	too	much	space!

Example

Fundamental Tradeoffs

• Want high resolution (like the full counts)

• Want low space (like uniform)

• Histograms are a compromise!

So	how	do	we	compute	the	“bucket”	sizes?

Equi-width

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All	buckets	roughly	the	same	width

Equidepth

0
2
4
6
8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All	buckets	contain	roughly	the	same	
number	of	items	(total	frequency)

Histograms

• Simple, intuitive and popular

• Parameters: # of buckets and type

• Can extend to many attributes (multidimensional)

Maintaining Histograms

• Histograms require that we update them!
– Typically, you must run/schedule a command to update statistics

on the database
–Out of date histograms can be terrible!

Acknowledgement

• Some of the slides in this presentation are taken from the
slides provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

